

MULTIPLE FLUID - MINERAL EQUILIBRIUM CALCULATIONS AND THEIR APPLICATIONS TO GEOTHERMOMETRY AND HYDROCHEMICAL PROCESSES IN GEOTHERMAL SYSTEMS

Pang Zong-he

Geothermal Training Programme Reykjavík, Iceland Report 5, 1988 Report 5, 1988

MULTIPLE FLUID - MINERAL EQUILIBRIUM CALCULATIONS AND THEIR APPLICATIONS TO GEOTHERMOMETRY AND HYDROCHEMICAL PROCESSES IN GEOTHERMAL SYSTEMS

Pang Zhong-he UNU Geothermal Training Programme National Energy Authority Grensasvegur 9 108 Reykjavik ICELAND

Permanent Address: Institute of Geology Academia Sinica P.O. Box 634, Beijing PEOPLE'S REPUBLIC OF CHINA

ABSTRACT

Thermodynamic geochemical approaches based on theoretical calculations and modeling have become increasingly accurate as regards understanding the various processes occurring in hydrothermal systems. The log(Q/K) diagrams give an indication of the equilibrium state by comparing measured constituent concentrations with theoretical saturation activities over a range of temperatures. Using the results of chemical analyses the WATCH program has been employed to carry out calculations, the results of which have made it possible to construct log(Q/K) diagrams for geothermal and related natural waters from Iceland and China. In this way, it has been shown which minerals are possibly in equilibrium with the fluid constituents at certain temperatures. This approach facilitates the choice of geothermometers and provides a better understanding of the system; i.e. the processes that are responsible for the presence or absence of an equilibrium situation, e.g. the influence of seawater in the case of a coastal aquifer and other processes like boiling and mixing with shallow diluted water.

ii

CONTENTS

Abstractii
Table of Contentsiii
List of Tablesv
List of Figuresvi
1. Introduction1
2. Hydrothermal-chemical Processes
2.1 General
2.2 Boiling
2.3 Mixing and dilution4
2.4 Hydrothermal reactions4
3. Geochemical Approaches5
3.1 General
3.2 Geothermometers5
3.3 Models for mixing and boiling
3.4 Hydrolysis reaction studies
3.5 Chemical equilibrium calculations6
4. Geothermal Sampling and Analytical Methods8
4.1 Introduction8
4.2 Low temperature sampling8
4.3 High temperature sampling9
5. The Log (Q/K) Diagram11
5.1 Theoretical background and established models11
5.2 The computer program WATCH12
5.3 Preparation of the log(Q/K) diagram
5.4 Interpretation methods13
5.5 Basic characteristics of the diagram
5.6 Results for some natural waters
5.7 The effect of mixing with seawater
5.8 Factors affecting the results
6. Methodology for Applications17
6.1 Introduction17
6.2 Coupling with alteration mineral studies17
6.3 Coupling with hydrogeological considerations18
7. Case Studies from Iceland and China20
7.1 General
7.2 Leira area, West Iceland

7.3 Zhangzhou area, Southeast China					
8. Conclusions					
Acknowledgements					
Nomenclature					
References					
Appendices					

TABLES

Table	3.1	List of conventional geothermometers (from
		Fournier, 1981)
Table	3.2	Free energies of formation of minerals and
		aqueous species in kJ/mole at the saturated vapor
		pressure of pure water (from Helgeson et al.,
		1978)
Table	5.1.	Equilibrium constants for minerals used in the
		WATCH program (from Arnorsson et al.,
		1982)
Table	5.2	Classification of log(Q/K) curves by their slope
		as they appear in the log(Q/K) diagrams and the
		chemical composition of the minerals
Table	7.1	Summary of results for the Icelandic samples
		selected for the calculations40
Table	7.2	Summary of results for the Chinese samples
		selected for the calculations41

