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PREFACE

In order to secure the sustainable use of a geothermal reservoir, it is very important to understand the
response of the system to exploitation. This makes it possible both to forecast how much energy can be
withdrawn safely from the reservoir and facilitates reservoir management decisions during exploitation.
The UNU Visiting Lecturer 2002, Dr. Karsten Pruess, has for many years been among the leaders in
mathematical modelling and numerical simulation of geothermal reservoirs. He is a senior scientist at the
Earth Sciences Division of the Lawrence Berkeley National Laboratory in California. He is the chief
author of the widely used TOUGH2 geothermal reservoir simulator. He has also worked extensively on
nuclear waste isolation and environmental contamination problems. He gave the lectures presented here
at the UNU Geothermal Training Programme in Reykjavik in September 2002. 

In the lectures, he defines the main parameters and principles involved in mathematical modelling of fluid
flow and heat transfer in geothermal systems and describes the behaviour of different types of geothermal
reservoirs under exploitation. His detailed and clearly written lecture notes will be of use to all students
of geothermal reservoir engineering. We are very grateful to Karsten for writing up his lecture notes in
such an excellent way and thus to make the lectures available to a much larger audience than those who
were so fortunate in attending his lectures in Reykjavik.

Since the foundation of the UNU Geothermal Training Programme in 1979, it has been customary to
invite annually one internationally renowned geothermal expert to come to Iceland as the UNU Visiting
Lecturer.  This has been in addition to various foreign lecturers who have given lectures at the Training
Programme from year to year.  It is the good fortune of the UNU Geothermal Training Programme that
so many distinguished geothermal specialists have found time to visit us.  Following is a list of the UNU
Visiting Lecturers during 1979-2000:

1979 Donald E. White United States 1991 Wang Ji-yang China 
1980 Christopher Armstead United Kingdom   1992 Patrick Muffler United States
1981 Derek H. Freeston New Zealand 1993 Zosimo F. Sarmiento Philippines
1982 Stanley H. Ward    United States 1994 Ladislaus Rybach Switzerland
1983 Patrick Browne  New Zealand 1995 Gudm. Bödvarsson United States 
1984 Enrico Barbier Italy 1996 John Lund United States
1985 Bernardo Tolentino Philippines 1997 Toshihiro Uchida Japan
1986 C. Russel James     New Zealand 1998 Agnes G. Reyes Philippines/N.Z.
1987 Robert Harrison     UK 1999 Philip M. Wright United States
1988 Robert O. Fournier United States 2000 Trevor M. Hunt New Zealand
1989 Peter Ottlik Hungary 2001 Hilel Legmann Israel
1990 Andre Menjoz France 2002 Karsten Pruess United States

With warmest wishes from Iceland,

Ingvar B. Fridleifsson, director,
United Nations University
Geothermal Training Programme
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INTRODUCTION

Mathematical modeling and numerical simulation have become standard techniques in the evaluation of
geothermal reservoirs. They are used to assess the generating capacity of a geothermal field, to design
production and injection operations, and to assist in various reservoir management decisions. Geothermal
reservoir simulators are widely available, can be run on inexpensive personal computers, and have been
used in several hundred field studies worldwide.

Geothermal reservoir simulation is based on the physics of fluid flow and heat transfer, on quantitative
information about geothermal reservoir properties, and on the thermodynamics and thermophysical
properties of reservoir fluids, chiefly water. The purpose of these lectures is to provide an introduction
into the underpinnings and applications of reservoir simulation. Our goal is to provide readers with a basic
understanding of reservoir simulation, so that they will be able to critically evaluate simulation studies and
their limitations. We also hope that these notes will encourage wider use of geothermal reservoir
simulators by non-specialists.

I am grateful to Ingvar B. Fridleifsson for providing the stimulus for assembling these lecture notes. In
the approximately twenty-five years that I have been involved with geothermal reservoir simulation, I
have benefitted greatly from discussions and collaborations with many colleagues, among them Paul
Witherspoon, Nari Narasimhan, Michael O’Sullivan, Valgardur Stefansson, Marcelo Lippmann, Bo
Bodvarsson, Sabodh Garg, John Pritchett, Sally Benson, Ashok Verma, Romano Celati, Claudio Calore,
Alfredo Battistelli, Subir Sanyal, Tony Menzies, Curt Oldenburg, George Moridis, Stefan Finsterle,
Christine Doughty, and Alexey Kiryukhin. 

Karsten Pruess
Berkeley, California
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LECTURE I:  HYDROTHERMAL SYSTEMS 

 

1. Introduction 

 Manifestations of the earth’s hot interior involve a range of phenomena, from perilous 

volcanic activity to useful and beneficial hot springs, that have been known and used since 

prehistoric time. The Romans of antiquity made sophisticated use of natural warm waters for 

balneological purposes. The Maori of New Zealand used hot steaming ground for cooking. 

Many ancient cultures made use of the natural heat of the earth. 

 

 The fundamental source of heat in the earth is the radioactive decay of unstable 

isotopes that occur dispersed in small concentrations throughout the earth’s volume, 

particularly in the crust. This decay heat is propagated towards the land surface by different 

heat transfer mechanisms, including heat conduction, convection of fluids (aqueous or 

magmatic), and by direct movement of hot molten rock towards shallower horizons, in the 

form of magma chambers, dikes, or volcanic discharges. 

 

 The modern quantitative study of heat began in the 1600s and 1700s, spurred on by 

continuous improvements in the use of heat for industrial purposes, chiefly as a source of 

mechanical work in steam engines and their predecessors. Characterization of the state of heat 

through quantitative measurements of temperature was pioneered by people such as Celsius, 

Fahrenheit, and Réaumur, each of which devised an apparatus for temperature measurement 

and a quantitative scale, based on the common observation that gases and fluids expand when 

heated. Up until the early 19th century, the prevalent view among scientists and engineers was 

that heat was a substance, albeit a “thin” and elusive one. This substance was called 

“phlogiston,” and it was generally held that this phlogiston was coming out and going up in 

the air when e.g. a piece of wood was burned. Heat transfer was viewed as migration of this 

“phlogiston.” The viewpoint that heat is some sort of substance was shared by giants in the 

field such as Fourier, who discovered the fundamental law of heat conduction (1822), and 

Carnot, who developed profound insight into the limitations for converting heat into 

mechanical work (1824). The recognition that heat is a state of matter and just another form of 

energy was not achieved until the 1840s, through the work of Robert Mayer (1842) and Joule 

on the “mechanical equivalent of heat.” 

 

 Let us now turn our attention to subsurface systems in which heat effects play an 

important role. 
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2. Natural Geothermal Gradients 

 Rocks contain various amounts of radiogenic isotopes, whose natural radioactive 

decay produces heat. In typical continental crust, temperatures will increase by ≈ 3 ˚C for 

every 100 m depth. The ratio of temperature increase ∆T to vertical depth interval ∆z over 

which it occurs is called “temperature gradient” and is written T. According to the foregoing 

we have T = ∆T/∆z ≈ 3/100 ˚C/m = 0.03 ˚C/m as an average temperature (or geothermal) 

gradient in continental crust. When average gradients prevail, we need to go down to about 6 

km depth to reach a temperature of 200 ˚C. Geothermal gradients can be enhanced locally or 

regionally due to special geologic conditions, for example, where the earth’s crust is unusually 

thin, or where hot molten rock has risen to shallower depths, forming igneous dikes or magma 

chambers. In regions with deep fluid circulation, average or moderately enhanced geothermal 

gradient can be sufficient to generate practically useful geothermal manifestations. An 

example is the Rhine graben between Germany and France, where tectonic activity has created 

fractures and faults that permit fluid circulation to great depth. The heated fluid subsequently 

may rise back up to shallower elevations, providing temperatures of 140 ˚C at depths of only 

2000 m (Baria et al., 2000). 

 

 From Fourier’s law of heat conduction, the heat flux q (units: W/m2, Watts per square 

meter) associated with a temperature gradient T is given by 

 

 q  KT (2.1) 

 

where K, the constant of proportionality, is called “thermal conductivity.” A typical value for 

rocks is K ≈ 2 W/m ˚C (“watts per meter per degree Celsius”), so that we obtain for a typical 

continental heat flux 

 

 q  2 0.03  0.06 W / m
2

 (2.2) 

 

Over an area of 1 km2 (106 m2), the typical crustal heat flow rate would be 6x104 W, or 60 

kW, a small amount compared to heat extraction rates of typically tens to hundreds of 

megawatts in producing geothermal fields. Note that conduction is not the only mechanism of 

heat transfer. The flow of hot fluids (liquids and gases) through porous and permeable rocks 

gives rise to “convective” heat transfer, which may occur at much larger rates than can be 

accomplished by conduction. Additional heat transfer effects occur during phase change 

processes, such as boiling or condensation. 
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2.1 Some Mathematical Issues 

 Before proceeding further, we wish to note two somewhat subtle mathematical points 

that are “buried” in our introduction of a temperature gradient. Similar issues will arise later 

on in our discussion of numerical modeling of geothermal systems, and it is appropriate to 

provide some clarification here.  

 

 The first point is that, unless T is a linear function of depth z, the expression ∆T/∆z 

will depend on the magnitude of the interval ∆z used to evaluate it. This ambiguity can be 

resolved rigorously through the methods of differential calculus, where ∆T/∆z is evaluated for 

a sequence of different z-increments ∆zi, and the behavior of ∆T/∆zi is considered for the 

“limit” of ∆zi --> 0. In the lectures presented here we do not wish to make calculus a 

prerequisite, and we therefore bypass this aspect of mathematical rigor. From a practical 

viewpoint, when evaluating a temperature gradient (or other gradients such as pressure or 

solute concentration gradients), we consider that ∆z should be chosen “suitably” small. 

Exactly what is “suitable” depends upon how temperature varies with position. 

Approximations to gradients that involve finite increments to the space coordinates are 

referred to as “finite differences.” 

 

 The second point is that, strictly speaking, the “gradient” is a vector, not a number. A 

vector is a mathematical object that has not only a magnitude but also a direction. A familiar 

example of a vector is velocity. A vector can be represented by an arrow which shows the 

direction, while the length of the arrow gives the magnitude of the vector. The quantity ∆T/∆z 

introduced above is the magnitude of the temperature gradient. In general, temperatures may 

vary in all directions, not just in the vertical (z) direction, and the proper mathematical 

notation for temperature gradient is T = (∂T/∂x, ∂T/∂y, ∂T/∂z) ≈ (∆T/∆x, ∆T/∆y, ∆T/∆z), 

indicating the “components” of that vector in the x, y, and z, directions, respectively. T can 

be visualized as an arrow that is obtained by adding three arrows in x, y, and z, direction, with 

lengths of ∆T/∆x, ∆T/∆y, and ∆T/∆z. 

 

3. Hydrothermal Convection Systems 

 Consider a reservoir of fluid with density . Under static conditions (no flow), the 

fluid pressure is given by the weight of the fluid column per unit area and increases with depth 

z according to 

 

 Ph(z)  gz  (3.1) 
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For water at ambient conditions of temperature and pressure we have  ≈ 1000 kg/m3. 

Acceleration of gravity is g = 9.81 m/s2 ≈ 10 m/s2, so that the pressure increase in a column of 

water for 1 m increase in depth is approximately 1000 kg/m3 x 10 m/s2 x 1 m = 104 kg/m s2. 

A force acting on 1 kg of mass and producing an acceleration of 1 m/s2 is called 1 N 

(“Newton”), i.e., 1 N = 1 kg m/s2. The previously calculated pressure increase per meter in a 

column of water at ambient conditions can be written as 104 N/m2. A force of 1 N per m2 is 

abbreviated as 1 Pa (Pascal); so the pressure in our water column increases by 10,000 Pa per 

meter depth. Another commonly used pressure unit is 1 bar = 105 Pa, which is close to mean 

atmospheric pressure at sea level (1.013 bar), and corresponds to a 10 m column of water. 

 

 Fluid densities generally vary with depth as functions of temperature, pressure, and 

salinity. For liquids, the temperature and pressure dependence of density can be approximated 

as 

 

   0 1 (TT0) (PP0)  (3.2) 

 

Here,  is the expansivity and  the compressibility of the fluid. When fluid density varies 

with depth, because of generally increasing temperatures and pressures, Eq. (3.1) is no longer 

applicable to calculate the dependence of fluid pressure on depth. We generalize this equation 

by dividing the total depth z into N small intervals of length ∆z = z/N (Fig. 3.1). 
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z

N

3

2

1i =

z

z

 
 
Figure 3.1  Dividing depth into 

small intervals z, numbered i 
= 1, 2, ..., N.. 

The depth reached after i intervals is zi: 

 

 zi  iz  (3.3) 

 

The pressure increase in the i-th interval is: 

 

 Pi  i gz  (3.4) 

 

where i = i(Ti, Pi) is the average fluid density in interval i. 

When the intervals are chosen “small”, 1 m, say, we may take i 

to be the density at the end of the previous interval. We can start 

from the land surface and in the first interval take 1 = 0. In the 

second interval we take 2 = (P1), then 3 = (P2), and so on. 

Summing all pressure increases, we obtain after N intervals: 

 

 P z  Nz   Pi
i1

N

  i gz

i1

N

  (3.5) 

 

As is shown in calculus, when we let ∆z --> 0 we obtain the 

integral 

 

 P(z)  g dz'

0

z

  (3.6) 

 

 Warm water is less dense than cold water, so a column of warmer water weighs less 

than a column of colder water. We have the phenomenon of “thermal buoyancy” (Fig. 3.2). 

