Presented at "Short Course on Geothermal Drilling, Resource Development and Power Plants", organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011.

ENVIRONMENTAL MONITORING OF GEOTHERMAL POWER PLANTS IN OPERATION

Ingimar G. Haraldsson United Nations University Geothermal Training Programme Orkustofnun, Grensasvegi 9, 108 Reykjavik ICELAND ingimar.haraldsson@os.is

ABSTRACT

During the operation phase of geothermal power plants, environmental engineers and scientist are entrusted with the task of monitoring their impacts on the environment. With a well designed monitoring plan, they are kept informed of the conditions of the system which they are responsible for maintaining and a sound environmental management plan helps ensure that the monitoring is carried out in an effective manner within the boundaries of their observation space, in accordance with regulation and best practices. As is the case with the power plant engineer, the environmental engineer should strive to apply preventive measures, to ensure continued sustenance of the natural environment.

1. INTRODUCTION

As all other anthropic projects, geothermal power plants interact with their surrounding environment in various ways over the course of their lifetime. They thus become a part of the complex planetary environment without any obvious demarcated boundaries. The impacts can vary in nature, severity and scope over the different phases of development, which according to Steingrímsson (2009) consist of a preliminary study, an appraisal study, project design and construction, commissioning and operation, and finally shutdown and abandonment.

Early impacts during surface exploration are usually minimal, but they become gradually more pronounced as the project moves through exploratory drilling and on to the appraisal study phase (Figure 1). The greatest impacts are brought about during the design and construction phase, when the local environment in the geothermal field and at the power plant site may change significantly with the clearing of land and the construction of man-made structures, when wells are being flow tested and the economic and social effects of the power plant are felt most profoundly in the neighboring communities. After commissioning, the power plant usually falls into a rather steady interaction with the environment if maintenance and operation activities are carried out according to best practices. This interaction finally stops when the plant is shut down and abandoned, although there will be lingering local effects, depending on the reversibility of impacts and the degree of restoration.

The intent of this paper is to present a broad overview of environmental monitoring of geothermal power plants in operation and to examine to a limited extent the role of environmental engineers and scientists in that context. To that end, a somewhat broad philosophical approach is taken at the outset, but specific potential environmental concerns are addressed in more detail in a table in Appendix I.

FIGURE 1: Hypothetical relative degrees of the environmental impacts of the different phases of geothermal power plant development

2. GEOTHERMAL POWER PLANTS IN THE ENVIRONMENT

Geothermal power plants in operation cannot be viewed as isolated systems. They rely upon high enthalpy geothermal fluids that may draw their heat content from rocks several kilometers beneath the surface of the earth – heat that may have been locked in the deep interior of the planet since its formation around 4.5 billion years ago or released from radioactive heavy elements that captured and locked away some of the tremendous energy of supernovae long before the formation of the solar system. The plants process these fluids and re-emit them to the environment in different states and compositions: water and dissolved substances are reinjected or discharged to the surface and steam and noncondensable gases are emitted to the atmosphere, where they may be advected and dispersed over long distances while undergoing chemical reactions with other atmospheric components. One of these gases is CO_2 , which has an estimated 200 years combined lifetime in the atmosphere, biosphere, and upper ocean (Seinfeld and Pandis, 1998). Over this period, it can contribute to radiative forcing of the climate and acidification of the oceans. Geothermal power plants therefore interact with the environment over vast distance and time scales.

Geothermal power plants need cooling fluids to discard waste heat to the environment. These can be fresh or salt water that makes a one-time pass through a condenser, carrying the waste heat into a nearby river, lake or ocean. The cooling fluid can also be water that carries waste heat into the environment in latent form through an evaporative process in a cooling tower or air that cools a dry condenser. The first method increases the temperature of the receiving river, lake or ocean, which may affect the biosphere, the second increases the temperature and humidity of the local atmosphere and the third increases the temperature of the local atmosphere.

In addition to geothermal fluids and cooling fluids, a geothermal power plant in operation needs to discard various substances, materials and equipment and new ones are required for maintenance purposes. A pump made by workers in China may be bought for maintenance in a power plant in El Salvador, Iceland or Kenya, and transformer oil or cooling water treatment chemicals may likewise be shipped between continents. Last, but not least, geothermal power plants may provide electricity to the public and industry on a country-wide scale and hot water to district heating systems on a municipal scale, thereby affecting the social and economic fabric in these spaces. It is thus clear that geothermal power plants in operation affect the environment and socio-economic sphere near and far.

3

FIGURE 2: A simple presentation of one possible demarcation of the environmental and power plant observation spaces

A common practice in environmental engineering, fluid mechanics and thermodynamics is the application of control volumes to systems of interest. They can range from the infinitesimal to the very large depending on the problem at hand and are used for simplification to draw an arbitrary border between the system of choice and its surroundings. The goal is usually to bundle the various processes of the system within the control volume together without regard to the details of system components. The interaction of such systems with the surrounding environment can be evaluated on the basis of mass, energy or information exchange through the imaginary borders of the control volume.

One way of selecting the control volume, or observation space, of a geothermal power plant is to imagine the borders as consisting of the land surface and the borders of man-made structures and equipment, or perhaps extending them below the surface to the casings of wells (Figure 2). This may be the preferred observation space of power plant engineers who are concerned with daily operations and maintenance of their power plants. In order to keep the plants in optimum shape for future operations, they may apply preventive maintenance philosophies within this space, since the key to reliable operation is constant monitoring and condition-based maintenance (Thorolfsson, 2010). In such an observation space, the environment may be a concern primarily as an outside agent of influence on the system of relevance (the power plant), as weather conditions and the chemistry of surrounding fluids may detrimentally affect equipment and materials.

The environmental engineer may take the stance of looking at a bounded or unbounded observation space surrounding the power plant to look at the effects of the plant on the environment. In this case, the power plant has become the outside agent of influence on the system of relevance, which is the environment, often extended to the socio-economic sphere. The environmental engineer is concerned with sustaining the environment, so that it is passed on to the future in the same or better shape than at present. As one synonym of the verb to "sustain" is to "maintain", the goals of the power plant engineer who seeks to maintain his system in optimum working condition is analogous to that of the environmental engineer who seeks to sustain the system which he or she is responsible for monitoring.

4 *Env. monitoring of power plants in operation*

In this respect, it is important to note that the environmental engineer may choose to look at details or overall effects within the observation space. An example is the clearing of a patch of land and the associated loss of vegetation and wildlife, which may or may not be considered acceptable depending on the scarcity of the affected flora and fauna and the magnitude of the effects, but which may possibly be compensated for by restoring another patch of land to similar conditions. Therefore sustained balance of the system on a predetermined scale is sometimes what should be sought rather than simply keeping individual small scale parts of the system in sustained condition.

While arbitrary compartmentalization into observation spaces can be useful, it should be remembered that the power plant and its surrounding environment can also be viewed as a single system of interacting parts and perhaps such an approach is most fit.

3. INTERACTION WITH THE ENVIRONMENT

The interaction between geothermal power plants and the surrounding environment can be divided into the impacts of the power plants on the environment and the impacts of the environment on the power plants. Kristmannsdóttir and Ármannsson (2003) have classified the former into the following categories:

- Surface disturbances;
- Physical effects of fluid withdrawal;
- Noise;
- Thermal effects;
- Chemical pollution;
- Biological effects; and
- Impact on (protected) natural features.