Fluid pressure at the bottom of the left (colder) column of water is greater than at the bottom 

of the right (warmer) column, causing fluid circulation as indicated by the arrows. The left 

column could represent conditions in a recharge zone of a geothermal field, while the right 

column may represent conditions in the center of the field. 

 

 For hydrothermal circulation to occur, we need not only a temperature gradient. We 

also need appropriate permeability, and we need a supply of fluids. Another configuration in 

which thermal buoyancy flow can take place is shown in Fig. 3.3. 
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> T1
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Figure 3.2.  Thermal buoyancy flow in a conduit with a temperature gradient. 

 

 

 
Figure 3.3.  Hydrothermal convection in a fluid layer heated from below. 

 

4. Fluid Flow 

 Fluids move in response to forces, the most important of which are pressure forces and 

the force of gravity. Capillary pressures may also be important. The fundamental law relating 

fluid flow to the forces causing the flow was established by Henri Darcy (1856), based on a 

series of experiments he did to observe water flowing through a sandpack. Consider a one-

dimensional horizontal porous medium held between pressures P1 and P1 + ∆P.  

 

 

 
Figure 4.1.  One-dimensional porous medium held between surfaces at constant pressure. 

 

For the conditions shown in Fig. 4.1, fluid will flow from left to right. The rate of fluid flow 

depends not on the magnitude of the pressure change as such, but on the “intensity” of 

pressure change, i.e., on the magnitude of pressure change per unit length, the so-called 
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pressure gradient, ∆P/∆x. Darcy’s experiments showed that the fluid mass flow rate F per unit 

cross-sectional area of the medium is proportional to the pressure gradient, 

 

 F  k




P

x
 (4.1) 

 

The minus-sign occurs because fluid flows from higher pressure to lower pressure, analogous 

to heat flowing from higher temperature to lower temperature. In Eq. (4.1) k is the so-called 

“absolute permeability,” a measure of the ease with which fluid can migrate through a porous 

medium, and  is viscosity, which is a measure of the internal friction of the flowing fluid. 

The SI unit for permeability is m2; in practical field applications, the unit “darcy” is often 

used; we have the correspondence 1 darcy = 1 d ≈ 10-12 m2. For 3-D flows, Eq. (4.1) is 

generalized to read 

 

 

Fx

Fy

Fz

 

 

 
 

 

 

 
 

  k




P x

P y

P zg

 

 

 
 

 

 

 
 

 (4.2) 

 

Here we have introduced flux components in x, y, and z-directions, each of which responds to 

the component of pressure gradient in its own direction. For the vertical component, we have 

added the so-called “body force” from gravity. Equations such as (4.2) can be written more 

compactly in vector notation. We denote the triplet (Fx, Fy, Fz) as F, and write the pressure 

gradient as (∆P/∆x, ∆P/∆y, ∆P/∆z - g) = P. Eq. (4.2) can be rewritten as 

 

 F   k



P  g  (4.3) 

 

where the vector g of gravitational acceleration is given by the components (0, 0, g). Dividing 

the mass flux by the fluid density gives the volumetric flux (amount of fluid volume crossing 

a unit cross sectional area per unit of time). 

 

 u  
k


P  g  (4.4) 

 

In groundwater hydrology it is customary to write volumetric flux in terms of a “pressure 

head” h = P/(g), which has units of length. This is very useful under conditions where fluid 

density is approximately constant, because then a factor g can be extracted from the pressure 

gradient term to give 
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 u  Kh (4.5) 

 

where K = kg/ is the hydraulic conductivity (units of m/s), and h = P/(g) + z is the 

hydraulic head (pressure head plus “elevation head” z). In geothermal applications we usually 

encounter conditions where fluid density can be quite variable, due to dependence on 

temperature, pressure, and salinity, so that Eq. (4.5) is of limited usefulness and Eq. (4.4) is 

used. 

 

 The volumetric flux u is sometimes referred to as the “Darcy velocity,” but it is not the 

velocity with which the fluid parcels are actually flowing. The latter quantity is known as the 

“pore velocity,” denoted by v. Fig. 4.2 shows that the volume crossing a unit cross-sectional 

area per unit time is given by 

 

 u  v  (4.6) 

 

where  is the porosity of the medium. Eq. (4.6) implies that in media with low effective 

porosity the pore velocity can be considerably larger than the Darcy velocity. Practical 

examples are seen in fractured media, where solute tracers may migrate with very large 

velocities, often as large as tens of meters per hour. 

 

 

 
Figure 4.2.  Volume occupied by fluid crossing the left interface during a unit of time. 

 

Eq. (4.3) is written for the case when the pore space contains a single fluid phase, for example 

a liquid (aqueous) phase. In geothermal reservoirs we often encounter situations where two 

phases, liquid and gas, coexist in the pore space of the medium. Each of the two phases flows 

under its own pressure gradient and body force, but the effective permeability of the medium 

is reduced relative to single-phase conditions, because each of the flowing phases has only 
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part of the pore space available. This effect is taken into account by introducing so-called 

“permeability reduction factors,” or “relative permeabilities” kr for phases  = liquid, gas, as 

follows. 

 

 F  k
k r


P  g  (4.7) 

 

The coefficients kr represent the reduction in available permeability due to the fact that only 

a fraction of the pore space is occupied by phase . The fraction of pore space occupied by a 

fluid phase is termed its saturation S, and the relative permeabilities are functions of S, kr 

= kr(S).  

 

 P ( = liquid, gas) are the pressures in liquid and gas phases, which in general will be 

different, due to the surface tension of water and the fact that most mineral surfaces are 

hydrophilic, i.e., are preferentially wetted by water. The pressure of the liquid phase is 

generally lower than that of the gas phase. The difference Pg - Pl = Pcap > 0 is termed the 

capillary pressure and is a function of saturation, Pcap = Pcap(Sl). (Sometimes capillary 

pressure is defined as Pl - Pg < 0.) The term originates from the well-known phenomenon of 

water rising in a capillary tube, see Fig. 4.3. The capillary rise, h, is proportional to surface 

tension  and cosine of contact angle , and inversely proportional to the radius R of the tube. 

The pressure associated with the capillary rise is 

 

 Pcap  gh 
2cos

R
 (4.8) 

 

In porous media, capillary pressure comes about through the combined action of many pore 

channels with generally irregular shape, corresponding to a broad range of capillary radii. Fig. 

4.4 shows a typical capillary pressure function for a porous medium with a permeability of 

100x10-15 m2. Capillary pressures become stronger for media with small permeability (small 

pore radii). In geothermal reservoir simulation, capillary pressures have usually been 

neglected. There may be some justification for this from the fact that surface tension decreases 

with increasing temperature. 
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Figure 4.3.  Rise of water level in a capillary tube. 
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Figure 4.4  Capillary pressure function. 

 

 The functional form of the relative permeability functions kr(S) depends on the 

geometry of the pore space and the connectivity of the pore network. Relative permeabilities 

can be measured on specimen of permeable media in the laboratory, but such determination 

has limited value for the reservoir scale, where flow may largely occur through fractures that 
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are connected on a scale far greater than can be studied in the laboratory. The spacing between 

major fractures in geothermal reservoirs may be of the order of 10 - 100 m or more. In 

practice, relative permeabilities are often treated as adjustable parameters in models of 

geothermal systems. An example of typical gas (vapor) and liquid relative permeability 

functions for porous media is given in Fig. 4.5. The liquid relative permeability curve krl(Sliq) 

is of the van Genuchten type (1980), with krl --> 0 as Sliq approaches the “irreducible” 

saturation Slr = 0.3. Gas relative permeability is a Corey curve (1954) with an irreducible gas 

saturation of Sgr = 0.05. The different functional forms of vapor and liquid relative 

permeabilities can be understood by conceptualizing the porous medium as a network of 

capillary tubes with different radii. When a fully water-saturated porous medium is being 

desaturated, capillary pressure effects cause the large capillaries to desaturate first, leading to 

a steep decrease of effective permeability for the liquid phase. Conversely, at low liquid 

saturations only the smallest capillaries retain liquid. These make only a small contribution to 

overall permeability, so that there is only a modest reduction in vapor phase relative 

permeability. 
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Figure 4.5.  Typical relative permeability functions. 

 

5. Mass Transport 

 Hydrothermal fluids are not pure substances, but generally are mixtures of several 

mass components or chemical species. The dominant fluid component is usually water, and 

for practical reservoir studies it is often reasonable to ignore other components. The aqueous 

phase generally contains solutes such as NaCl and other salts, as well as dissolved non-



Hydrothermal systems 12 Pruess 

 

condensible gases, such as CO2, H2S, and noble gases, and constituents of rock minerals such 

as SiO2. If a gas phase is present, it usually is predominantly H2O, but may also contain other 

gases. Let us consider a mass component  such as CO2, which may be present 

simultaneously in the gas phase and in the aqueous (liquid) phase, with mass fractions of Xg


 

and X l


, respectively. The total mass flux of component  due to fluid flow is then 

 

 F


 Xg

Fg  Xl


Fl  (5.1) 

 

 In addition to the “advection” described by Eq. (5.1), mass transport occurs by means 

of molecular diffusion, that is, due to the random motion of solute and solvent molecules. 

Diffusive mass flux is given by Fick’s law. 

 

 f


 0   d

X


 (5.2) 

 

The driving force for diffusion is the mass fraction gradient, X


. Equation (5.2) without the 

three coefficients  0   would give the diffusive flux of component  in a “free” phase , 

when no porous medium is present. The coefficient d


 is known as “diffusivity” and has units 

of m2/s. Diffusivities depend on the nature of the components that are diffusing, and may also 

depend on other parameters, such as temperature and pressure. Typical diffusivities for 

aqueous solutes are of order 10-9 - 10-10 m2/s, while gas phase diffusivities are of order 10-8 

m2/s at typical geothermal reservoir conditions. The porosity  in Eq. (5.2) accounts for the 

reduction in volume available for diffusion due to the porous medium, 0  is a tortuosity 

coefficient that represents the reduction in diffusion due to tortuous paths, and   is an 

additional tortuosity coefficient that comes into play because fluid volumes for diffusion 

decrease, and path lengths increase, when more than one phase occupies the pore space. 

 

 The mass components are transported in the flow according to the actual pore 

velocities, which due to the (partially) random nature of porous media will exhibit local 

variability. This causes a dispersion of a solute plume, an effect that is not captured by the 

flux law Eq. (5.1) which ignores such local variability and addresses only average flow 

velocities. Dispersion has often been modeled in analogy to diffusion, but this approach has 

been thoroughly discredited through an extensive body of hydrogeologic research during the 

last twenty years. Proper modeling of mass transport in porous media remains a difficult 

challenge (see Section 9). 
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 We observe a formal analogy between the laws for heat conduction, fluid flow, and 

molecular diffusion. In each case the flux is given by the product of a driving force (gradient 

of temperature, pressure, mass fraction) and a coefficient that represents a “conductivity” of 

the medium for the particular process. The three flux laws are identical in form to Ohm’s law 

for electric current, which is I = (1/R)*U, where 1/R is conductivity (inverse resistivity), and 

U is the voltage drop across the resistor. 



 
 
 Pruess, K.: Mathmatical Modeling of Fluid Flow and Heat Transfer 
 Reports 2002  
 Number 3, 1-26 
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LECTURE II:  MASS AND ENERGY BALANCES 

 

6. Mass Balance 

 Of fundamental importance for fluid flow studies, whether in porous media or in free 

space, is the mass balance or mass conservation equation. Simply put it states that the change 

in fluid mass in some reservoir volume is given by the net inflow across the surface of that 

volume, plus contributions from sinks (production wells) and sources (injection wells). 
 

change in fluid  
mass in volume 

V  

= net fluid inflow across 
surface of V 

+ net gain of fluid from 
sinks and sources  

(6.1) 

 

A mass balance as shown in Eq. (6.1) holds for any (sub-)volume of a reservoir, regardless of 

its shape and size. Mass balances may be applied to an entire reservoir, viewing it as a large 

fluid tank, or they may be applied to any subvolume or subdomain. In reservoir simulation, a 

reservoir volume is broken down into many small subvolumes, generally referred to as 

“volume elements” or “grid blocks,” and mass balances are set up for each of them and solved 

by computer. Although different choices for volume elements are possible (see Section 12), 

from a practical viewpoint it is best to think of them as boxes or, in two dimensions, 

rectangles (Fig. 6.1). The centroids of the grid blocks are referred to as “nodal points,” and we 

associate average pressure, temperature, etc. in a grid block with these nodal points. 

 

 

 

 
Figure 6.1.  Space discretization in two dimensions, showing a grid block n and its neighbors mi. 

 

For simplicity, let us consider a single-phase system with a single-component fluid (water), 

and write down a mass balance for volume element or grid block n. The rate at which fluid 

enters grid block n from neighboring grid blocks m is given by 

 



Pruess  Mass and energy balances 

  

15 

 Anm Fnm
m

  (6.2) 

where the summation runs over all grid blocks that share a common interface with grid block 

n. Anm is the interface area between grid blocks n and m, and Fnm is the average mass flux 

across that interface, counted positive when flow is from m to n. The total change in fluid 

mass content in grid block n from flows to and from neighboring grid blocks over a time 

interval ∆t is given by 

 

 ∆M n  Vn Mn  t AnmFnm  Qn
m










 (6.3) 

 

Here we have also introduced contributions from sinks and sources at a total net rate of Qn. Vn 

is the volume of the grid block in question, ∆M n is the change of fluid mass in Vn, and ∆Mn is 

the change in fluid mass per unit volume during the time ∆t. For reference we give 

expressions for the fluid mass per unit volume for different conditions. 

 

single phase, single component M   (6.4) 

 

single phase, multi-component M


  X


 (6.5) 

 

multi-phase, multi-component M


  S X




  (6.6) 

 

Here,  is porosity, X is mass fraction of component , and the subscript  refers to fluid 

phase (gas, liquid). S is the saturation of phase , i.e., the fraction of pore volume occupied 

by that phase. 

 

 From Eq. (4.3), a finite difference expression for the average flux Fnm in a single-

phase system across the interface between grid blocks n and m can be written as (see Fig. 6.2) 

 

 

Fnm  knm






 
 
 

 

 
 
 

nm

Pm Pn

Dnm

 nm gnm

 

 
 
 

 

 
 
 

 
(6.7)

 

 

where the subscripts (nm) denote a suitable averaging at the interface between grid blocks n 

and m (interpolation, harmonic weighting, upstream weighting). Pn and Pm are (average) 

pressures in the  
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Figure 6.2.  Space discretization and geometry data in the integral finite difference method. 

 

two grid blocks, Dnm = Dn + Dm is the distance between the nodal points n and m, and gnm is 

the component of gravitational acceleration in the direction from m to n. For multiphase 

conditions, an analogous expression can be written based on Eq. (4.7). 

 

 In order to get useful information from a mass balance, it is necessary to know 

formation parameters appearing in the flux expressions. We also need information about fluid 

properties such as density and viscosity, and their dependence on fluid pressure and 

temperature. We will revisit mass balances after some review of these topics. 

 

7. Energy Balance 

 Energy balances are more complicated than mass balances, primarily because thermal 

energy is not conserved as such, but may be partially converted into mechanical work and vice 

versa. This is expressed by the First Law of Thermodynamics, or energy balance, 

 

 U  G W (7.1) 

 

where the change ∆U in internal energy of a system is due to heat transfer G and mechanical 

work W done to the system. Here we consider both heat transfer and mechanical work as 

positive when they are done to the system. Let us consider a thermodynamic system consisting 

of a fixed quantity of gas occupying a volume V at a  pressure  P  (see Fig. 7.1).   If  we  add  a  
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Figure 7.1.  A volume of gas, held under a pressure that is equal to the gravity force Fg on the weight, 

divided by the piston area A, P = Fg/A. 

 

thermal energy G to this gas, both its temperature and volume will increase, while under the 

(idealized) arrangement shown in Fig. 7.1 the pressure must remain constant. The work done 

to the gas is W = -Fg ∆z, where Fg is the force acting on the piston, and ∆z is the distance over 

which the piston moves upward to accommodate the increase in gas volume. This work is 

counted as negative because it is done by the system to its surroundings, thus reducing its 

energy content. We have Fg = P A, so that  

 

 W  =  - P A ∆z  =  - P ∆V (7.2) 

 

where the volume increase is ∆V = A ∆z. We see that of the total thermal energy G transferred 

to the gas, only the portion G - P∆V is added to its internal energy, the remainder P∆V being 

converted into mechanical work. In geothermal reservoir processes, the only significant 

mechanical work is that due to pressure forces; other forms of mechanical work do occur 

(Bird et al., 1960) but are not practically important and will not be considered further. A more 

complete discussion of mechanical work is given by Bird et al. (1960), and, specifically for 

geothermal applications, by Brownell et al. (1977). 

 

 Using Eq. (7.2), the First Law of Thermodynamics, Eq. (7.1), may be written 

 

 U  G  PV (7.3) 

 

Eq. (7.3) shows that when a gas is compressed, ∆V < 0, its internal energy will increase unless 

heat is withdrawn (G < 0). 
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 An important process is the “adiabatic” expansion (or compression) of a gas, i.e., an 

expansion process in which no thermal energy is exchanged with the surroundings. Consider 

an arrangement as shown in Fig. 7.2. Suppose a unit mass of gas with volume v1 = 1/1 is 

pushed  

 

 

 
Figure 7.2.  Adiabatic expansion of a gas. 

 

through a throttle (choke), while pressure is maintained constant at P1 on one side, P2 on the 

other. According to Eq. (7.3) the change in internal energy per unit mass, u2 - u1, must be 

equal to the net work done to the system, which is P1 v1 - P2 v2. 

 

 u2 - u1  =  P1 v1 - P2 v2 (7.4) 

 

so that 

 

 u2 + P2 v2  =  u1 + P1 v1 (7.5) 

 

The quantity that is conserved in this process is called specific enthalpy, h = u + Pv = u + P/. 

Adiabatic expansion is a reasonable model for many geothermal applications, for example, for 

flow of a two-phase mixture of water and steam down a pressure gradient to a separator. If 

produced enthalpy is h, and the separator operates at a pressure Ps where specific enthalpies of 

vapor and liquid are hvs and hls, respectively, then conservation of specific enthalpy demands 

that h  =  X hvs + (1-X) hls, where X is the mass fraction of two-phase fluid converted to 

steam. For a given separator pressure Ps the specific enthalpies of vapor and liquid can be 

obtained from “steam tables” (see Section 8.1, below), so that the mass fraction converted to 

steam can be calculated. 

 

 X 
h  h ls

hvs  hls

  (7.6) 

 

 For a finite (sub-)volume V of a flow system, when not only heat and work but also 

fluids may be exchanged with the surroundings, the energy balance can be written in the 

following form. 
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change in 
internal 

energy in 
volume V  

= 
net 

transfer of 
energy by  
fluid flow 

+ mechanical 
work done 

to volume V 

+ net heat 
transfer by 
conduction  

+ 
net energy 
gain from 
sinks and 
sources  

(7.7) 

 

We now consider specific mathematical expressions for the various terms. The internal energy 

per unit volume in a general multiphase system is given by 

 

 M
h

 (1 )R CR T   S u


  (7.8) 

 

where R and CR are, respectively, grain density and specific heat of the rock, T is 

temperature, and u is specific internal energy in phase . Total internal energy in a grid block 

n is obtained by multiplying Eq. (7.8) with the grid block volume. The change in internal 

energy over some period of time is obtained by evaluating Eq. (7.8) for the thermodynamic 

conditions (temperature, pressure, saturation, etc.) at the beginning and end of that time 

period, and then taking the difference.  

 

 Energy transfer due to fluid flow and associated mechanical work is calculated by 

multiplying the mass flow rates by the corresponding specific enthalpies. 

 

 F
h

 h F


  (7.9) 

 

where the multiphase mass fluxes are given by Eq. (4.6). Conductive heat transfer is given by 

Eq. (2.1), and energy sinks and sources are calculated by multiplying mass rates with the 

appropriate specific enthalpies. 

 

8. Fluid Properties 

 Geofluids in general consist of liquid-gas mixtures of water and steam, with dissolved 

solids such as NaCl and non-condensible gases such as CO2. The physical properties of water 

are fundamental for an understanding of geothermal reservoirs and will be reviewed first. 

 

8.1 Water 

 For temperature and pressure conditions of interest to geothermal engineers, water 

may exist as a single-phase liquid, as a single-phase gas called “vapor” or “steam,” or as a 

two-phase mixture of water and steam. At any given temperature, there is a unique pressure, 

known as “saturated vapor pressure” and denoted by Psat(T), at which vapor and liquid may 
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coexist (Fig. 8.1). At pressures larger than Psat, we can only have single-phase liquid, while at 

pressures lower than Psat we have single-phase vapor (see Figs. 8.1-2). At increasing 

temperatures the properties of vapor and liquid become more similar, and differences between 

the two phases vanish at the “critical point” (Tcrit, Pcrit) = (374.15 ˚C, 221.2 bars). Beyond the 

critical point there is only a single “supercritical” phase of water. The functional relationship 

of Psat(T) as well as properties such as densities, viscosities, and specific enthalpies of liquid 

water and steam have been thoroughly studied through experimental observations and 

theoretical analyses, and are available in handbooks or through mathematical correlations 

known as “steam tables” (IFC, 1967; Keenan et al., 1969). Figs. 8.2-5 through show liquid 

and vapor properties along the saturation line as functions of temperature, calculated from the 

IFC (1967) steam table equations as coded in the TOUGH2 reservoir simulator (Pruess et al., 

1999). 

 

 A very useful diagram for representing water properties that are important for two-

phase geothermal reservoirs is the pressure-enthalpy diagram, Fig. 8.6. 

 

 

Pressure

Temperature

Tcrit = 374.15 ÞC

Pcrit =
221.2 bar

supercritical
fluid

superheated
gas

subcooled
liquid

saturation
line

 

 
Figure 8.1  Schematic temperature-pressure diagram of the phase states of pure water. 
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Figure 8.2  Vapor pressure of water as function of temperature on linear (a) and logarithmic scale (b). 
The data were calculated from IFC (1967) steam table equations as coded in the TOUGH2 reservoir 

simulator (Pruess et al., 1999). 
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Figure 8.3  Liquid and vapor density along the saturation line. 
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Figure 8.4  Liquid and vapor viscosity along the saturation line. 
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Figure 8.5  Liquid and vapor enthalpy along the saturation line. 

 

 

 

 
Figure 8.6.  Pressure-enthalpy diagram for pure water and vapor, showing contours of equal 

temperature, density, and mass fractions of steam. Open circle indicates maximum enthalpy of 
saturated steam (from White et al., 1971). 



Mass and energy balances 24 Pruess 

 

8.2 Gases 

 Of fundamental importance in the study of gas behavior is the “ideal gas law,” written 

as 

 

 PV  nRT  (8.1) 

 

Here n is the number of moles of the gas, i.e., the mass M of the gas divided by the molecular 

weight m of the gas expressed in grams, n = M/m. T is “absolute temperature” measured in 

degrees Kelvin (T(K) = T(˚C) + 273.15), and R = 8.315 J/(mole ˚C) is the universal gas 

constant. Eq. (8.1) says that at a fixed temperature, the pressure and volume of a fixed 

quantity of gas are inversely related, V   1/P, and, furthermore, that the pressure of a given 

quantity of gas held in a fixed volume is proportional to absolute temperature. Empirically it is 

found that “real” gases obey Eq. (8.1) only approximately, and to better approximation at high 

temperatures and low pressures. The isothermal compressibility of an ideal gas can be 

calculated from Eq. (8.1) as 

 

 cT  
1

V

V

P


1

P
 (8.2) 

 

i.e., it is simply given by the inverse of the pressure. 

 

 Many different enhancements to Eq. (8.1) have been developed for different chemical 

substances, especially in the petroleum industry which must deal with a great variety of 

gaseous and volatile fluids. Some of these equations are even capable of representing the 

phase change to liquid conditions which occurs at “low” temperatures and “high” pressures, 

exactly what is “high” or “low” depending on the chemical nature of the fluid under 

consideration. For geothermal applications, the most important gases are water vapor and 

carbon dioxide, but air, hydrogen sulfide, and noble gases may also be present. From a 

practical engineering viewpoint, for an accurate representation of gas properties it is most 

convenient to modify Eq. (8.1) in a way that preserves its structure. The “real gas law” is 

written, in analogy to Eq. (8.1), 

 

 PV  ZnRT (8.3) 

 

where Z = Z(T, P) is the “real gas compressibility factor,” a function of temperature and 

pressure that can be regarded as a measure of the deviation from ideal gas behavior.  
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8.3 Phase Partitioning 

 When two fluid phases are present, non-condensible gases (NCGs) such as CO2, H2S, 

noble gases and many man-made chemical tracers, will partially dissolve in the liquid phase. 

Under ideal conditions, the mole fraction xaq
NCG

 that dissolves in the liquid phase is 

proportional to the partial pressure in the gas phase, a relationship that is known as “Henry’s 

law.” 

 

 PNCG  Kh xaq
NCG

 (8.4) 

 

The partitioning of a volatile tracer between water and steam is shown schematically in Fig. 

8.7. 

 

 

 

 

 

 
Figure 8.7. Phase partitioning of a volatile 
 tracer. 

 

The Henry’s coefficient Kh for dissolution of CO2 in water is strongly dependent on 

temperature. Several different correlations developed for Kh(T) are shown in Fig. 8.8. An 

early correlation developed by O’Sullivan et al. (1985) is accurate to within a few percent of 

experimental data in the temperature range of 40 ˚C ≤ T ≤ 330 ˚C, but becomes rather 

inaccurate at lower temperatures. The correlation developed by Battistelli et al. (1997) is 

accurate for 0 ˚C ≤ T ≤ 350 ˚C, and is used in the TOUGH2 simulator. It agrees well with 

another correlation developed by S. White (private communication, 1986). 
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Figure 8.8. Henry’s law coefficients for dissolution of CO2 in water.  
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8.4 Brines 

 Geothermal waters may contain considerable amounts of dissolved salts, such as NaCl. 

Salty aqueous fluids or “brines” have larger density and viscosity than pure water. They also 

have lower vapor pressure and lower solubility for non-condensible gases. Figs. 8.9-10 

illustrate the dependence of density and viscosity on salt concentration for the most commonly 

encountered NaCl brines, based on the correlations developed by Battistelli et al. (1997). 
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Figure 8.9.  Brine densities at T = 250 ˚C, P = 100 bar. 
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Figure 8.10.  Brine viscosities at T = 250 ˚C, P = 100 bar. 