Surface disturbances include the clearing of land, changes in landscape and the introduction of manmade structures where none existed before. Physical effects of fluid withdrawal include subsidence, lowering of the groundwater table and induced seismicity as earth layers consolidate due to the removal of fluids from matrix pore spaces or when increased pressure due to injection causes the relief of accumulated geological stresses. Thermal effects include elevated temperatures of rivers, lakes and groundwater due to thermal fluid discharges and changes in cloud formation and local weather due to steam emissions. Chemical pollution can be caused by steam and non-condensible gas emissions to the atmosphere and the discharge of brine to surface or subsurface water bodies. All of these have the potential of impacting wildlife, vegetation and the socio-economic sphere around a geothermal power plant, as well as altering natural features for the short term or permanently. Monitoring and controlling sources and their impacts is therefore of utmost importance.

On the other hand, the impacts of the environment on geothermal power plants include:

- The application of external dynamic forces to power plant structures. These include seismic forces changing over short time scales and deforming forces that may change over much longer time scales due to subsidence. Wind (hurricanes), floods, snow and ice are also examples of dynamic environmental forces that may follow a seasonal pattern and affect power plant structures.
- Degradation of equipment and materials due to environmental chemistry. These effects include corrosion and scaling.

All of these effects need to be monitored to maintain and sustain the power plant and its environment.

4. ENVIRONMENTAL MONITORING

The goal of environmental monitoring is to keep the environmental engineer informed of the conditions of the system which he/she is responsible for maintaining. Ideally, information about all possible factors of concern should be available at all times to give instantaneous snapshots of the system when needed. The environmental engineer, however, does not have the same elaborate monitoring and control system at his/her disposal as the power plant engineer, where the most important parameters of power plant operations are constantly monitored and recorded, and can be viewed on a display in a central location. While such frequent information may be obtained by chemical, meteorological and seismic sensors in the environment, the environmental engineer will in most cases have to make his/her own observations and measurements. As this can be costly, it is important to design a well structured monitoring program that fulfills the demands of regulations and best practices, while minimizing cost. Quality of data should be emphasized over quantity, since data volume by itself is not an indicator of meaningful information, but rather the context in which the data is collected and how it is related to processes of interest.

5

In 1999, the World Bank Group (WBG) listed the common components of a pollution monitoring program in the following manner:

The elements of a monitoring plan normally include selection of the parameters of concern; the method of collection and handling of samples (specifying the location, the frequency, type, and quantity of samples, and sampling equipment); sample analysis (or, alternatively, on-line monitoring); and a format for reporting the results.

While pollution monitoring is essentially the monitoring of various chemical species and other potentially harmful agents (such as particulate matter) in the environment and unmistakably important in the context of geothermal power plants, it is only a part of a thorough and well rounded geothermal environmental monitoring program. The WBG description is therefore not complete in the context of geothermal power plants, but can nevertheless serve as a basis that can be extended to the other factors of concern to design a sound environmental monitoring program.

According to the WBG (1999), "an environmental management system is a structured program of continuous environmental improvement that follows procedures drawn from established business management practices". One such system is the ISO 14000 series, which helps delineate well organized management programs. As it provides structure more than content, it leaves the responsibility of identifying environmental concerns to the users of the system. The ISO 14001 environmental management system has for example been implemented by Instituto Costarricense de Electricidad for the Miravalles power plant in Costa Rica and has allowed continuous improvement in controlling the environmental impacts of the power plant (Guido-Sequeira, 2010).

In order to clarify the goals of monitoring and establish the content of an environmental management plan, it can be helpful to keep the following basic questions in mind:

- 1. *What* aspects need to be monitored?
- 2. *Why* are they a concern?
- 3. *Where* should the monitoring take place?
- 4. *How* should monitoring and analysis be carried out?
- 5. *When* is monitoring needed?

An attempt is made to answer these questions for some issues of concern in a table in Appendix I, roughly following the categorization of Kristmannsdóttir and Ármannsson. The table is intended as an aid or a checklist for environmental monitoring of geothermal power plants in operation and the issues addressed cover various environmental aspects that are of concern in disparate countries. As concerns may differ between countries, it is probable that the table is not relevant in its entirety to any one

power plant. It is certainly not exhaustive and is meant to evolve as new concerns and information may be brought to light.

While environmental monitoring programs can be designed meticulously, they are meaningless without references to compare observations against, and these mainly take two forms:

- The natural state before alteration; and
- Laws, regulations, standards, codes, guidelines, and best practices.

5. BASELINE ESTABLISHMENT

It is necessary to know the natural state of the environment before it is changed by exploration, testing or utilization. Baseline data collection involves collecting background information for this purpose on the physical, chemical, biological, social and economic settings in the vicinity of a proposed geothermal power plant and is usually carried out as part of scoping or an environmental impact assessment. The information may be obtained from secondary sources or gathered through measurements, field samplings, surveys, interviews and consultations (Achieng Ogola, 2009). A well established baseline allows the environmental engineer to assess how significantly specific environmental conditions deviate from the natural state during the power plant operation phase and to what extent they are caused by the plant.

6. THE ROLE OF LAWS, REGULATIONS, STANDARDS, CODES, GUIDELINES AND BEST PRACTICES

Most countries have established specific laws that address the environment, and environmental regulations may be issued by relevant ministries. The particular aspects addressed and the detail in which they are covered can however vary from country to country. Power plant designers and operators may be obliged to follow certain standards, norms and codes that may be relevant to the environment, and financing institutions may condition the financing of projects to the observation of environmental guidelines that they have established. Companies and developers can also decide on their own accord to follow best practices without being obliged to do so by outside parties.

Environmental laws are important in channeling and placing constraints on human interaction with nature. Governmental and municipal regulations are an extension of the law, which may address specific topics in more detail than the laws themselves and dictate limits, such as the allowable concentration of pollutants in the environment. They may also provide a framework for the development of geothermal resources and address issues as diverse as planning, the acquisition of land, the application of concessions, exploration, exploitation, rights, permits, performance guarantees, taxation, general procedures and obligations of actors.

Engineers may be constrained by standards and codes in their design work that are pertinent to the environment. Civil engineers who design concrete containment structures for conveying, storing or treating liquid or solid wastes may for example have to take account of specific codes in structural design and materials selection in order to ensure that those wastes will not find their way into the environment.

A provision in the International Development and Finance Act of 1989, known as the Pelosi Amendment, requires the World Bank and all the regional multilateral development banks to review the potential environmental impacts of development projects for which they provide funding and to make these environmental assessments publicly available (BIC, 2010). This provision and the establishment of stringent guidelines within development banks has helped ensure that the environmental impacts of projects financed by these entities are within acceptable limits.

Additionally, such guidelines have had spillover effects on various other bodies. A case in point is noted by Arévalo (2009), who reports that "in the 1980's, the Latin American Energy Organization (OLADE) under the auspices of the Inter-American Development Bank (IDB) established a guideline for the development of geothermal projects for the countries in the region". She further notes that "the application of the OLADE guidelines in the region helped raise awareness in countries where geothermal resources are explored".

7

Health guidelines are important to the environmental engineer as they often provide advice on maximum allowable concentrations of particular pollutants over a set time period. Such guidelines are issued by national agencies or international organizations such as the World Health Organization (WHO) and are often specific to the fluid medium carrying the pollutants, such as the atmosphere or water bodies. One of the tasks of the environmental engineer is to assess measured concentrations against such guidelines and to devise mitigation schemes if they are surpassed.

7. ENVIRONMENTAL ENGINEERING AND MITIGATION

It is important that environmental considerations be taken into account from the very first stages of geothermal resources development and that these considerations are noted in the design of a power plant. To this end, it is important to start gathering environmental baseline information as soon as possible and that an environmental impact assessment be carried out – the results of which will be of use in the power plant design. If environmental constraints are likely to be broken based upon available information about the geothermal fluid properties and composition and initial proposals for utilization, it is the task of the environmental engineer to devise schemes to prevent such scenarios from unfolding. A geothermal power plant that is well designed with regard to the environment and well managed is not likely to cause environmental harm. However, as regulations and guidelines may change and conditions become more stringent with time, the environmental engineer must keep abreast of developments in the regulatory sphere that may increase environmental demands on a power plant, even if the operation remains in a steady phase.

8. CONCLUSION

During the operation phase of geothermal power plants, environmental engineers and scientist are entrusted with the task of monitoring their impacts on the environment. With a well designed monitoring plan, they are kept informed of the conditions of the system which they are responsible for maintaining, and a sound management plan helps ensure that the monitoring is carried out in an effective manner. It is important to monitor both the sources of potential problems and their effects. The role of the environmental engineer is to ensure the maintenance of the system within the boundaries of the chosen observation space, in accordance with laws, regulations, standards, guidelines and best practices. If problems arise, countering or mitigative measures should be taken in order to deal with them. As is the case with the power plant engineer, the environmental engineer should strive to apply preventive measures to ensure continued sustenance of the system within the relevant observation space and to collaborate with colleagues of other disciplines to attain the necessary goals.

REFERENCES

8

Achieng Ogola, P.F., 2009: Environmental impact assessment general procedures. Presented at the Short Course IV on Exploration for Geothermal Resources, organized by the UNU-GTP, KenGen and GDC at Lake Naivasha, Kenya, November 1-22, 2009, 16 pp.

Arévalo, A.S.A., 2009: *Environmental issues in geothermal exploration in Central America*. Presented at the Short Course on Surface Exploration for Geothermal Resources, organized by the UNU-GTP and LaGeo, in Ahuachapan and Santa Tecla, El Salvador, 17-30 October, 2009.

Arévalo, A.S.A., 1998: Environmental aspects of the Berlín geothermal power station in El Salvador. Report 2 in: *Geothermal training in Iceland 1998*. UNU-GTP, Iceland, 25-50.

Arnórsson, S. (editor), 2000: Isotopic and chemical techniques in geothermal exploration, development and use. International Atomic Energy Agency, Vienna, 351 pp.

Ármannsson, H., and Kristmannsdóttir, H., 1993: Geothermal environmental impact. *Geothermics,* 21, 869-880.

Ármannsson, H., and Ólafsson, M., 2005: Monitoring the effects of effluent discharge from Krafla power station and Bjarnarflag power station. Sampling and results 2004. Landsvirkjun, Reykjavik, report LV-2005/025 (in Icelandic), 15 pp.

BIC, 2010: NGO community celebrates 20th anniversary of the Pelosi Amendment. Bank Information Center, website: http://www.bicusa.org/en/Article.11875.aspx.

EPA, 2009: A citizen's guide to radon. US Environmental Protection Agency, report 402/K-09/001, 16 pp, website: http://www.epa.gov/radon/pdfs/citizensguide.pdf.

EU, 2003: Directive 2003/10/EC of the European Parliament and of the Council of February 2003 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (noise). *Official Journal of the European Union*, 15.2.2003, L 42/38-L 42/44.

Franco, L.A., 2010: Hydrogen sulphide abatement during discharge of geothermal steam from well pads: A case study of well pad TR-18, El Salvador. Report 13 in: *Geothermal training in Iceland 2010*. UNU-GTP, Iceland, in press.

Gudmundsson, Á. and Hauksson, T., 2005: *Monitoring of geothermal production and its impact on the environment*. Landsvirkjun, Reykjavik, report LV-2005/041 (in Icelandic), 50 pp.

Guido-Sequeira, H., 2010: The environmental impact evaluation for geothermal projects in Costa Rica. *Proceedings World Geothermal Congress 2010, Bali, Indonesia, April 2010*, 4 pp.

Hunt1, M., 1998: Environmental noise issues associated with geothermal development. *Proceedings* 20th NZ Geothermal Workshop 1998, 197-201.

IPCS, 1998: *Environmental health criteria no. 204. Boron*. World Health Organization, Geneva, International Programme on Chemical Safety, website: http://www.inchem.org/documents/ehc/ehc/204.htm.

IPCS, 2001: *Environmental health criteria no. 224. Arsenic and arsenic compounds.* World Health Organization, Geneva, International Programme on Chemical Safety, website: http://www.inchem.org/documents/ehc/ehc/ehc224.htm.

Kagel, A., Bates, D. and Gawell, K., 2007: *A guide to geothermal energy and the environment*. Geothermal Energy Association, Washington D.C., 86 pp, website: http://www.geo-energy.org/reports/Environmental%20Guide.pdf.

9

Kristmannsdóttir, H. and Ármannsson, H., 2003: Environmental aspects of geothermal energy utilization. *Geothermics*, 32, 451-461.

Kubo, B.M, 2003: Environmental management at Olkaria geothermal project, Kenya. *International Geothermal Conference, Reykjavík, September 2003*, 72-80, website: http://www.os.is/gogn/unu-gtp-25-ann/UNU-GTP-IGC-2003-13.pdf.

Miller, G.W., Shupe, J.L. and Vedina, O.T., 1999: Accumulation of fluoride in plants exposed to geothermal and industrial water. *Fluoride*, *32-2*, 74-83, website: http://www.fluorideresearch.org/322/files/FJ1999 v32 n2 p74-83.doc.

OSHAa: Occupational noise exposure. Standard 1910.95, website: http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=9735.

OSHAb: Occupational safety and health guideline for mercury vapor. Website: http://www.osha.gov/SLTC/healthguidelines/mercuryvapor/recognition.html.

Padilla, E.K., 2007: Preliminary study on emission abatement and use of gas from geothermal power plants in El Salvador. Report 18 in: *Geothermal training in Iceland 2007*. UNU-GTP, Iceland, 417-446.

Padilla, S.R.M., Barnett P., Castro M., Guerra E. and Henríquez, J.L., 2005: Silica polymerization and deposition trials at the Berlin geothermal field, El Salvador. *Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24-29 April 2005,* 4 pp, website: http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/2029.pdf?.

Seinfeld, J.H. and Pandis, S.N., 1998: *Atmospheric chemistry and physics*. *From air pollution to climate change*. John Wiley & Sons, USA, 1326 pp.

Sigurdardottir, H., Gislason, S.R., Broecker, W.S., Oelkers, E.H. and Gunnlaugsson, E., 2010: The CO2 fixation into basalt at Hellisheidi geothermal power plant, Iceland. *Proceedings World Geothermal Congress 2010, Bali, Indonesia, April 2010*, 4 pp.

Steingrímsson, B., 2009: Geothermal exploration and development from a hot spring to utilization. *Proceedings of a Short Course on Surface Exploration for Geothermal Resources. Organized by UNU-GTP and LaGeo in Ahuachapan and Santa Tecla, El Salvador, October 2009*, website: http://www.os.is/gogn/unu-gtp-sc/UNU-GTP-SC-08-04.pdf.

The World Bank Group in collaboration with the UNEP and UNIDO, 1999: *Pollution prevention and abatement handbook 1998. Toward cleaner production.* The International Bank for Reconstruction and Development/The World Bank, Washington D.C., 472 pp.

Thorhallsson, S., 2006: Common problems faced in geothermal generation and how to deal with them. Presented at the *Workshop for Decision Makers on Geothermal Projects in Central America, organized by the UNU-GTP and LaGeo in San Salvador, El Salvador, 26 November to 2 December 2006*, 12 pp, website: http://www.os.is/gogn/unu-gtp-sc/UNU-GTP-SC-02-25.pdf.