 



 
 
 Pruess, K.: Mathmatical Modeling of Fluid Flow and Heat Transfer 
 Reports 2002 
 Number 3, 27-46 
GEOTHERMAL TRAINING PROGRAMME  

 27 

 

LECTURE III:  NUMERICAL MODELING OF GEOTHERMAL SYSTEMS 

  

Geothermal reservoirs are dynamic systems that are driven by throughputs of fluid and heat. 

This is true under natural conditions, but rates of mass and energy transport are typically much 

larger in reservoirs that are being exploited. Fig. 9.1 illustrates some of the physical and 

chemical processes that take place in a producing geothermal field. 

 

 
Figure 9.1.  Schematic of physical and chemical processes occurring in a producing geothermal field 

(from Bodvarsson and Witherspoon, 1989). 

 



Numerical modeling 28 Pruess 

 

9. Primer on Transport Processes 

 Before proceeding to a more detailed discussion of approaches and methodology for 

reservoir simulation, it is useful to briefly review some basic types of mass and energy 

transport processes. Three basic process types have been recognized, (a) advection, (b) 

diffusion, and (c) dispersion. Actual mass and energy transport processes described by the 

equations discussed in Sections 6 and 7 usually involve some combination of these. 

 

 Advection involves the translation of fluid parcels over time, as can be traced by 

solutes dissolved in the fluid. Suppose at some time t0 we have a solute distribution given by 

C0(x), see Fig. 9.2. For a purely advective flow, the distribution at some later time t is 

identical to C0, except  

 

C, S

x

t0 t1 > t0

x = v t

 

 
Figure 9.2.  Illustration of a purely advective process in 1-D. ∆t = t1 - t0 is a time interval. 

 

everything is displaced by ∆x = v(t-t0), where v is the flow velocity, so that  C(x, t) = C0(x-

v[t-t0]). Mathematically speaking, advective processes are described by a so-called 

“hyperbolic” partial differential equation (PDE), which involves only first-order derivatives in 

space and time. 

 

 
C

t
 v

C

x
 0  (9.1) 

 

 Diffusion arises from random motions on a molecular scale. Examples include heat 

conduction, molecular diffusion of solutes or gases, and the propagation of pressure 

disturbances in fluids. Diffusion tends to average out whatever spatial variations may be 

present initially, and to broaden initial distributions (Fig. 9.3). From a mathematical 

viewpoint, diffusion processes are  
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x

t0

t1 > t0

 

 
Figure 9.3.  A diffusive process in 1-D. 

 

described by a “parabolic” PDE which involves first-order time and second-order space 

derivatives. The prototype for this is the heat conduction equation, 

 

 
T

t
D

2T

x
2  0  (9.2) 

 

where D is the diffusivity, which has units of m2/s. Diffusion processes have the characteristic 

that the width of the distribution grows proportional to the square root of time. A perturbation 

applied locally to a diffusive system will over a time period t propagate a distance 

 

 x  Dt  (9.3) 

 

Eq. (9.3) is useful for estimating the range of influence of a diffusive process, but it must be 

kept in mind that diffusive profiles are characterized by broad distributions, not sharp fronts. 

“Small” amounts of the diffusing quantity will reach distances far greater than x estimated 

from Eq. (9.3).  

 

 Thermal diffusivity is given by D = K/c, where K is thermal conductivity,  is 

specific density, and c is specific heat. For typical reservoir rocks, these parameters have 

values of K ≈ 2 W/m ˚C,  ≈ 2500 kg/m3, and c ≈ 800 J/kg ˚C, so that thermal diffusivity is of 

order D ≈ 10-6 m2/s. The penetration distances for heat conduction are then x = 5.6 m in 1 

year, x ≈ 30 m in 30 years. 

 

 The third fundamental transport process is dispersion, which arises from fluctuations 

in pore velocity due to irregular pore channels, presence of fractures, or heterogeneities of any 

other kind. Dispersion will cause an initially compact plume of solutes to change its shape in 
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more-or-less erratic fashion, see Fig. 9.4. A solute cloud (plume) as shown on the left of Fig. 

9.4 may at some later time reside in an irregularly-shaped volume as shown on the right. The 

magnitude of the volume occupied by the solute will increase over time, but this tends to be a 

slow process driven primarily by molecular diffusion. The most dramatic and typically far 

more rapid change is in the shape of the plume. A theoretical approach originally proposed by 

Scheidegger (1954) and subsequently widely used in hydrology seeks to capture the growth of 

the volume in which solutes may be found in some average fashion, by treating dispersion in 

analogy to molecular diffusion. Scheidegger’s dispersion model would predict that solute will 

occupy the lightly shaded elliptical region on the right of Fig. 9.4. Hydrogeological research 

during the last twenty years has shown that the diffusive analog to dispersion has serious 

shortcomings. It cannot properly predict the growth of the plume in longitudinal and 

transverse directions, and it tends to overestimate dilution effects. No alternative model of 

similarly broad scope has taken the place of the diffusive analog. In practical applications it is 

desirable to explicitly represent the heterogeneity that is causing the dispersion, although for 

many applications the diffusion model, if used carefully, can still provide useful answers. 

 

 

 
Figure 9.4.  Schematic of solute dispersion. The compact solute plume shown on the left may at some 

later time occupy the irregular volume on the right. The lightly shaded region indicates the solute 
distribution that would be predicted from an approach that models dispersion in analogy to diffusion. 
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10. Overview of Reservoir Simulation 

 The aim of reservoir simulation is to construct a mathematical model of a reservoir, or 

of some hypothetical, idealized flow system that we wish to study, and to obtain quantitative 

numerical solutions for this model. In order to be able to devise a mathematical model, we 

need to 

• identify and understand the basic physical and chemical processes operating in a 

reservoir; 

• develop mathematical expressions (equations) for describing these processes; 

• have information or make appropriate assumptions about the hydrogeologic 

parameters of the formation (such as permeability, porosity, etc.), including their 

spatial variation; 

• have quantitative information about the relevant fluid properties (such as density, 

viscosity, enthalpy, vapor pressure, etc.), and their dependence on the 

thermodynamic conditions; 

• have information or make appropriate assumptions about initial conditions 

throughout the system, and boundary conditions at all times at the outer boundary 

of the system;  

• we also need to know the nature, location, and rates of sinks and sources. 

 

 For idealized and simplified systems and conditions, it is possible to solve 

mathematical models by analytical techniques. However, geothermal reservoir problems will 

in general feature irregular variations of thermodynamic conditions, fluid properties, and 

formation parameters, and operation of production and injection wells may occur in some 

time-varying fashion. Then no closed-form analytical solutions of the governing mass and 

energy balance equations are possible, and we must resort to numerical techniques. 

 

 The basic approach taken in numerical reservoir simulation involves “discretizing” the 

continuous space and time variables. Space discretization means that we break down or 

“partition” the volume of the system we are interested in into sub-volumes. Different shapes 

may be used, but from a practical viewpoint it is best to think of these sub-volumes as 

“bricks” (what mathematicians call “parallelepipeds”) or, in two dimensions, rectangles. The 

sub-volumes will be referred to as “volume elements” or “grid blocks.” We then set up mass 

balances (and for non-isothermal processes also energy balances), for each of the grid blocks. 

In reality, the thermodynamic conditions in a flow system may vary from point to point; by 

discretizing into finite-size grid blocks we approximate these point-to-point variations by 

means of averages in each grid block. Expressed differently, we assume that (approximate) 

thermodynamic equilibrium prevails “locally,” on the scale of a grid block. Time is also 

discretized into finite increments or “time steps” ∆t. Suppose that at some given time t we 

know the thermodynamic conditions in all grid blocks. From this information we calculate the 

rates of mass (and energy) flow between grid blocks. We then allow these flows to proceed for 
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a time ∆t and, using mass balances Eq. (6.1) and energy balances Eq. (7.7), we obtain new 

updated inventories of mass and energy in each grid block corresponding to time t + ∆t. This 

process is repeated for as many time steps as desired, to obtain a prediction of thermodynamic 

conditions for a time period of interest. 

 

 Because thermodynamic conditions change during a time step, we initially only have 

information about the mass (and energy) flow rates corresponding to the beginning of the time 

step. The outcome at the end of the time step will depend on the manner in which the flow 

rates change. Often times it is necessary to apply an iterative procedure to solve for the 

changes during a time step. 
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Figure 10.1.  Iteration procedure for solution of mass and energy balances. 

 

 The discretization of space and time into finite-size intervals introduces inaccuracies, 

known as “space and time truncation errors,” which generally become smaller when 

discretization is refined.  

 

11. Preparation of Input Data 

 The types of data needed to characterize a flow system and specify a simulation 

problem are summarized in Fig. 11.1. In addition to these data we also need fluid properties 

(see Sec. 8), which usually are provided internally in a reservoir simulation program. In 

practical applications of reservoir simulation, the most important parameters are the 

magnitude and spatial distribution of permeability and porosity; the temperatures, pressures, 

and vapor saturations of the reservoir fluids, and the location and rates of upflow and 

recharge. Typically these parameters are only incompletely known at the beginning of a 

simulation study, and one of the important objectives is then to determine them in a process 

known as “model calibration” or “history matching.” This involves making guesses for poorly 

constrained parameters, running a simulation, and comparing the outcome with field 
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observations, such as pressure and temperature distributions, changes in well flow rates and 

enthalpies, tracer returns, and others. Discrepancies between predicted and observed field 

characteristics and behavior will be noted, and parameters will be revised to try and reduce 

these discrepancies. Model calibration can be done as a trial-and-error process, using 

engineering judgment in making parameter estimations, or it can be automated using “inverse 

modeling” (Finsterle et al., 2000). 

 

 

 
Figure 11.1.  Data groups for a simulation problem. 

 

 Sometimes it is held that numerical simulations require a lot of data in order that 

useful results may be obtained. If the objective is to develop detailed forecasts of future well 

and reservoir behavior (flow rates, enthalpies, pressures, gas concentrations, etc.), then indeed 

the reliability of predictions depends on the detail and comprehensiveness of available 

information for the formations (permeability, porosity, characteristic curves, initial and 
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boundary conditions). In practice, much of this information is developed through “history 

matching.” More detailed observations made over a longer period of time provide more 

constraints for history matching and, if indeed history matching is successful, will permit 

more reliable forecasts. As a rule of thumb, it is often held that performance forecasts may be 

made for a period of time comparable to the period for which observations are available and 

have been matched by a reservoir model. 

 

 However, we wish to stress that reservoir simulators can also be usefully applied even 

in situations where only limited data are available. Uncertainties due to the paucity of data can 

be evaluated by examining a range of reservoir models and parametrizations that cover the 

range of uncertainties. Simplified models can be used to gain insight into reservoir behavior 

and flow mechanisms. 

 

12. Grid Generation 

 Specification of the domain to be modeled and development of a computational grid 

have a large impact on the realism, accuracy, and potential usefulness of a reservoir model. 

The model domain should not be chosen too small, so that model behavior is not unduly 

affected by artificial boundary conditions. For example, specification of water inflow near 

producing wells, either by way of an explicit recharge rate or through constant pressure 

boundaries, can have a strong influence on predicted well behavior. It is desirable that the 

model domain extends a “large” distance beyond an actual or potential well field, so that fluid 

supply to the wells is governed by flow in the domain that is modeled, rather than by artificial 

or poorly known boundary conditions. 

 

 In addition to the question of the size of the model domain, very important issues 

relate to the size and shape of grid blocks. In order that accurate results may be obtained, grid 

blocks should be chosen “sufficiently small” so that variations in thermodynamic conditions 

within the grid block volume are modest. More specifically, in regions where thermodynamic 

conditions vary rapidly, as e.g. near production and injection wells, and near upflow and 

recharge zones, grid blocks should be chosen small.  

 

 The fundamental issue is to be able to calculate the flow (of heat, fluid, solute) across 

an interface between two grid blocks. To do this accurately, we should divide an interface into 

many small surface segments, know the gradient of the quantity driving the process (pressure, 

temperature, saturation, solute concentration) in all of the segments, also know the 

corresponding conductivities, and then apply the appropriate flux law to calculate flow rates in 

each segment. Total flow across the interface would be given by a summation over the 

individual segments. 
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 In reality we do not have sufficient information for such a detailed evaluation. What 

we have is average values of thermodynamic parameters, that correspond to discrete nodal 

points (grid block centers). Gradients at interfaces need to be approximated from information 

available at these discrete nodal points. Actually, what is needed for most transport processes 

is not the entire gradient, but just the component perpendicular to the interface, the so-called 

“normal” component. 

 

 

 
Figure 12.1.  Components of average temperature gradient at the interface 

between grid blocks n and m. 

 

As indicated by Fig. 12.1, an estimate of the normal component of the gradient can be 

obtained from data at the two neighboring grid blocks, provided the interface is oriented 

perpendicular to the nodal line connecting n and m. This leads to the concept of constructing 

grids from the perpendicular bisectors of nodal lines. 

 

 Additional constraints need to be observed. Consider the grid fragment shown in Fig. 

12.2. The interface between nodal points n and m is given by the perpendicular bisector, yet it 

is intuitively obvious that knowledge of conditions at nodal points n and m may not provide a 

good estimate of the gradient at their common interface. Skewed angles should be avoided in 

grid design. 
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Figure 12.2.  Portion of a grid with nodal points n, m, and k. 

 

 Another gridding issue is illustrated in Fig. 12.3. Here it is desired to refine the grid 

spacing in the central block, to be able to more accurately define the gradients driving flow. 

The reason for wanting to do this may be that there is a well located in the middle of the 

central grid block. It is clear that it is not possible to obtain the normal component of gradients 

at the sub-divided interfaces from parameters at two neighboring grid blocks. A more complex 

scheme is needed, where additional “interpolation nodes” are introduced (Pruess and García, 

2000). 

 

 

 
Figure 12.3.  Local grid refinement. Nodal points are marked with solid circles, interpolation nodes are 

marked as an x. 

 

 From these examples it is clear that grid design requires careful thought and scrutiny, 

as it can provide a potentially major source of errors or inaccuracies. For practical simulation 

studies it is recommended to include some evaluation of grid sensitivity. One way to 

accomplish this is to solve the same flow problem on different grids and compare results. 

 

 Mesh generation can be greatly simplified by exploiting actual or approximate 

symmetries of a flow system. This allows far more efficient and potentially more accurate 

simulations. A case in point is flow to or from a well, which in “sufficient” proximity to the 

well may approximate radial symmetry, meaning that at any given time, parameters such as 
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pressure, temperature, saturation, etc. depend only on distance R from the well, and possibly 

also on depth Z (see Fig. 12.4). 

 

 

 
Figure 12.4.  For radial symmetry, contour lines of pressure, temperature, etc. form concentric circles 

around the well, providing a natural grid system. 

 

 Radial symmetry may be violated by heterogeneities of the flow system, such as 

fractures, and at any rate will not hold for “large” space and time scales, where boundaries and 

large-scale variability of the flow system will come into play. On the other hand, for the 

analysis of well tests which sample only a limited reservoir volume over a limited period of 

time, perhaps of order 100 m and hours to days, idealization of the flow system as radially 

symmetric may be entirely adequate. It may even be possible to neglect Z-dependence and 

approximate the flow system as 1-D radial. The gain in efficiency and accuracy from such 

geometric simplifications can be appreciated by comparing gridding requirements between 1-

D radial and 3-D Cartesian grids. Let us suppose we need to consider flow within 1 km 

distance from a well. If we use a grid spacing of 10 m, discretization of a 2x2 km2 region 

requires 200*200 = 40,000 grid blocks. If reservoir thickness is 500 m, we need 50 grid 

layers, for a total of 2,000,000 grid blocks. The same level of discretization in a 1-D radial 

model requires 1,000/10 = 100 blocks. The 3-D model is at the limits of what can be done 

with a state-of-the-art massively parallel supercomputer, whereas the radial model is an easy 

problem on a PC. Clearly, in the 1-D radial model we can afford considerably finer grid 

spacing for a more accurate solution (provided radial symmetry is approximately valid), yet 

realize enormous savings in computing time. Radially symmetric models are also very useful 

for “generic” studies, to investigate flow mechanisms. 

 Another idealization that is useful for studying reservoir mechanisms is the five-spot 

model, which consists of a regular pattern of production and injection wells placed at the 

corners and centers of a quadrangle, respectively (see Fig. 12.5). The injection well may be 

absent. In actual geothermal reservoirs, wells are seldom sited with anything approaching the 

regularity of Fig 12.5, and even if they were, symmetry would be violated by the fact that the 
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well field is finite and does not continue the pattern indefinitely. Furthermore, wells would 

rarely operate all at the same rates, which again would violate symmetry. In spite of these 

limitations, a simplified five-spot geometry provides a very convenient means for studying 

production and injection behavior, and gaining an understanding of flow mechanisms. The 

chief advantage is that only 1/8 of a single five-spot needs to be modeled, shown by the 

gridded triangle in Fig 12.5, because the symmetry means that the boundaries of that triangle 

are “no flow” boundaries. 

 

 

 
Figure 12.5.  Five-spot well pattern with grid for modeling a 1/8 symmetry domain 

 

 Fig. 12.6 gives an areal view of the kind of grid that might be used for a field 

simulation study. Often it will be necessary to go to a 3-D model and include several layers, 

each of which would have the same discretization as shown in Fig. 12.6. Discretization is 

finer near the wells, to better resolve variations in thermodynamic conditions, while coarser 

grid spacing is employed at larger distance. For more accurate representation of near-well 

behavior, it is also possible to embed a radial grid within grid blocks containing wells. As 

mentioned before, it is important that the model domain be specified large enough so that 

simulated behavior is not unduly influenced by artificial boundary conditions close to the well 

field. 
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Figure 12.6.  Areal view of computational grid for the Olkaria, Kenya geothermal field 

(from Bodvarsson et al., 1985). 

 

 Fig. 12.7 shows a conceptual model for water injection into a superheated vapor zone 

in a vapor-dominated reservoir as a simplified 2-D vertical section model. Two grid designs 

which have been used to investigate the behavior of injection plumes in vapor zones are 

shown in Fig. 12.8. 
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Figure 12.7.  Idealized flow system used for studying water injection into a vapor-dominated reservoir 

(after Pruess, 1991). 

 

 

 
“parallel grid” 

 
“diagonal grid” 

 
Figure 12.8.  “Parallel” and “diagonal” grids for a 2-D vertical section (after Pruess, 1991). 
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 As an example of the complex gridding that may be employed in reservoir studies, Fig. 

12.9 shows a grid used for simulating hydrothermal processes during large-scale heater testing 

at the proposed nuclear waste repository at Yucca Mountain, Nevada. Small grid blocks are 

used to resolve detail in regions with strong spatial variability, while coarser blocks are used 

where gradients are expected to be small. The domain is chosen large enough so that artificial 

boundary effects are avoided. Further discussion of gridding will be given in Sec. 13 for 

fractured media, and in specific simulation problems discussed below. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 
Figure 12.9.  2-D vertical section grid for modeling hydrothermal processes at Yucca Mountain, 
Nevada, in three views from global (a) to detailed (b and c) (from Birkholzer and Tsang, 1997). 
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(b) 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

 
Figure 12.9.  (continued) 2-D vertical section grid for modeling hydrothermal processes at Yucca 

Mountain, Nevada, in two more detailed views (from Birkholzer and Tsang, 1997). 
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13. Flow in Fractured Media 

 Most geothermal reservoirs are situated in fractured rock. Global fluid flow occurs 

primarily through a network of highly permeable interconnected fractures, while rocks of low 

permeability provide conductive heat supply, and may also participate in fluid flow locally. 

Typical tasks that a reservoir engineer may be called upon involve interpretation of well tests 

in fractured reservoirs, analysis of heat sweep during cold water injection (heat transfer from 

matrix rocks to fluids flowing in the fractures), and design and analysis of tracer tests. 

Different approaches are available to model flow in fractured media. The selection of the 

approach to be used in a particular study depends on the physical characteristics of the 

reservoir (parameters such as fracture spacing and connectivity, permeability of the matrix 

rocks), on the flow processes to be modeled (fluid production, injection, tracer migration), and 

on the available data and objectives of the study. 

 

 The simplest approach for modeling flow in fractured media is known as the “effective 

continuum method,” or ECM. In this approach, the reservoir is modeled as a single porous 

medium, and properties of the medium are chosen in such a way as to approximately represent 

the properties of a fractured porous medium. For example, in a fractured two-phase reservoir, 

the matrix blocks may have a rather large water saturation, yet the water does not flow (much) 

in the matrix blocks because of their low permeability. Instead, fluid production from the 

fractures induces a pressure drop which causes boiling of water in the matrix blocks, 

discharging vapor into the fractures. Such a process may be approximated by modeling the 

reservoir as a porous medium with large irreducible water saturation.  

 

 Another approach that is very simple conceptually involves explicit modeling of 

fractures, by including a region of large areal extent and small width, with appropriate 

hydrogeologic parameters, into the definition domain of a flow system. This approach is 

usually applicable only to studies of fluid and heat flow in idealized settings, because fractures 

in geothermal reservoirs are too numerous to allow for explicit representation. Occasionally, 

though, if we are dealing with a major fracture or fault zone, an explicit representation may be 

viable and the method of choice. 

 

 The most widely used approach for modeling flow in fractured media is the double-

porosity concept that was first proposed by Barenblatt et al. (1960) and popularized by Warren 

and Root (1963). This concept is illustrated in Fig. 13.1. Matrix blocks of low permeability 

are embedded in a network of interconnected fractures. Global flow in the reservoir occurs 

only through the fracture system, which is described as an effective porous continuum. Rock 

matrix and fractures may exchange fluid (or heat) locally by means of “interporosity flow,” 

which is driven by the difference in pressures (or temperatures) between matrix and fractures. 

Warren and Root approximated the interporosity flow as being quasi-steady, with rate of 

matrix-fracture interflow proportional to the difference in (local) average pressures.  
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Figure 13.1.  Idealized double porosity model of a fractured porous medium. 

 

 The quasi-steady approximation is applicable to isothermal single-phase flow of fluids 

with small compressibility, where pressure diffusivities are large, so that pressure changes in 

the fractures penetrate quickly deep into the matrix blocks. However, for multiphase flows, or 

coupled fluid and heat flows, the transient periods for interporosity flow can be very long 

(tens of years). In order to accurately describe such flows it is necessary to resolve the driving 

pressure, temperature, and mass fraction gradients at the matrix/fracture interface. In the 

method of “multiple interacting continua” (MINC; Pruess and Narasimhan, 1982, 1985), 

resolution of these gradients is achieved by appropriate subgridding of the matrix blocks, as 

shown in Fig. 13.2. The MINC concept is based on the notion that changes in fluid pressures, 

temperatures, phase compositions, etc. due to the presence of sinks and sources (production 

and injection wells) will propagate rapidly through the fracture system, while invading the 

tight matrix blocks only slowly. Therefore, changes in matrix conditions will (locally) be 

controlled by the distance from the fractures. Fluid and heat flow from the fractures into the 

matrix blocks, or from the matrix blocks into the fractures, can then be modeled by means of 

one-dimensional strings of nested grid blocks, as shown in Fig. 13.2.  

 

 In general it is not necessary to explicitly consider subgrids in all of the matrix blocks 

separately. Within a certain reservoir subdomain (corresponding to a finite difference grid 

block), all fractures will be lumped into continuum # 1, all matrix material within a certain 

distance from the fractures will be lumped into continuum # 2, matrix material at larger 

distance becomes continuum # 3, and so on. Quantitatively, the subgridding is specified by 

means of a set of volume fractions VOL(j), j = 1, ..., J, into which the primary porous medium 

grid blocks are partitioned.  



Pruess  Numerical modeling 

  

45 

Fractures

Matrix  Blocks

 

 
Figure 13.2.  Subgridding in the method of "multiple interacting continua" (MINC). 

 

The MINC-process in the MESHMAKER module of TOUGH2 operates on the element and 

connection data of a porous medium mesh to calculate, for given data on volume fractions, the 

volumes, interface areas, and nodal distances for a secondary fractured medium mesh. The 

information on fracturing (spacing, number of sets, shape of matrix blocks) required for this is 

provided by a “proximity function” PROX(x) which expresses, for a given reservoir domain 

Vo, the total fraction of matrix material within a distance x from the fractures. If only two 

continua are specified (one for fractures, one for matrix), the MINC approach reduces to the 

conventional double-porosity method. Full details are given by Pruess (1983). 

 

 Figure 13.3 shows  a schematic of a MINC grid for modeling radial flow in a fractured 

reservoir. The MINC-method as implemented in TOUGH2 can also describe global matrix-

matrix flow. The most general approach, often referred to as “dual permeability,” allows 

global flow in both fracture and matrix continua (Fig. 13.4). It is also possible to permit 

matrix-matrix flow only in the vertical direction. For any given fractured reservoir flow 

problem, selection of the most appropriate gridding scheme must be based on a careful 

consideration of the prevailing physical and geometric conditions of flow. The MINC 

approach is not applicable to systems in which fracturing is so sparse that the fractures cannot 

be approximated as a continuum.  

 



Numerical modeling 46 Pruess 

 

 

 
Figure 13.3.  Schematic of MINC grid for modeling radial flow in a fractured reservoir 

(from Pruess and Narasimhan, 1982). 

 

 

 

 
Figure 13.4.  Flow connections in the “dual permeability” model. Global flow occurs between both 

fracture (F) and matrix (M) grid blocks. In addition there is F-M interporosity flow. 
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LECTURE IV:  GEOTHERMAL RESERVOIR BEHAVIOR 

 

14. Response to Fluid Production and Injection 

 Reservoir simulation can be applied to analyze flow to and from individual wells, or to 

model the behavior of an entire reservoir. It can also be used to investigate the behavior of 

simplified, hypothetical flow systems, where it can serve as a tool to identify flow 

mechanisms and understand reservoir dynamics. We will first discuss applications of 

numerical simulation on the scale of individual wells, and then examine approaches to field-

wide modeling. 

 

14.1 Production from a Two-Phase Reservoir with Dissolved Solids and Non- 

 Condensible Gas 

 Fundamental to the understanding of reservoir response to fluid production is the 

classical “Theis solution” (Theis, 1935) for the pressure response of a well to fluid production 

at constant rate. This solution applies for the simplified conditions of 1-D radial flow of a 

single-phase fluid of small and constant compressibility in a homogeneous porous medium 

under isothermal conditions. It applies to fluid injection as well as production, and forms the 

basis for well testing techniques to determine reservoir parameters (Grant, Donaldson and 

Bixley, 1982; Bodvarsson and Witherspoon, 1989). 

 

 In many geothermal applications various complications come into play, including non-

isothermal flow, fracture-matrix interactions, and boiling and condensation phenomena. 