Thorolfsson, G., 2010: Maintenance history of a geothermal plant: Svartsengi Iceland. *Proceedings World Geothermal Congress 2010, Bali, Indonesia, April 2010,* 7 pp.

WHO, 2003a: Arsenic in drinking-water. Background document for development of WHO guidelines for drinking-water quality. World Health Organization, Geneva, 18 pp, website: http://www.who.int/entity/water sanitation health/dwq/chemicals/arsenic.pdf.

WHO, 2003b: *Hydrogen sulfide in drinking-water*. *Background document for development of WHO guidelines for drinking-water quality*. World Health Organization, Geneva, 9 pp, website: http://www.who.int/water_sanitation_health/dwq/chemicals/en/hydrogensulfide.pdf.

WHO, 2003c: *Lead in drinking-water. Background document for development of WHO guidelines for drinking-water quality.* World Health Organization, Geneva, 21 pp, website: http://www.who.int/entity/water_sanitation_health/dwq/chemicals/lead.pdf.

WHO, 2004a: *Cadmium in drinking-water. Background document for development of WHO guidelines for drinking-water quality.* World Health Organization, Geneva, 15 pp, website: http://www.who.int/entity/water_sanitation_health/dwq/chemicals/cadmium.pdf.

WHO, 2004b: *Fluoride in drinking-water. Background document for development of WHO guidelines for drinking-water quality.* World Health Organization, Geneva, 17 pp, website: http://www.who.int/water_sanitation_health/dwq/chemicals/fluoride.pdf.

WHO, 2004c: *Manganese in drinking-water. Background document for development of WHO guidelines for drinking-water quality.* World Health Organization, Geneva, 29 pp, website: http://www.who.int/entity/water_sanitation_health/dwq/chemicals/manganese.pdf.

WHO, 2005: *Mercury in drinking-water*. *Background document for development of WHO guidelines for drinking-water quality*. World Health Organization, Geneva, 18 pp, website: http://www.who.int/entity/water_sanitation_health/dwq/chemicals/mercuryfinal.pdf.

WHO, 2009: Boron in drinking-water. Background document for development of WHO guidelines for drinking-water quality. World Health Organization, Geneva, 28 pp, website: http://whqlibdoc.who.int/hq/2009/WHO HSE WSH 09.01 2 eng.pdf.

WHO, 2010: Aluminium in drinking-water. Background document for development of WHO guidelines for drinking-water quality. World Health Organization, Geneva, 23 pp, website: http://www.who.int/entity/water_sanitation_health/dwq/chemicals/aluminium.doc.

imits Mitigation options/Alternatives	 iy be • Select areas where effects on effects on vegetation and wildlife will be minimal (well pad ons paths) • Minimize affected area (e.g. by drilling deviated wells from a single well pad). 	 wy be Minimize changes Take account of the surrounding environment munity Avoid sharp ons ons unnatural boarders Introduce vegetation if appropriate 	 Minimize affected area Follow accepted construction munity practices ons drainage design n Avoid unsound nould substances (handle stipulations if needed) 	Tidy up
Guides/L	 Permits ma needed EIA may by needed Local comi considerati 	 Permits ma needed EIA may by needed Local comu considerati 	 May need permits EIA may by needed Local comm consideration Accepted construction practices stibute 	Company standards Community
When to monitor (Frequency)	 During clearance During and after construction phase until balance (equilibrium) is attained. 	During civil works until land has been formed according to plans and surplus rocks and soil disposed of appropriately.	During civil works until the construction has been finished according to plans.	 Once a year? During new construction activities
How to monitor (Method)	 Be involved in the design and decision phase Conduct baseline studies on the affected land Observe impacts during and after construction phase 	 Carry out necessary geotechnical studies and assess env. impacts Be involved in the design and decision phase Monitor execution of civil works Photograph before, during and after changes 	 Be involved in the design and decision phase Monitor execution of civil works and effects on the environment 	Visual inspection / photographing
Where to monitor (Location)	In the vicinity of power plant where new wells, roads or other constructions may be built.	In the vicinity of power plant where new civil works may be undertaken.	Where construction activity takes place.	 At power plant At new construction sites
Why monitor (Risks)	 Can destroy vegetation and wildlife habitat Can lead to soil erosion and changes in nunoff Can cause displeasing scars in vegetation 	 Can lead to landslides Can contribute to erosion Can cause displeasing scars 	 Can affect vegetation and wildlife Can lead to changes in runoff Can be accompanied by polluting activities Changed view 	Can degrade views
What to monitor (Concern)	Clearing of land	Changes in landscape	New construction / structures	Untidiness
Category		səənrdantsib əər	it n S	

APPENDIX I: Potential environmental concerns in the operation of geothermal power plants

Mitigation options/Alternatives	 Good initial drainage design is important: will reduce need for monitoring Improved drainage design if necessary Appropriate vegetation to inhibit erosion 	 Distribution of load Change of soil Compaction Retaining walls Vegetation 	 Effective drainage design Changes in vegetative cover 	 Avoid altogether by reinjection If unavoidable or preferred for balneology, maintain design/authorized surface area by reinjection or, if considered acceptable, by channeling to a large water body (ocean)
Guides / Limits	 Company standards Community opinions 	 Company standards Sound engineering judgment 	 Company standards Sound engineering judgment 	 Permits from regulating authorities Company standards Community considerations
When to monitor (Frequency)	During rainy season.	 Before new construction or changes in landscape (new well pads, roads, buildings) When there is reason to believe that changed conditions will affect stability, e.g. changes in land use or vegetative cover, sustained erosion etc. 	As needed, particularly during periods of erosive stresses, e.g. rainy season or dry and windy season.	 Quarterly to annual inspection of borders Annual aerial photography Collection of sedimentation and thickness measurements according to needs
How to monitor (Method)	 Visual inspection Runoff volume and sediment concentration measurements if necessary 	Establishment of slope stability using accepted shear & compaction tests, penetration tests and other in situ tests, with due consideration of structural loads, earthquake loads, saturation /seepage, stratification, slip surface, vegetation etc.	Visual inspection, photography, erosion pins etc.	 Inspection of border landmarks Aerial photography / comparisons over time Collection of accumulated sedimentation over specific time interval (collector vessel) Measurement of sedimentation thickness
Where to monitor (Location)	 Constructed areas Drainage system Receiving channels and streams 	 At new construction sites (e.g. well pads) in sloping terrain where soil stability is circumspect At operational sites if considered necessary 	In geothermal field / power plant area.	 Monitor borders for changes Monitor surface area Monitor rate and accumulation of precipitation and deposition
Why monitor (Risks)	 Can contribute to flooding Can cause erosion 	 Can cause loss of human life Can cause destruction of wildlife and vegetation Can cause destruction of human-made structures Can cause long-term or permanent scars in vegetation and landscape 	Leads to degradation of soil and vegetative cover.	 Can pollute groundwater Changes in surface area: can encroach on surrounding land or shrink to leave a barren desert of mineral deposits Changes in volume capacity due to deposition
What to monitor (Concern)	Altered hydrology: runoff and drainage	Soil instabilities and landslides	Erosion	Effluent lagoons / Evaporation ponds
Category		səənedantsib	osettuz	