Numerical simulation is a very useful tool for modeling and predicting reservoir response 

under these more complicated conditions. 

 

 As an example of a simulator application to fluid production, we present here one of 

the sample problems from the TOUGH2 user’s guide (Pruess et al., 1999), which uses the 

EWASG fluid property module (Battistelli et al., 1997) to examine production from a 

hypothetical geothermal reservoir with high salinity and CO2. A single well produces at a 

constant rate of 65 kg/s from an infinite-acting reservoir in a 1-D radial flow geometry (Fig. 

14.1). The reservoir is in two-phase conditions initially, with uniform initial conditions of P = 

60 bar, T = 275.55 ˚C. Other problem parameters are given in the TOUGH2 input file (Fig. 

14.2). Problem specifications made with SELEC-data include: no vapor pressure lowering 

(IE(10) = 0), a tubes-in-series model for permeability reduction from precipitation (IE(11) = 

3), full dependence of thermophysical properties on salinity (IE(14) = 0), Michaelides’ 

correlation for brine enthalpy (IE(15) = 0), and CO2 as non-condensible gas (IE(16) = 2). 
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Figure 14.1.  Illustration of 1-D radial model. 

 

 

 Fluid withdrawal causes pressures to drop near the production well. Boiling of 

reservoir fluid gives rise to dilution of CO2 in the gas phase and to increased concentrations of 

dissolved NaCl, which begins to precipitate when the aqueous solubility limit is reached. As 

the boiling front recedes from the well, solid precipitate fills approximately 10 % of the 

original void space (see Fig. 14.3), causing permeability to decline to approximately 28 % of 

its original value. 

 

 Specifications of this problem (1-D radial geometry, uniform initial conditions, 

constant well rate) were chosen so that a similarity solution would be applicable, which 

should depend on radius R and time t only through the similarity variable x = R2/t (O'Sullivan, 

1981). This similarity property should hold even when all complexities of two-phase flow 

with nonlinear relative permeabilities, CO2 exsolution effects, salt precipitation, and 

associated porosity and permeability effects are taken into account. The agreement between 

results for two different times (5x105 and 2x106 seconds) when plotted as a function of the 

similarity variable shows that the similarity property holds very accurately for all 

thermodynamic variables (Fig. 14.3). “Solid saturation” in Fig. 14.3 denotes the fraction of 

pore space that is filled with solid precipitate. 
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*rhbc*  - 1-D radial flow problem for EWASG, with NaCl and CO2

MESHMAKER1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
RZ2D
RADII

    1
        5.
EQUID

    1             2.
LOGAR
   50           1.E2

LOGAR
   20           1.E3
EQUID

    1            0.0
LAYER----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
    1

      500.

ROCKS----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8

POMED    2     2600.       .05   50.e-15   50.e-15   50.e-15       2.0    1000.0

    3     .30       .05

    1               1.

SELEC----2----3----4----5----6----7----8----9---10---11---12---13---14---15---16

    1                                            1    3    0    0    0    0    2
        .8   .8
     ..... IE(16) = 2 chooses CO2 .....
MULTI----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8

    3    4    3    6
START----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
----*----1--MOP:123456789012345678901234----*----5----*----6----*----7----*----8

PARAM----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
   1 100     100100 3000000002 40 0 3
                2.e6       -1.

      1.E4
     1.E-5     1.E00                                   1.E-7
               60.e5                 .30               10.45              275.55

TIMES----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
    1    1
      5.e5

RPCAP----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
    3     .30       .05
    1               1.

INCON----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8

GENER----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8

A1  1wel 1                         MASS       -65.

ENDCY----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8  
 
 

Figure 14.2.  TOUGH2/EWASG input data for constant-rate production 
from a 1-D cylindrical reservoir. 
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Figure 14.3.  Simulated thermodynamic conditions for 1-D radial flow problem with salinity and non-

condensible gas, plotted as a function of the similarity variable x = R2/t. Results at 2x106 seconds are 

shown as lines, while the data at t = 5x105 seconds are given as symbols. 

 

14.2 Coupled Reservoir-Wellbore Flow 

 Geothermal production wells typically operate at (nearly) constant wellhead pressures. 

As flow rate and flowing enthalpy change with time, wellbore pressure gradients and flowing 

bottomhole pressures will also change. From a conceptual point of view, the most 

straightforward way to describe production from geothermal wells is to set up and solve 

equations for flow in the reservoir and flow in the wellbore in a fully coupled manner. This 

approach was taken by Hadgu et al. (1995) who coupled the reservoir simulator TOUGH 

(Pruess, 1987) with the wellbore simulator WFSA (Hadgu and Freeston, 1990).  

 

 As discussed by Murray and Gunn (1993), an alternative approach may be preferable 

in which the wellbore and reservoir simulations are performed separately. This can be 

accomplished by running a wellbore flow simulator prior to the reservoir simulation for a 

range of flow rates q and flowing enthalpies h, in order to generate a table of flowing 

bottomhole pressures Pwb.  
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 Pwb  Pwb q,h; Pwh,z,rw  (14.1) 

 

In addition to the functional dependence on q and h, flowing bottomhole pressure is dependent 

on a number of well parameters. These include wellhead pressure Pwh, feed zone depth z, 

wellbore radius rw, friction factors, and possibly others. Fig. 14.4 shows flowing bottomhole 

pressures as a function of well flow rate and enthalpy for a 0.2 m (≈ 8 inch) inside diameter 

well of 1,000 m feed zone depth with 7 bars wellhead pressure. The data plotted in this figure 

were obtained by running the HOLA wellbore simulator (Aunzo et al., 1991) for a range of 

flow rates and enthalpies. Formation temperature for the conductive heat loss calculation in 

HOLA was assumed to increase linearly from 25 ˚C at the land surface to 275.5 ˚C at 750 m 

depth. 

 

 

 
Figure 14.4.  Contour plot of flowing bottomhole pressures, in bars (Pruess et al., 1999). 

 

By interpolating on data such as shown in Fig. 14.4, Eq. (14.1) can be directly inserted into 

the source term representing flow from a well. 
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 q 
k r


  PI (P  Pwb)  (14.2) 

 

Here PI denotes the productivity index, which is a measure of the well inflow rate for given 

formation parameters and driving pressures. Reservoir flow equations that include a quasi-

steady approximation to wellbore flow can then be solved with little added computational 

expense compared to the case where no wellbore flow effects are considered. In comparison 

with a fully coupled execution of reservoir and wellbore simulation, representing wellbore 

flow effects by interpolation from tabular data has some advantages, including increased 

robustness and calculational efficiency. It also makes it possible to use different wellbore 

simulators and two-phase flow correlations without any programming changes in the reservoir 

simulation code. 

 

 In order to demonstrate the behavior of a coupled reservoir-well system, we present a 

sample problem from the TOUGH2 user’s guide (Pruess et al., 1999), which is a variation of a 

problem first solved by Hadgu et al. (1955). A well with the same characteristics as were used 

to obtain the data plotted in Fig. 14.4 produces from a 500 m thick two-phase reservoir 

containing water at initial conditions of P = 60 bars, T = Tsat(P) = 275.5 ˚C, Sg = 0.1. 

Simulated flow rate (q), flowing enthalpy (h), flowing bottomhole pressure (Pwb) and 

reservoir pressure in well grid block (Pres) are shown in Fig. 14.5. For comparison we also 

show results obtained for production with a fixed bottomhole pressure of Pwb = 57.37 bars, 

which is the flowing bottomhole pressure in the coupled reservoir-wellbore system at the end 

of the first time step (105 seconds). The simulation with constant bottomhole pressure gives a 

rapidly declining production rate. The coupled reservoir-wellbore system sustains long-term 

production at substantially higher rates, because it predicts a stronger rise in flowing enthalpy, 

for which wellbore flow requires a smaller bottomhole driving pressure. The large differences 

when compared with the simulation with constant bottomhole pressure emphasize the 

importance of coupled wellbore flow effects for two-phase geothermal production wells. 
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Figure 14.5.  Flow behavior of a coupled reservoir-well system. Results are for flow rate (q), flowing 

enthalpy (h), flowing bottomhole pressure (Pwb), and reservoir pressure in well grid block (Pres). 

Curves with subscript “c” are for a system with constant flowing bottomhole pressure. 

 

14.3 Injection of Cold Water 

 Injection of fluid with a different temperature into a permeable medium will give rise 

to heat transfer between fluids and reservoir rocks. In a medium with intergranular porosity, 

heat transfer between fluids and rocks will be rapid, so that temperature equilibrium is quickly 

attained locally. The heat exchange will retard the advancement of the thermal front relative to 

the pore velocity of the fluid. For idealized conditions of local thermodynamic equilibrium in 

a homogeneous porous medium, the thermal front will be sharp (except for usually small 

broadening from heat conduction), and will be retarded relative to the advancement of a 

conservative solute tracer by a retardation factor R which is given by the ratios of specific heat 

of the pore fluid to the entire rock-fluid mixture (Bodvarsson, 1972). 

 

 R 
cw

cw  (1 )RcR

 (14.3) 

 

Here,  is the density and cw is the heat capacity of water. Quantities indexed with “R” pertain 

to reservoir rocks. 
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 Conditions are more complex in fractured reservoirs, where cooler injected fluids may 

advance rapidly along fractures, while being heated only slowly by conductive heat transfer 

from large matrix blocks. This gives rise to very broad temperature distributions, see Fig. 

14.6. 

 

 
 

Figure 14.6.  Temperature fronts during non-isothermal injection into a 1-D fracture (from Pruess and 
Bodvarsson, 1984). The lines represent the analytical solution of Lauwerier (1955), while the points 

give results obtained by numerical simulation. “Relative temperatures” are normalized to the difference 
between initial and injection temperatures. 

 

 Most geothermal reservoirs have predominant fracture permeability, and tracers can 

assist in finding fast and short-circuiting flow connections between wells. Intuitively one 

expects that there should be a correlation between tracer breakthrough and thermal 

breakthrough, and that one should avoid injecting cold water into wells that are connected to 

production wells by fast short-circuiting pathways. However, a more detailed analysis shows 

that the advancements of thermal fronts and solute tracers depend on different physical 

parameters. The velocity of tracer movement depends on the pore volume, while thermal 

breakthrough depends on the heat transfer area available along the flow path. Consider a 

fracture with a given heat transfer (wall) area. If such a fracture were artificially enlarged by 

increasing the distance between the walls, pore volume would increase but heat transfer area 

are would remain unchanged. The relationship between fluid residence time and thermal 

breakthrough time involves the (generally unknown) fracture aperture as a parameter. This is 

shown in Fig. 14.7 for the simplified case of 1-D linear flow in a fracture. 
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Figure 14.7.  Thermal breakthrough time as function of fluid residence time and 

effective fracture aperture (from Pruess and Bodvarsson, 1984). 

 

 

14.4 Five-Spot Production and Injection 

 The grid system shown in Fig. 12.5 was used to investigate enhanced heat recovery by 

means of water injection. The grid has six rows, each containing between one and eleven 

elements, for a total of thirty-six volume elements; for simplicity, only a single layer of 305 m 

thickness is modeled. The problem specifications as given in Table 14.1 correspond to 

conditions that may typically be encountered in deeper zones of hot and fairly tight fractured 

two-phase reservoirs (Pruess and Narasimhan, 1985). Problem variations explored by means 

of TOUGH2 simulations include a porous medium representation of the reservoir, as well as a 

fractured medium description based on the MINC concept, using embedded impermeable 

matrix blocks in the shape of cubes. Fig. 14.8 shows simulated temperature profiles along a 

line from production to injection well after 36.5 years.  It is seen that the MINC results for 50 

m fracture spacing are virtually identical to the porous medium results, while another MINC 

run for 250 m fracture spacing shows lower temperatures, indicating a less complete thermal 

sweep. 
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Table 14.1.  Parameters for five-spot problem 

  
Formation  

 Rock grain density 2650 kg/m3 

 Specific heat 1000 J/kg˚C 

 Heat conductivity 2.1 W/m˚C 

 Permeable volume fraction 2% 

 Porosity in permeable domain 50% 

 Impermeable blocks: cubes with side length 50m, 250 m 

 Permeability  6.0x10-15 m2 

 Thickness 305 m 

 Relative permeability: Corey curves  

 irreducible liquid saturation 0.30 

 irreducible gas saturation 0.05 

Initial Conditions  

 Temperature 300 ˚C 

 Liquid saturation 0.99 

 Pressure 85.93 bar 

Production/Injection  

 Pattern area 1 km2 

 Distance between producers and injectors 707.1 m 

 Production rate* 30 kg/s 

 Injection rate* 30 kg/s 

 Injection enthalpy 500 kJ/kg 
 

 * Full well basis 
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Figure 14.8  Temperature profiles for five-spot problem along a line from  
injection to production well after 36.5 yrs. 
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14.5 Heat Sweep in a Vertical Fracture 

 In many geothermal fields there is evidence of rapid migration of injected fluids along 

preferential flow paths, presumably along fractures. The present problem is designed to study 

thermal interference along such paths, by considering nonisothermal injection into and 

production from a single vertical fracture, as illustrated in Fig. 14.9 (from Pruess and 

Bodvarsson, 1984). The fracture walls are modeled as semi-infinite half-spaces of 

impermeable rock, which provide a conductive heat supply. Initial temperature is 300 ˚C 

throughout. Water at 100 ˚C temperature is injected at one side of the fracture at a constant 

rate of 4 kg/s, while production occurs at the other side against a specified wellbore pressure. 

Problem parameters are given in Table 14.2. 

 

 The most important heat transfer process in this problem is conductive heat supply 

from the rock adjacent to the fractures. This could be modeled by explicitly including the wall 

rock as a medium of low or vanishing permeability into the definition domain of the model. 

As a far more efficient and accurate alternative, the TOUGH2 simulation uses a semi-

analytical treatment of heat transfer in the semi-infinite conductive half spaces adjacent to the 

fracture walls, using a method developed by Vinsome and Westerveld (1980), in which no 

explicit representation of the conductive domains by means of grid blocks is needed. Thus the 

flow problem reduces to 2-D. We use a grid spacing of 20 m in both horizontal and vertical 

directions, for a total of 120 grid blocks. Figure 14.10 shows the simulated temperature 

distribution after 5 years, while Fig. 14.11 shows the temperature of the produced fluid as a 

function of time. 

 

 

 
Figure 14.9.  Schematic diagram of injection-production system in vertical fracture. 

Injection occurs at I, production at P. 
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Figure 14.10.  Temperature distribution in fracture plane after 5 years. Injection and  
production regions are marked I and P, respectively. 

 

 

300

280

260

240

220

200

T
e

m
p

e
ra

tu
re

 (
o
C

)

10
6

2 4 6 8

10
7

2 4 6 8

10
8

Time (seconds)

10
2 4 6 8

100
2 4 6 8

1000

Time (days)

 
 

Figure 14.11.  Produced fluid temperature versus time for vertical fracture problem. 
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Table 14.2.  Parameters for fracture flow problem 

  

Rock  

 Thermal conductivity 2.1 W/m˚C 

 Specific heat 1000 J/kg˚C 

 Density 2650 kg/m3 

 Permeability 0 

Fracture  

 Height 200 m 

 Length 240 m 

 Aperture 0.04 m 

 Permeability 200x10-12 m2 (200 darcy) 

 Porosity 50 % 

Initial Conditions  

 Temperature 300 ˚C 

 Pressure hydrostatic profile 

 Average pressure 100 bar 

Injection   

 Enthalpy 4.2x105 J/kg (appr.100 ˚C)  

 Rate 4 kg/s 

Production   

 Productivity index 4 x10-12 m3 

 Flowing pressure 96.5 bar 

 

15. Site-Specific Reservoir Modeling 

 The approach to be taken in a simulation study of a specific reservoir depends on (a) 

the objectives of the study, (b) available data, and (c) available time and budget. Objectives 

may include things such as 

• determine reservoir conditions and flow mechanisms 

• identify upflow and recharge zones 

• evaluate well decline, need for makeup wells, and optimal well spacing 

• estimate future changes in discharge enthalpy and chemical composition of 

produced fluids 

• estimate generating capacity and sustainability of a geothermal field 

• production and injection design 

•  chemical compatibility of fluids 
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• well test design and analysis 

• other issues in reservoir management 

 

Data available for a simulation study may include 

• geologic framework model 

• data from wells (flow rates, flowing enthalpies, pressures and temperatures vs. 

time; fluid samples; well logs) 

• geophysical surveys (resistivity, gravity, seismics, self-potential, etc.) 

• geochemistry and mineralogy 

• fluid and formation properties (temperature, pressure, salinity, permeability, 

porosity, ...) 

 

 Before proceeding with a simulation study it is necessary to develop a conceptual 

model. A conceptual model identifies the important aspects of the structure of the system and 

its most significant physical and chemical conditions and features. O’Sullivan et al. (2001) 

state “The conceptual model is usually represented by two or three sketches, showing a plan 

view and vertical sections of the geothermal system. On these sketches are shown the most 

important characteristics, such as surface manifestations (i.e., hot springs, steaming grounds, 

etc.), flow boundaries, main geologic features such as faults and layers, zones of high and low 

permeability, isotherms, location of deep inflows and boiling zones, geophysical data 

(resistivity boundaries, heat flow contours), etc. Setting up a conceptual model requires the 

synthesis of information from a multi-disciplinary team composed of geologists, 

geophysicists, geochemists, reservoir engineers and project managers. Some of the raw data 

require expert interpretation before they can be used. For example, the down-hole temperature 

logs which are used to construct the isotherm plots are often affected by internal wellbore 

flows, or the previous production and injection history of the well (see Grant et al., 1982). In 

addition, the data sets tend to be incomplete and often the conceptual models proposed by the 

various contributing scientists and engineers are inconsistent or incorrect. Thus the “art” of 

computer modeling involves the synthesis of conflicting opinions, interpretation and 

extrapolation of data to set up a coherent and sensible conceptual model which can be 

developed into a computer model.” 

 

 A general methodology for geothermal field simulation has emerged, which involves 

the following modeling phases (Fig. 15.1; Bodvarsson et al., 1986; Bodvarsson and 

Witherspoon, 1989). 

• Natural state (zones of upflow, recharge, and outflow; heat sources and sinks; 

thermodynamic conditions; formation parameters); 
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• Field production (history match: well rates, pressures, temperatures, enthalpies, 

solutes and gases, tracers; geochemical changes; time-lapse geophysics); 

• Prediction scenarios (well decline, injection interference, fluid composition: 

solutes and gases, makeup wells, fluid and heat reserves, producibility and 

sustainability). 

 

These three phases are often preceded by 

• using numerical simulation to design and analyze well tests (production, injection, 

pressure transients, tracers). 

 

 

 
Figure. 15.1.  General approach to reservoir evaluation 

(from Bodvarsson and Witherspoon, 1989). 

 

 Geothermal reservoirs are dynamic systems that are subject to throughput of fluids and 

heat. The initial state and boundary conditions of a reservoir model must be developed 

carefully to provide a viable basis for modeling field exploitation (production and injection 
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operations). It is not satisfactory to simply specify initial conditions based on (typically sparse) 

subsurface measurements and conjectures about inflow and outflow zones. The initial state of 

a production model must be “stable,” i.e., it must be close to a steady state for the applied 

boundary conditions. If this is not the case, then large changes may occur when running the 

reservoir model forward in time; changes that have nothing to do with field perturbations due 

to exploitation. The initial state must be developed through careful modeling of the natural, 

pre-exploitation state. The procedure for natural state modeling is summarized in Fig. 15.2. 

We note that steady states are insensitive to storage-type parameters such as porosity, or 

specific heat of the rocks.  

 

 For history matching of production and injection operations, the natural state 

conditions are used as initial and boundary conditions. Appropriate wells are placed into the 

reservoir model, and simulated parameters such as flow rates, pressures, temperatures, 

enthalpies, tracer concentrations, etc. are compared with field observations. Model parameters 

such as distribution of permeability and porosity, fracture spacings, and others are then 

modified so as to reduce discrepancies between simulated and observed reservoir behavior. 

The process of parameter adjustment, often referred to as “model calibration,” can be 

performed in trial-and-error fashion, using engineering judgment, or it can be automated 

through so-called “inverse methods,” which use mathematical algorithms to automatically 

identify and vary sensitive model parameters, until the discrepancy between simulation and 

field behavior is reduced to a minimum (Finsterle et al., 2000). Inverse methods can greatly 

reduce the tedium of “manual” model calibration, but they have limitations as well. They 

cannot replace a good fundamental understanding of a given geothermal system, and their 

application requires good engineering judgment. Inverse techniques can only optimize a 

limited number of parameters within a given conceptual model. A sound conceptual model 

remains the most important ingredient for successful reservoir simulation. 

 

 A successfully calibrated production state model can be used in forward mode to 

explore future field behavior, subject to various planned or proposed scenarios and 

constraints. For example, the sustainability of a certain rate of fluid extraction (power 

production) can be evaluated. The need for makeup wells may be explored, and different 

injection schemes may be evaluated in terms of thermal breakthrough and pressure support. 

Model predictions naturally will become less reliable with increasing prediction period. As a 

rule of thumb, predictions from a well-calibrated model may be considered reliable for a 

similar period of time as the length of the history-match period. Only a few studies have been 

published that evaluate simulator predictions against subsequent field observations, with 

generally favorable results (O’Sullivan et al., 2001). Comparisons are limited by the fact that 
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field operations often do not comply with the prescriptions for production and injection 

employed in the simulations. 

 

 

 

 
Figure 15.2.  Flow chart for natural state modeling (courtesy of Subir Sanyal, 2002; 

used with permission). 
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 Information on current approaches and trends in geothermal reservoir simulation is 

available in a recent review (O’Sullivan et al., 2001). The following features can be 

considered typical of current simulation approaches: 

• 3-D models with a few thousand grid blocks; 

• Spatial resolution ≥ 200 m horizontally, ≥ 100 m vertically; 

• Geofluids represented as water, sometimes with dissolved salt and a non-

condensible gas; 

• Two-phase flow of water and gas, including phase change and heat transfer; 

• Chemical reactions generally not considered; 

• Advection-dispersion equation for tracers; 

• Porous medium, or sometimes variations of double porosity. 

 

 Computer modeling of geothermal fields is a mature and widely used technology, but 

advances in simulation methodology are continuing. Current trends include the following 

developments. 

• More realistic representation of reservoir fluids 

 (multicomponent mixtures with dissolved solids and non-condensible gases); 

• Reactive and phase-partitioning tracers (natural or man-made); 

• Comprehensive reactive chemistry (rock-fluid interactions); 

• Use of geophysical data in model calibration (microgravity and resistivity changes, 

self-potential, seismic surveys, subsidence, etc.); 

• Near-critical and super-critical temperatures; 

• Coupling between fluid flow and rock stresses, especially for enhanced geothermal 

systems and hot dry rock (EGS, HDR); 

• Multi-scale phenomena and conditions (sharp fronts, heterogeneity, threshold and 

instability effects); 

• Automatic model calibration (history matching); 

• Joint inversions; 

• Improved solution algorithms  and user features. 

 

There is much cross fertilization with developments in related areas, including nuclear waste 

disposal, environmental modeling, and studies of the unsaturated zone. 
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LECTURE V:  SPECIAL TOPICS 

 

 This section illustrates applications of numerical simulation to a variety of geothermal 

flow problems. The selection reflects the research interests and bias of the author. 

 

16. Water Injection into Depleted Vapor Zones 

 In response to extensive steam production, the vapor-dominated geothermal reservoirs 

at The Geysers, California, and Larderello, Italy, are beginning to run out of fluid, while heat 

reserves in place are still enormous. Injection of liquid water is the primary means by which 

dwindling fluid reserves can be replenished, and recovery of thermal energy be enhanced and 

accelerated. Field experience shows that water injection may have very beneficial effects, 

increasing reservoir pressures and flow rates of offset steam production wells. Effects of water 

injection are not always favorable, however, because thermal degradation (temperature 

decline) or water breakthrough may occur at neighboring wells. 

 

 Cold water injection into superheated vapor zones gives rise to a complex interplay of 

fluid flow and heat transfer with phase change (boiling and condensation). In the 

approximation of 1-D radial flow, this results in a system with a boiling phase front 

propagating ahead of a temperature front (Fig. 16.1). Results from a numerical simulation of 

the process are shown in Fig. 16.2. 

 

 

 
Figure 16.1.  Schematic diagram of fronts for cold water injection into a superheated vapor zone (from 

Pruess et al., 1987). 

 

 For the more realistic case where injection is made into fractures the resulting fluid 

flow and heat transfer processes are far more complex. Two-phase flow in the plume takes 



Special topics 66 Pruess 

 

place under the combined action of gravity, capillary, and pressure forces. Liquid water will 

also partially  

 

 
Figure 16.2.  Simulated temperatures for cold water injection into a superheated vapor zone, 

plotted as function of the similarity variable R2/t. (from Pruess et al., 1987). 

 

imbibe into the rock matrix. In regions where the fractures are open, water will flow generally 

downward, driven by gravity. However, at asperity contacts (fracture walls touching) water 

may pond and be diverted sideways. In regions of small fracture apertures or strong wall 

roughness, capillary pressure effects could also be significant. Conductive heat transfer from 

the wall rocks causes the temperature of the water to increase, and eventually boiling is 

initiated when the water reaches the saturation temperature at prevailing pressure. The 

vaporization process is accompanied by an increase in pressure which drives the steam away 

from the injection plume. The behavior of a cold water plume injected into a sub-vertical 

fracture under superheated conditions is shown schematically in Fig. 16.3. The boiling 

injection plume is a very efficient heat transfer system, operating by means of vapor-liquid 

counterflow (heat pipe; see Sec. 18, below). In hotter regions, at larger distance from the 

injection point, vapor pressures are larger than in cooler portions of the plume. Accordingly, 

vapor will flow from the hotter to the cooler regions (generally towards the injection point, 

opposing liquid flow which is directed away from the injection point). The hotter regions are 

zones of evaporation, in which latent heat is consumed, while in the cooler regions 

condensation is taking place, accompanied by deposition of latent heat. The latent heat 

transfer coupled with vapor flow tends to equalize temperatures throughout the two-phase 

plume. Numerical simulations for injection into heterogeneous fractures at superheated 

conditions are shown in Fig. 16.4. 
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Figure 16.3.  Schematic of cold water injection into a sub-vertical fracture filled with 

superheated steam (from Pruess, 1996). 