12 Env. monitoring of power plants in operation

Mitigation options/Alternatives	Avoid reservoir pressure decline by reinjection.	Reinjection	 Design reinjection programs to minimize micro- seismicity Inform and cooperate with local population to reduce unnecessary concerns
Guides / Limits	 Regulations / permits Company guidelines Community considerations 	 Regulations / permits Company guidelines Community considerations 	 Limits of detection by local population Building codes
When to monitor (Frequency)	According to assessment in each field.	According to need (annually?)	Continuous
How to monitor (Method)	 Establish benchmarks Carry out releveling surveys on the marks 	 Aerial or ground- based photography of surface water bodies / Inspection of border landmarks Measure spring flow Measure water level in wells 	Application of seismometers / seismometer arrays
Where to monitor (Location)	In geothermal field above and around production zone – extend monitoring area if needed.	 Surface water bodies in geothermal field (surface area) Spring activity Water level in groundwater wells 	Geothermal field
Why monitor (Risks)	 Can cause deformation or cracking of structures (pipelines, roads, concrete channels, well casings) Can cause cracks or fissures in ground Can cause changes in landscape and water bodies Can cause an irretrievable loss of pore spaces 	 Can affect surface water bodies and springs Can affect groundwater wells Can affect the vadose zone and water availability to vegetation (positively or negatively) 	 Small but perceivable earthquakes (>M2) can cause concern among local residents
What to monitor (Concern)	Subsidence	Changes in ground water table	Micro-seismicity
Category	Івчетрайи р	iuft to stootto leoi	ջչվե

Category	What to monitor	Why monitor	Where to monitor	How to monitor	When to monitor	Guides / Limits	Mitigation
	(Concern)	(Risks)	(Location)	(Method)	(Frequency)		options/Alternatives
	Noise level (dBA)	 Risk of hearing 	 In areas of concern: well 	 Certified sound 	 As needed: e.g. 	 EU daily 8 hr 	 Minimize duration
		impairment of	pads during drilling and	level meters	quarterly or once	exposure limit	of flow tests
		workers	flow tests, within power		a year during	values for workers	 Time noisy
		 Nuisance to residents 	plant boundaries		normal operations	(time weighted	scheduled events
		near power plant	 At boundaries of 		if previous	average, with	during daylight
		 Nuisance to tounists 	significance, e.g. at lease		measurements	protection): 87	hours
		 Nuisance to wildlife 	boundary or power plant		have proved well	dBA and 200 Pa	 Use wellhead
			fence		within limits, but	(EU, 2003)	silencers
			 Near equipment during 		more frequently	 OSHA daily 8 hr 	 Use sound barriers:
			normal operation:		if previous	permissible	by introducing
			cooling towers, turbine		measurements	exposure (over 1 s	vegetation (trees).
			and generator, switch		have been near	or less, with	modifying
ð			yards / substation, gas		limits or during	protection): 90	landscape or
si			extraction system,		atypical	dBA (OSHAa)	constructing other
oN			pumps, control valves		operations, such	 Kenya OHS 8 hr 	man made barriers
I			and other flow		as during	average noise level	(e.g. walls)
			restrictions		borehole flow	limit (regardless of	 Use insulation
					testing or during	protection): 85 dBa	where applicable
					periods of	(Kubo, 2003)	(e.g. on buildings
					additional	 US Bureau of 	housing noisy
					construction	Land	equipment)
					 Note: sound 	Management: max	 Use ear muffs
					levels from	65 dBA at 0.5	 See (Hunt1, 1998)
					equipment may	miles from source	
					change as they	or lease boundary	
					age or operate out	if closer (Kagel et	
					of design	al., 2007)	
					COMPANY AND		

Mittigation options/Alternatives	 Dry cooling tower Once through cooling (river, lake or ocean water) 	 Dry cooling tower Wet cooling tower (water recycling) Wet cooling tower (water recycling) Diffuse discharge (several discharge points): contributes to quicker mixing and reduces total volume of local high Ts Discharge into turbulent river segments: contributes to quick mixing and minimizes volume of local high Ts 	 Dry cooling tower Wet cooling tower Wet cooling tower Diffuse discharge (several discharge points): contributes to quicker mixing (diffusion / dispersion) and reduces total volume of local high Ts 	 Reinjection Dry cooling tower Wet cooling tower Diffuse discharge (several discharge points): contributes to quicker mixing and reduces to quicker mixing and reduces total volume of local high Ts 	 Reinjection below ground water layer Discharge to surface water bodies Dry cooling tower Wet cooling tower
Guides / Limits	• Probably none	 Regulations / permits Good practices Community considerations 	 Regulations / permits Good practices Community considerations 	 Regulations / permits Good practices Community considerations 	Probably none
When to monitor (Frequency)	 Visual scan during temperature low (nighttime or early morning) Fog conditions may follow an annual as well as a daily cycle 	 Depends on situation: the magnitude and extent of temperature changes and the sensitivity of aquatic life to those changes 	 Depends on situation: magnitude and extent of temperature changes and sensitivity of aquatic life to those changes 	 Depends on situation: magnitude and extent of temperature changes, sensitivity of marine life to those changes, importance / uniqueness of local marine life 	As need or interest may dictate
How to monitor (Method)	 Visual scan Hydrometer or hygrometer if necessary 	 Thermometer Other Other temperature measurement devices 	 Thermometer Other temperature measurement devices 	 Thermometer Other temperature measurement devices 	Temperature measurements in wells
Where to monitor (Location)	At site Around cooling towers	 At discharge point(s) Downstream of discharge point(s) 	 At discharge point(s) In appropriate volume(s) around discharge point(s) 	 At discharge point(s) In appropriate volume(s) around discharge point(s) 	At and around discharge / injection points
Why monitor (Risks)	Fogging: diminishes visibility and can contribute to corrosion	 Can affect aquatic life downstream of discharge point(s) Can cause visible mist above river under right conditions (water temperature vs. air temperature and humidity) 	 Can affect aquatic life around discharge point(s) Can cause visible mist above lake around discharge point(s) or de-icing in winter 	Can affect marine life around discharge point(s) (positively or negatively)	Can affect vegetation (roots) and microbial activity (positively or negatively)
Vhat to nonitor oncern)	sphere ing)	River	Lake	Ocean	ndwater
(ory 1	flogg	(ə.nıfır.	urface water (temper	ns	Grot
Categ		s195	քից լքաւթվել		

Mitigation options/Alternatives	 Limited (use wells with a low NCG ratio) 	 Downstream of turbine- generator (Padilla, 2007): Stretford process LO-CAT process SulFerox process THIOPAQ process Fe-Cl hybrid process Fe-Cl hybrid process Claus process – Amine/Claus Selectox process Wet gas sulphuric acid process (WSA) Wet gas sulphuric acid process (WSA) Wet gas sulphuric acid process (WSA) Wet gas sulphuric acid process Wet gas sulphur	 Limited Capture and sell Fixation into deep rock formations (Sigurdardottir et al., 2010) 	 Limited: probably not warranted due to low concentration Burning to yield CO₂ 	Not warranted
Guides / Limits	None	 0.011 mg/m³: odor threshold 5-29 mg/m³: eye irritation >140 mg/m³: eye olfactory paralysis >700 mg/m³: 24 hour average guideline set by WHO 50 µg/m³: 24 hour average limit set by Icelandic regulation 43 µg/m³: 1 hour average standard set by USEPA- California regulation See for example (Franco 2010) 	 International agreements of state Obligations under clean development mechanism (CDM) 	 International agreements of state Obligations under CDM 	None
When to monitor (Frequency)	 At least annually 	 At least amnually at sources (wells) Measurements with portable sensor as needed (quarterly?) Continuously by fixed sensors 	 At least annually 	• At least annually	• Annually
How to monitor (Method)	 Gas collecting bottle* Weighing* 	 Sampling of sources (wells): condensate and gas mixed with base, which is titrated to yield concentration* Portable detectors and analyzers for concentrations in ambient air Fixed sensors in power plant area that feed into control system 	 Sampling: condensate and gas mixed with base* Titration* 	 Sampling: gas collected over base* Gas analyzer used to yield concentration* 	 Sampling: gas collected over base* Gas analyzer used to yield concentration*
Where to monitor (Location)	At sources (wells)	 At sources (wells, steam vents, condenser ejection system etc.) In power plant area In machine hall and control room In neighboring residential areas 	At sources (wells) and in condensate	At sources	At sources
Why monitor (Risks)	NCG ratio: NCGs reduce the efficiency of power generation	 Toxicity (high concentration) Odor nuisance (low concentration) Causes corrosion of various metals and alloys, such as aluminum, copper, steel and silver 	Greenhouse gas	Greenhouse gas	For information about fluid composition and reservoir geochemistry
What to monitor (Concern)	Gas ratio	H ₂ S : Hydrogen Sulfide	CO ₂ : Carbon Dioxide	CH4 : Methane	H ₂ : Hydrogen N ₂ : Nitrogen O ₂ : Oxygen Ar : Argon
Category		trace elements and wastes	ellutanto,	d	

16 Env. monitoring of power plants in operation

* (Gudmundsson and Hauksson, 2005)

Mitigation options			Sealing pathwaysVenting	
Guides / Limits		 OSHA permissible exposure limit: 0.1 mg/m³ (ceiling) NIOSH recommended exposure limit: 0.05 mg/m³ (time weighted average for 8 hr workday, 40 hr workweek) ACGIH threshold limit value: 0.025 mg/m³ (TWA for 8 hr workweek See (OSHAb, 2010) 	4 pCi/L in homes (EPA, 2009)	Ontario Ministry of Environment: 100 μg/m ³ ambient air quality criterion (24 hr average)
When to monitor (Frequency)	As needed	• Annually?	 As needed (due to low concentrations, regular monitoring may not be necessary) 	As needed (regular monitoring may not be necessary)
How to monitor (Method)		Mercury vapor monitor	Radon gas detector	 Handheld detectors Nessler's solution Olfaction
Where to monitor (Location)	At sources	At sources	 At sources In confined spaces and at low points where the dense gas may accumulate (seepage through cracks into basements is possible) 	At sources
Why monitor (Risks)	 Boron compounds can result in respiratory irritation (IPCS, 1998) Has not been found in dangerous conc. in geoth. gas, but needs to be watched (Årmannsson and Kristmannsdóttir, 1993) 	 Mercury vapor can cause effects in the central and peripheral nervous systems, lungs, kidneys, skin and eyes. It is mutagenic and affects the immune system. Mercury can accumulate in sediments and organisms Has not been found in dangerous conc. in geoth. gas, but needs to be watched (Ármannsson and Kristmannsdóttir, 1993) 	 For information about reservoir characteristics characteristics Carcinogen: can cause lung cancer if inhaled in high enough concentration due to ionizing radiation Has not been found in dangerous conc. in geoth. gas, but needs to be watched (Ármannsson and Kristmannsdóttir, 1993) 	 Corrosive to the eyes, skin and lungs Flammable over a conc. range Has not been found in dangerous conc. in geoth. gas, but needs to be watched. Danger of accidental releases from Kalina power cycles.
hat to monitor (Concern)	B : Boron	Hg : Mercury	Rn : Radon	NH ₃ : Ammonia
N M		твэі2		
Catego		sətsew bna stnəmələ əərt	Pollutants, t	

Env. monitoring of power plants in operation 17

Mitigation options/Alter- natives	N/A	 Reinjection to reservoir to avoid environmental impact Alter pH with an acid or base to reduce corrosiveness or scaling potential 	Reinjection	N/A	N/A	N/A
Guides / Limits	N/A			 No information on oral toxicity (WHO, 2003b) 	N/A	N/A
When to monitor (Frequency)	 Annually? More frequently at points of constant discharge to the environment 	 Annually? More frequently if needed 	Amually?	Annuali <i>y?</i>	Amually?	Annually?
How to monitor (Method)	Thermometer, thermistors etc.	 Sample collected in an air-tight glass bottle* Analyzed with a pH meter* 	 Sample collected in an air-tight glass bottle* Acid-base titration* 	 Sample collected in an air-tight glass bottle* Titration with HgAc₂* 	 Sample collected in an air-tight glass bottle* Conductivity meter* 	 Sample collected in a plastic bottle* Filtration and weighing*
Where to monitor (Location)	 At chemical sampling locations (same each time) At any point of discharge to the environment 	At sources (wells) At other chemical sampling locations of interest	At sources	At sources	At sources	At sources
Why monitor (Risks)	 To determine thermodynamic state at time and place of sampling To determine energy content (enthalpy) of reinjected fluid To determine potential thermal effects if released into the environment 	 For geochemical studies To determine impact if discharged into the environment To determine corrosiveness and scaling potential 	 Greenhouse gas: important to measure water concentration to get a full account of fluid CO₂ content Acidic gas: dissolves in water to form carbonic acid 	 To get full account of fluid H₂S content An acid that dissociates to very limited extent below pH=5 Anti-corrosive as it reacts with O₂ 	Geochemical studies	 Geochemical studies Deposition Erosion
hat to monitor (Concern)	Temp.	Hq	CO2 : Carbon Dioxide	H ₂ S : Hydrogen Sulfide	Conductivity	Suspended Solids (SS)
Category M		lements and wastes	9 9981) ,211 W	ngtullo¶		

18 *Env. monitoring of power plants in operation*

Mitigation options/Alter-	natives	 Tempera- ture control 	(design		 Scaling 	inhibitors				N/A		N/A						Keinjection	dilution					N/A					N/A						
Guides / Limits		 Silica solubility Dotemorization 	and deposition	Idics	 Established by calculations and 	experimentation	 See for example 	(Thorhallsson, 2006) and (Padilla	et al., 2005)	N/A		N/A						Guideline value of 15 mg/l set hv	WHO for fluoride	in drinking water	(WHO, 2004b)			N/A					N/A						
When to monitor	(Frequency)	Semi-	 Annually? 							Annually?		Annually?						Annually?						• Semi-	annually?	 Annually? 			• Semi-	annually?	 Annually? 				
How to monitor (Method)		Collection of diluted sample (1-0)*	 Color analysis* 							 Collection of filtrated 	 sample (0,45 µm)* Drving and weighing* 	Collection of filtrated	sample (0,45 µm)*	 Acidified with 0,5% HNO₃* 	 Titration* 			Collection of filtrated	 Acidified with 0.5% HNO.* 	 Detection by ion-selective 	electrode*			 Collection of filtrated 	sample (0,45 µm)*	 Precipitation with ZnAc2* 	 Titration* 		 Collection of filtrated 	sample (0,45 µm)*	 Acidified with 0,5% HNO₃* 	 Inductively coupled plasma 	mass spectrometry (ICP-	MS) / Atomic absorption	spectroscopy (AAS)*
Where to monitor	(Location)	At sources In aroundurater	and/or surface	water III power	plant surroundings	5				At sources		 At sources 	 In groundwater 	and/or surface	water in power	plant	surroundings	At sources To accounter	and/or surface	water in power	plant	surroundings	0	 At sources 	 In groundwater 	and/or surface	water in power	plant	 At sources 	 In groundwater 	and/or surface	water in power	plant	surroundings	
Why monitor (Risks)		 Reservoir conditions: monthermometer and mixing models 	Scaling potential in pipes and		 Deposition in environment when discharged to surface water bodies 	(e.g. Blue Lagoon)				Geochemical studies		 Reservoir conditions: mixing 	models	 Contribution to corrosion (chloride 	stress corrosion)			Geochemical studies Detential immate when discharged	to surface water bodies:	 Fluoride can accumulate in plants 	(Miller et al., 1999)	 Sustained exposure to high 	concentrations can cause dental and	Geochemical studies					 Reservoir conditions: Na/K and Na- 	K-Ca geothermometers. Also:	Na/Li, Li/Mg K/Mg and Na-K-Mg	(Arnórsson, 2000)	 CaCO₃ is a common scale in 	geothermal systems, primarily	round in wells at and above boiling point (Thorhallsson, 2006)
hat to monitor (Concern)		SiO ₂ : Silica (Ouartz	Cristobalite)							Total Dissolved	Solids (TDS)	Cl : Chlorine /	Chloride					F : Fluorme / Fluoride						SO4: Sulfate					Na : Sodium	Mg:	Magnesium	K : Potassium	Ca – Calcium	Fe – Iron	
Ш																	16	ots\	٨																
Category									S	918	SBV	p	u	BS	571	19	ա	əla	9 9	96	:. 1)	·	stu	вĦ	ղլ	0	I								