 

 

 

 
Figure 16.4.  Simulated plumes for injection at a rate of 10 kg/s into four heterogeneous 

vertical fractures (from Pruess, 1997). 
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17. Phase Partitioning Tracers 

 Tracer testing is an important technique for investigating flow paths in geothermal 

systems. For applications in two-phase and vapor-dominated reservoirs, there is much interest 

in phase-partitioning tracers, such as non-condensible gases or man-made volatile chemicals, 

that can partially dissolve in the liquid phase, while partially volatilizing into the gas phase. In 

two-phase conditions, the total (advective and diffusive) mass fluxes of a trace component are 

obtained by simply adding the contributions from liquid and gas phases, taking the 

distribution of tracers among the phases into account. 

 

 Effective gas and liquid phase diffusivities at geothermal reservoir conditions are 

typically of order 10-7 and 10-10 m2/s, respectively. Corresponding diffusion distances over a 

time period of one year are, respectively, 1.8 and 0.0032 m. These distances are small, and it 

might appear as though diffusion effects would be negligible for tracer tests that may cover 

time periods of days to months. However, as will be seen this is not the case in fractured 

reservoirs, where tracers can diffuse away from the fractures into the rock matrix, and later 

back-diffuse into the fractures when the primary tracer pulse has passed. 

 

 We briefly summarize a numerical simulation that was patterned after injection tests 

with volatile tracers at The Geysers vapor-dominated reservoir in California (Beall et al., 

1994, 1998). The field tests injected tritiated water and water-soluble chemicals such as R13 

(CClF3) and R134a (C2H2F4). Different breakthrough curves (BTCs) were observed in an 

undepleted reservoir zone as compared to a superheated vapor region (Figs. 17.1, 2; Beall et 

al., 1994). The rapid returns and large tracer concentrations obtained in the superheated region 

were interpreted as indicating rapid, strong vaporization of injected water, while the low 

concentrations and slow response times in the undepleted zone were attributed to delayed and 

partial vaporization (Beall et al., 1994).  

 

 The simulations employed a five-spot geometry as shown in Fig. 17.3. Typical 

formation parameters used in previous modeling work at The Geysers were employed, and a 

fractured reservoir description using the MINC-method with one fracture and four matrix 

continua was employed (see Figs. 13.1, 13.2). The simulated BTCs shown in Fig. 17.4 show 

similar timings and shapes as the BTCs seen in the field. The long tail in the BTC for the 

strongly depleted zone (Case 2) is caused by tracer entering the matrix blocks at early times, 

which later diffuses back into the fractures (Fig. 17.5). The sensitivity of BTCs to this 

fracture-matrix interchange may allow a determination of mean matrix block size (= fracture 

spacing). More details are given in the original paper (Pruess, 2002). 
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Figure 17.1.  R-13 concentration in produced steam from wells in an undepleted region of The Geysers 
(Bear Canyon) versus time elapsed since tracer injection (from Beall et al., 1994; lines are drawn to 

guide the eye). 

 

 

 
 

Figure 17.2.  R-13 concentration in produced steam from wells in a depleted region of The Geysers 
(SMUD and Unit 20) versus time elapsed since tracer injection (from Beall et al., 1994; lines are drawn 

to guide the eye). 
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Figure 17.3.  Five-spot production-injection system used for analysis of tracer migration. 

 

 

 

 
Figure 17.4.  Simulated tracer breakthrough curves for five-spot problem in a vapor-dominated 

reservoir. Case 1 corresponds to conditions with large water saturation in the rock matrix (undepleted), 
while Case 2 corresponds to a depleted reservoir zone with small water saturation. 
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Figure 17.5.  Breakthrough curves for Case 2 (depleted conditions), showing effects of diffusive mass 

exchange between fractures and matrix. 

 

 

18. Heat Pipe Systems 

 Heat pipes are two-phase systems in which heat transfer occurs by means of vapor-

liquid counterflow (Fig. 18.1). Water is vaporized near a deep heat source, and the vapor is 

pushed upward by pressure gradients. At some distance the vapor condenses, releasing a large 

amount of heat, and the liquid condensate flows back towards the heat source under the force 

of gravity. (On a small scale, heat pipes can operate by capillary force, which will draw liquid 

condensate back towards the region of lower water saturation near the heat source.)  

 

 In a steady-state heat pipe system, the upflow of vapor balances the downflow of 

liquid. Denoting the mass flux by F, the corresponding heat flux G is given by 

 

 G  F hv  hl  (18.1) 

 

Water has a very large enthalpy of vaporization, hv - hl = 1766.5 kJ/kg at T = 240 ˚C (Keenan 

et al., 1969), so that large heat flows can be associated with modest mass flows. From the 

foregoing discussion it follows that in a gravity-driven heat pipe system, the pressure gradient 

in the vertical direction must be intermediate between the vapor-static and hydrostatic values, 

in order that the driving force for vapor is upward, and the driving force for liquid downward. 
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Figure 18.1.  Schematic of a heat pipe system 

 

 The heat pipe mechanism can operate in geothermal reservoirs over a large region. 

Geothermal heat pipe systems can exist in two alternative conditions, liquid-dominated or 

vapor-dominated heat pipes (Fig. 18.2). For the former, the pressure gradient in the vertical is 

near (but less than) hydrostatic, giving rise to a small driving force for liquid downflow, and a 

large driving force for vapor upflow. In order that net mass flow be small, vapor relative 

permeability must be small and liquid relative permeability large, hence the name “liquid-

dominated” heat pipe. In a vapor-dominated heat pipe, vertical pressure gradient is near (but 

larger than) vaporstatic, giving rise to a small driving force for vapor upflow, and a large 

driving force for liquid downflow. For mass fluxes to be balanced, relative permeability to 

vapor must be then large, to liquid small. In liquid-dominated heat pipe systems, pressures are 

near the “boiling point for depth” (BPD) curve, see Fig. 18.3. 
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Figure 18.2.  Heat flux and pressure gradient in a vertical porous heat pipe (from Pruess, 1985). 
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Figure 18.3.  Boiling-point-for-depth (BPD) curve for pure water. Depth is measured relative to the 

elevation of the 200 ˚C isotherm. 
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19. Flow Instabilities 

 Non-isothermal and two-phase flow systems are capable of unstable behavior. 

Changes in fluid density can alter the balance between pressure and gravity forces, which can 

give rise to changes in flow patterns. Here we examine two examples, drawn from the Cerro 

Prieto, Mexico, and Mutnovsky, Russia, geothermal fields, respectively. 

 

19.1 Cerro Prieto 

 The Cerro Prieto geothermal field, located in northern Mexico near the California 

border, is a liquid-dominated system that has been in production since 1973. Current installed 

capacity is 720 MW. Large-scale exploitation has caused substantial changes in the natural 

flow regime (Gutiérrez and Rodríguez, 2000). Analysis of geological, geochemical, and 

reservoir engineering data showed that deep, hot fluid ascends through a major fault (fault H) 

to recharge the geothermal system (Lippmann et al., 2000). Later work provided evidence that 

in response to pressure decline from production flow in the upper part of fault H had reversed, 

and that it had become a pathway for downflow of shallow, cool groundwaters. A simulation 

study was undertaken to investigate whether this flow reversal was consistent with known 

reservoir conditions and processes (Lippmann et al., 2000). Fig. 19.1 shows the 2-D vertical 

section model used in the study. The system was run to steady state, corresponding to natural-

state conditions prior to large-scale production that commenced in 1986-87 in the CP-II and 

CP-III areas. By matching the temperature distribution, it was estimated that upflow in the H-

fault occurs at a rate of 2.05x10-2 kg/s per meter of fault thickness, of which approximately 90 

% enters the CP III reservoir and exits at the northwestern boundary, while the remaining 10 

% of upflow flows into the aquifer. Subsequently, production was applied uniformly across 

the top of the CP III reservoir at a rate of 2.2810-5 kg/s m2. This causes pressures to decline in 

the reservoir and in the fault zone, and reduces the rates of upflow until eventually a flow 

reversal takes place and fluids start flowing downward from the aquifer towards the CP III 

reservoir. Fine gridding is required, especially near the top of the fault, in order to accurately 

resolve the timing of the reversal. Once fluid from the aquifer (i.e., groundwater) enters the 

fault, downflow increases rapidly due to the larger gravitational body force on the cooler and 

denser fluid. This causes reductions in vapor saturation in the reservoir (Fig. 19.2). Produced 

enthalpies decrease and recharge fractions increase (Fig. 19.3), in general agreement with field 

observations. 
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Figure 19.1.  2-D vertical section model for fluid recharge at Cerro Prieto. 

 

 

 

 
Figure 19.2.  Simulated vapor saturations in the CP III reservoir after 10 years of production. 
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Figure 19.3.  Enthalpy and groundwater recharge fraction histories for two locations in the model at 

different distances from the fault H in the Cerro Prieto field. 

 

19.2 Mutnovsky 

 It is not uncommon for wells producing from high-temperature and two-phase 

geothermal systems to show unstable and time-varying behavior. Instabilities may be caused 

by an interplay of fluids from different feed zones intersected by a wellbore. Here we consider 

an example where cyclic internal flows in a wellbore are triggered by an external perturbation. 

 

 The Mutnovsky geothermal field is located in the Kamchatka peninsula in far eastern 

Russia. The reservoir is liquid-dominated with fluid temperatures from 235 - 270 ˚C. 

Reservoir fluids contain approximately 1% non-condensible gas, mostly CO2, pressure 

conditions are close to two-phase, and permeability is fracture-dominated. Continuous high-

resolution pressure monitoring revealed several episodes where modest earthquakes 

(magnitudes 3.9 - 4.5) at considerable distance (≈ 100 km) triggered cyclic pressure variations 

with amplitudes of 0.2 to 1 bar, and time periods from 30 to 90 minutes (Fig. 19.4; Kiryukhin 

and Pruess, 2000). A modeling study was undertaken with the objective of gaining insight into 

the underlying reservoir conditions. 

 

 It was hypothesized that the pressure cycling in well #30 may be caused by the 

interplay of two different fracture zones known to intersect this well, an upper fracture zone 

with a temperature of approximately 237 ˚C, and a lower fracture zone with a temperature of 

about 255 ˚C.  
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Figure 19.4.  Example of co-seismic cycling in well #30, Verkhne-Mutnovsky site, 

Mutnovsky geothermal field (from Kiryukhin and Pruess, 2000). 

 

The vertical distance between the zones is approximately 130 m (Fig. 19.5). A simplified 

numerical model was constructed which represents both fractures as horizontal regions with 

1-D radial grids. The upper fracture was initialized in single-phase liquid conditions, while 

single- as well as two-phase conditions were used for the lower fracture. It was assumed that 

the only permeable features are the two fractures and the wellbore. The surrounding rock is 

treated as impermeable, but plays a role in conductive heat exchange with fluids in fractures 

and wellbore. The initial state of the system is hydrostatic equilibrium. Flow in the wellbore 

was approximated as porous flow with very large permeability. The two-phase fluid in the 

wellbore was represented as a homogeneous mixture, with density given by the volumetric 

average of water and steam. 

 

 ˆ   Sl l  Sgg  (19.1) 

 

 To examine whether such a system is capable of cyclic behavior, a step increase in 

pressure was applied in the upper zone, which initiates downflow through the wellbore into 

the lower zone. The simulated pressure distribution shown in Fig. 19.6 indeed shows cyclic 

behavior, and close inspection of the simulation reveals the following mechanism. In response 

to the downflow, pressures in the lower zone increase and downflow rates decline over time. 

On a slower time scale, 
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Figure 19.5.  Conceptual model for flow cycling at Mutnovsky geothermal field, Kamchatka, Russia. 

 

the cooler fluids introduced into the lower zone will be heated conductively. The associated 

expansion causes further pressure increase in the lower zone, reducing downflow rates, and 

providing more time for conductive heating of the downflowing fluid. Eventually the balance 

between fluid pressures and gravity body force will reverse, and upflow will be initiated. 

Upflow will be self-enhancing at first, due to the lower density of the hotter fluid going up in 

the wellbore. As pressures in the upper zone increase, upflow rates will decline. Then 

conductive cooling of the wellbore fluid will increase its density, until again downflow is 

initiated, starting a new cycle. What is driving the cycling is the “heat engine” provided by the 

temperature contrast between upper and lower zones. Every downflow episode will cause 

some temperature decline in the lower zone, while every upflow episode will cause some 

temperature increase in the upper zone. Over time, the cycling must “run down,” although the 

numerical simulation presented by Kiryukhin and Pruess (2000) only followed two cycles. 

 

 The amplitude of the pressure excursions is of order 0.5 - 1 bar, comparable to field 

observations at well #30. The simulated time period of approximately 1,400 hours, however, 

is almost three orders of magnitude larger than what was observed. At this point it is not 

known what other effects or conditions might cause more rapid cycling. A possible 

mechanism may be exsolution and dissolution of non-condensible gas in response to pressure 

variations. An alternative to the two-fractures model presented here and further discussion are 

given in the original paper (Kiryukhin and Pruess, 2000). 
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Figure 19.6.  Simulated pressure behavior at intersection of upper and lower fractures 

with the wellbore. Directions of flow are labeled on top of the figure 
(after Kiryukhin and Pruess, 2000). 

 

 

CONCLUDING REMARKS 

 The notes presented here are intended as an introduction into the practice of 

geothermal reservoir simulation. In the available space we could only give a brief overview of 

the subject. Readers are encouraged to use the substantial literature that is available in 

proceedings of geothermal conferences (Stanford, New Zealand and Geothermal Resources 

Council; World Geothermal Congresses), and in journals such as Geothermics. An excellent 

resource for finding literature on any geothermal subject is the Internet-based library database 

service that is provided free of charge by the Geothermal Resources Council 

(http://www.geothermal.org/catalog.html). 
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