Env. monitoring of power plants in operation

19

Mitigation ontions/Alter-	natives	Reinjection	dilution		 Reinjection 	 Mixing / dilution 							Keinjection	Mixing /	CIUTION			Reinjection	dilution					 Reinjection 	Mixing /	TIOTINTIN				
Guides / Limits		Conservative	2.4 mg/l set by	drinking water (WHO, 2009)	 Health-based 	value of 0.9 mg/l suggested by	WHO for aluminum in	drinking water	of 0.1-0.2 mg/l	UDIAILIAULE III	facilities	• See (WHO, 2010)	nealth-based	guideline value of	by WHO for	manganese in	ounnong water	Provisional mideline value of	10 ug/l set by	WHO for arsenic in	drinking water	(WHO, 2003a)		Guideline value of	3 μg/l set by WHO	deinbing mater	(WHO, 2004a)			
When to monitor	(Frequency)	Annually?			 Semi- 	 Annually? 							• Semi-	annually?	• Annually?			Semi-	 Annually? 					Semi-	amually?	STIPPITTY .				
How to monitor Method)	(1000000)	Collection of filtrated	 Acidified with 0,5% HNO₃* 	• ICF-MS*	 Collection of filtrated 	 sample (0,45 μm)* Acidified with 0,5% HNO₃* 	• ICP-MS*						Collection of filtrated	sample (0,45 µm)*	 Actdified with 0,5% HNO₃* ICP-MS* 			Collection of filtrated	 Acidified with 0.5% HNO.* 	• ICP-MS*				 Collection of filtrated 	sample (0,45 µm)*		• ICF-MS*			
Where to monitor	(Location)	At sources	and/or surface	water m power plant surroundings	 At sources 	 In groundwater and/or surface 	water in power plant	surroundings					AI sources	• In groundwater	and/or surface water in power	plant	surroundings	At sources To considerates	and/or surface	water in power	plant	surroundings		 At sources 	 In groundwater 	allury in particular	valet III power	surroundings		
Why monitor (Ricke)	()	Harmful to most plants	(rational supervision and rational south	 COLLECTUS ON OCCLEASED LEGAL WEIGHT during pregnancy when ingested (WHO. 2009) 	 Can have toxic effects on fish 	 (Ármannsson and Ólafsson, 2005) Some studies have suggested the 	possibility of association of Alzheimer disease with aluminum	in water, but other studies have not					An essential element, our madequate	untake or overexposure can lead to	Incuration clicks (WIIO, 2004c)			Long-term exposure to arsenic in drinking-water is causally related to	increased risks of	cancer in the skin, lungs, bladder and	kidney, as well as other skin changes	such as	hyperkeratosis and pigmentation changes (IPCS, 2001)	 There is some evidence that 	cadmium is carcinogenic by the	consistential route, out no evidence of	and no clear evidence that cadmium	is genotoxic	 With chronic oral exposure, the kidney appears to be the most 	sensitive organ (WHO, 2004a)
hat to monitor (Concern)	(B : Boron			Al : Aluminum							;	IIII	Manganese				As : Arsenic						Cd : Cadmium						
M														19	is W															
Category							s	oter	3 M	pu	IB 8	stu	əı	u	əjə	əə	BT:	('s:	u	6JI	ոլ	0	đ							

20 Env. monitoring of power plants in operation

Mitigation	options/Alter- natives	 Reinjection 	 Mixing / 	dilution			 Reinjection 	 Mixing / dilution 	TOTOT						 Reinjection 	 Mixing / 	dilution						 Reinjection 	• Mixing /	dilution			A11A	N/A		
Guides / Limits		Guideline value of	6 µg/1 set by WHO	for inorganic	mercury in drinking water (WHO, 2005)		Guideline value of	10 µg/1 set by WHO for lead in	drinking water	based on infant	tolerance, being the	most sensitive	subgroup of the	population (WHO, 2003c)	EPA 1985 Aquatic	Life Criteria	Guidelines:	freshwater	concentration based	on chronic criterion	(function of T and	(Hq	These species are	generally not of	great concern for	environmental or	human health	×11.4	N/A		
When to	monitor (Frequency)	• Semi-	annually?	 Annually? 			Semi-	• Annually?	s manimer -						As needed	(due to low	concentratio	ns and	limited	effects,	monitoring	may not be necessary)	Semi-	annually?	 Annually? 	• Less	often?	0 11 V	Ammually?		
How to monitor	(Method)	 Collection of filtrated 	sample (0,45 µm)*	 Acidified with 0,5% HNO₃* 	 ICP-MS* 		 Collection of filtrated 	sample (0,45 µm)*	• ICP-MS*														 Collection of filtrated 	sample (0.45 um)*	 Acidified with 0,5% HNO₃* 	 ICP-MS* 			 Sample collection* 	 Mass spectrometry (MS)* 	
Where to	monitor (Location)	 At sources 	 In groundwater 	and/or surface	water in power plant	surroundings	 At sources 	 In groundwater 	water in power	plant	surroundings				 At sources 	 In groundwater 	and/or surface	water in power	plant	surroundings			 At sources 	 In groundwater 	and/or surface	water in power	plant	surroundings	AT SOURCES (WELLS)		
Why monitor	(Risks)	 Can cause neurological and renal 	disturbances	 Pregnant women and nursing 	mothers likely to be at greater risk from methyl-mercury (WHO. 2005)		 A cumulative general poison 	 Pregnant women, fetuses, infants and women children most 	susceptible	 Effects on central nervous system 	particularly serious (WHO, 2003c)				 Can occur in harmful 	concentrations (Kristmannsdóttir	and Armannsson, 2003)	 Can have adverse effects on aquatic 	life				 Geochemical studies 	 Trace elements 					 Origin and age of geothermal water 	 Reservoir boiling, mixing, tracing 	 Isotope geothermometers See for example (Arnórsson 2000)
hat to monitor	(Concern)	Hg : Mercury					Pb : Lead								NH ₃ :	Amnonia							S, Si, Ba, Co,	Cr, Cu, Mo, Ni,	P, Sr, Zn			1	H : Deuternum	O : UXygen-18	
M															36	d B	M														
Category							s	ete:	BV	n j	pu	ß	S	juə	u	əl	9	90	B.	ŋ	's	JUI	31	II	0	ł					

t to monitor Why mor	Concern) (Risks		Spent • Potential pollu naterials and econodiust	containers etc. water atmosph	 Potential visua 	distraction if n	disposed of pro			Failed or	outdated electrical equip	equipment need to be repl	Potential pollu Dotential viena	distraction if n disposed of pro-	Process fluids: • Pollutants	sobutane, • Flammable	sopentane,	nmnonia-	vater		Chemicals: • Potentially har	biocides, human health	corrosion & • Potential envir	caling pollutants (soil	water)	Dils (Jubricants Potential pollut	und coolants) groundwater an	water)				Garbage Potential pol	nuisance		Waste water Potential and sewage pollution
itor V			ants (soil • At	ere) • At	site	ot .	perly			1 • At	ment may pla	aced • At	ants site	ot operiv	• At	pla	• At	site			mful to At s	hand	onmental		Id surface	ants (soil, • At	d surface ha	• At	site	th	ger tra	ution / • At	pla	• At site	microbial At po
Vhere to	nonitor	ocation)	power	dienocal	es					power	unt	disposal	es		power	unt	storage	es			storage and	ling sites				storage and	ndling sites	equipment	es (e.g.	-bo-	nerator and nsformers)	power	tut	disposal es	ower plant
How to monitor	(Method)		 Require description of constituents when 	procured (ashestos	PCBs, heavy metals,	material rennants in	containers)	 Ensure proper disposal 	constituents	 Require description of 	constituents when	procured	 Ensure proper disposal in accordance with 	constituents	 Control system sensors 	 Hand held sensors 	 Infrared camera where 	leaks are suspected	 Olfaction 		 Visual inspection / 	observation	 Observation of cooling 	tower blow-down	water disposal. sampling if necessary	 Visual inspection / 	observation	 Equipment sensors 	(e.g. oil pressure)			Visual observation			Inspection of waste water and sewage systems
When to monitor	(Frequency)		 When procured When to be discovered of 							 When procured 	 When to be disposed of 				 Upon arrival to power plant 	or storage site	 During filling / re-filling of 	system cycle	 During regular operation 	 During emptying of system cycle 	During handling					 Upon arrival to storage site 	 During filling of equipment 	 During regular operation 	 During emptying of 	equipment	 Upon disposal of spent oil 				As needed
Guides /	Limits		In accordance	materials /	substances of	concern				In accordance	with the	materials /	substances of concern		MSDS /	Standards:	flammability,	toxicity,	danger of	asphyxia	Material	Safety Data	Sheets	(MSDS)		Regulations									Regulations
Mitigation	options/Alter-	nauves	Procure materials that can be easily	disposed of when	possible					Procure equipment	that can be easily	disposed when	possible		Handle in	accordance with set	procedures				 Procure chemicals 	that pose the least	threat	• Handle in	accordance with set procedures	• Handle in	accordance with set	procedures	 Build containment 	structures / oil traps	with fire safety measures				

2 Env. monitoring of power plants in operation

Mitigation options/Alternatives	Depends on the nature of the impact and the source		Depends on the nature of the impact and the source				 Thorough research and planning on the location of the intake structure(s) Seasonal shutdowns Flow reduction Fish handling and return system Barrier net Screens Filters Other barriers
Guides / Limits	Environmental Impact Assessment	Environmental Impact Assessment	Environmental Impact Assessment	Environmental Impact Assessment	Environmental Impact Assessment	Environmental Impact Assessment	
When to monitor (Frequency)	As needed (may be stipulated in an EIA)	As needed	As needed (may be stipulated in an EIA)	As needed	As needed	As needed	As needed (may be seasonal)
How to monitor (Method)	Visual inspection / surveying	Visual inspection / photography	Visual inspection / surveying	Visual inspection / surveying	Sampling and analysis	Sampling and analysis	Visual inspection
Where to monitor (Location)	In the power plant impact zone	In the power plant impact zone	In the power plant impact zone	In the power plant impact zone	In natural geothermal surface manifestations	In natural geothermal surface manifestations	 Intake structure Fish handling and return system Barrier net Screens Filters Other barriers
Why monitor (Risks)	To observe and record changes in biodiversity level	 To observe and record changes To spot trends 	To observe and record changes in biodiversity level	 To observe and record changes To spot trends 	To observe and record changes in geothermal micro-organism diversity as a result of changed habitat	 To observe and record changes To spot trends 	 Aquatic organisms can be drawn into cooling water intake structures Make certain that protective schemes are maintained and working as planned
What to monitor (Concern)	Diversity (flora) (flora)	Vegetation Density	Diversity (species) (fauna)	Density 	Diversity (species) :2a a isoto	Micro-on	Nater intake tructures
Category	Biological effects						

Env. monitoring of power plants in operation 23

Category Wh	Speci. Speci. Ciniqu	oo-oioo2
iat to monitor (Concern)	al scenery / ueness	ist industry
Why monitor (Risks)	 Society may agree on the preservation of unique places Most important during EIA and planning phase, but changes during the operation phase of a power plant can also affect scenery (e.g. new well pads, steam columns from new wells, cooling tower plunes, new pipelines, roads, buildings, transmission lines, and other structures 	 Geothermal power plants may affect tourism positively or negatively positively or negatively May allow easier access to remote areas Power plants can themselves become a source of attraction Tourism can affect local economy and culture, place stress on flora, fauna and delicate natural features May be important to watch and manage
Where to monitor (Location)	Where new structures are planned	 In the areas around the power plant In areas that have opened up to tourism due to power plant, e.g. because of improved or new roads Special need to monitor effects on delicate natural features, such as geothermal surface manifestations or geologic features Towns in the vicinity of the power plant
How to monitor (Method)	Observation	Observation
When to monitor (Frequency)	At the planning phase for new structures	• As needed • Tourism may follow seasonal trends
Guides / Limits	• Environmental Impact Assessment? • Nature Conservation Laws?	• Environmental Impact Assessment? • Nature Conservation Laws?
Mitigation options/Alternatives	 Hiding new structures: laying pipes or cables underground, selecting surface pipe routes along paths of low visibility from surroundings, constructing mounds to hide structures Designing buildings to fall into landscape buildings to fall into landscape Use hybrid cooling towers to minimize plumes 	 Direct and manage tourism: build walkways in delicate areas and restrict traffic outside them Charge access fees at delicate areas at delicate areas Employ personnel to direct, manage and inform tourists Restrict access

4 Env. monitoring of power plants in operation

Mitigation options/Alternatives		 Supporting education about cultural values to increase awareness Supporting cultural events 	 Power companies can help to construct positive public opinion by actively engaging with the with the community and sharing benefits 				
Guides / Limits							
When to monitor (Frequency)	 During initial period of power plant operation During plant changes or enlargements that may call for workers Periodically over the operational lifetime of plant if needed 	 During initial period of power plant operation Periodically over the operational lifetime of the plant if needed 	 During initial period of power plant operation Periodically over the operational lifetime of the plant if needed 				
How to monitor (Method)	 Official employment data Polls Interviews with employees and employers Company listings Tax revenue 	 Observation of traditional customs, habits, dress, speech etc. Polls Interviews 	• Polls • Interviews				
Where to monitor (Location)	 Community in the vicinity of the power plant 	 Community in the vicinity of the power plant 	• Local community				
Why monitor (Risks)	 Power plants may bring local jobs for operation, maintenance and services Effects on equality and culture Increased tourism can affect local economy and present job opportunities (Arévalo, 1998) 	 Increased tourism and job opportunities may place transformational pressure on the local culture This is especially relevant if the area was inaccessible prior to the power plant construction, if tourism increases and/or if the plant brings significant economic changes to the local society 	 Public opinion can be of great importance to power plant owners/operators Mutual benefits of the power plant owners and the local community can help maintain positive attitude Positive public attitude is conducive to a constructive operational environment 				
What to monitor (Concern)	Local economy / Employment	Cultural preservation	Public opinion				
Category	stoofto oimonooo-oioo2						