FIGURES

<pre>with different wt% of NaCl compositions (from Haas,1971)</pre>	Figure 2.1	Boiling - point versus depth curves for waters
 Haas, 1971)		
Figure 3.1 Mixing models using enthalpy balance assumption: a) Chloride mixing model; b) Silica mixing model (from Fournier, 1981)		
 a) Chloride mixing model; b) Silica mixing model (from Fournier, 1981)	Figure 3.1	
<pre>(from Fournier, 1981)</pre>		
Figure 3.2 An example of an activity - activity diagram44 Figure 4.1 A drawing showing the method for sampling water and gas from hot springs		
Figure 4.1 A drawing showing the method for sampling water and gas from hot springs	Figure 3.2	
and gas from hot springs		
Figure 4.2 Schematic drawings showing the systems for sampling from high temperature wells: a) Collecting water, condensate and non-condensable gas fractions; b) Collecting of total steam		224 Z. N
<pre>sampling from high temperature wells: a) Collecting water, condensate and non-condensable gas fractions; b) Collecting of total steam</pre>	Figure 4.2	
 a) Collecting water, condensate and non-condensable gas fractions; b) Collecting of total steam	_	
<pre>non-condensable gas fractions; b) Collecting of total steam</pre>		
 b) Collecting of total steam		
Figure 5.1 Theoretical model for log(Q/K) equilibria for a synthetic geothermal water that was arbitrarily equilibrated with muscovite, K-spar, pyrite, albite, quartz and calcite at 250°C by a heterogeneous equilibrium calculation (Reed and Spycher, 1984)		
<pre>synthetic geothermal water that was arbitrarily equilibrated with muscovite, K-spar, pyrite, albite, quartz and calcite at 250°C by a heterogeneous equilibrium calculation (Reed and Spycher, 1984)</pre>	Figure 5.1	
<pre>equilibrated with muscovite, K-spar, pyrite, albite, quartz and calcite at 250°C by a heterogeneous equilibrium calculation (Reed and Spycher, 1984)</pre>		
<pre>albite, quartz and calcite at 250°C by a heterogeneous equilibrium calculation (Reed and Spycher, 1984)</pre>		
 Spycher, 1984)		
Figure 5.2 Examples showing the effects of boiling48 Figure 5.3 An example showing the effect of dilution49 Figure 5.4 Theoretical solubility (logK) curves from the WATCH program		heterogeneous equilibrium calculation (Reed and
Figure 5.3 An example showing the effect of dilution		Spycher, 1984)47
Figure 5.4 Theoretical solubility (logK) curves from the WATCH program	Figure 5.2	Examples showing the effects of boiling48
 WATCH program	Figure 5.3	An example showing the effect of dilution49
Figure 5.5 An example showing the log(Q/K) diagram for all minerals that stay within the selected temperature and log(Q/K) scale ranges	Figure 5.4	Theoretical solubility (logK) curves from the
<pre>minerals that stay within the selected temperature and log(Q/K) scale ranges</pre>		WATCH program
and log(Q/K) scale ranges	Figure 5.5	An example showing the log(Q/K) diagram for all
Figure 5.6 An example showing the distribution of possible equilibrium temperatures in the log(Q/K) diagram in a case of equilibrium		minerals that stay within the selected temperature
equilibrium temperatures in the log(Q/K) diagram in a case of equilibrium		and log(Q/K) scale ranges
<pre>in a case of equilibrium</pre>	Figure 5.6	An example showing the distribution of possible
Figure 5.7 An example showing the distribution of possible equilibrium temperatures in the log(Q/K) diagram in a case of non-equilibrium		equilibrium temperatures in the log(Q/K) diagram
equilibrium temperatures in the log(Q/K) diagram in a case of non-equilibrium		in a case of equilibrium52
in a case of non-equilibrium53 Figure 5.8 Log(Q/K) diagrams from WATCH showing the effect of	Figure 5.7	An example showing the distribution of possible
Figure 5.8 Log(Q/K) diagrams from WATCH showing the effect of		equilibrium temperatures in the $log(Q/K)$ diagram
		in a case of non-equilibrium
dilution by mixing of relatively "pure"	Figure 5.8	Log(Q/K) diagrams from WATCH showing the effect of
groundwater54		dilution by mixing of relatively "pure"

Figure 5.9 Log(Q/K) diagram calculated by the WATCH program showing the effect of simple removal of water from the sample (simple steam loss)......55

- Figure 5.12 The log(Q/K) diagrams for riverwater and cold spring water from the Zhangzhou geothermal area and surroundings, Southeast China......58
- Figure 5.14 The log(Q/K) diagrams for some coastal geothermal water samples from the Zhangzhou area, which are chemically dominated by seawater......60
- Figure 5.15 Log(Q/K) diagrams showing the effect of pH change by 0.5 units.....61
- Figure 6.1 Distribution of some hydrothermal minerals in active geothermal systems (from Henley and Ellis, 1983)......63
- Figure 6.2 Distribution of minerals in geothermal systems in Iceland with which the water equilibrates (from Arnorsson et al., 1983)......64
- Figure 6.3 Location map of the Reykjanes area......65
- Figure 7.1 A map of Iceland showing the location of the samples selected for the alculations......67
- Figure 7.2 The log(Q/K) diagram for the Leira area.....68 Figure 7.3 Geology, minerals and temperature in well 4,
 - Leira area (from Tomasson and Kristmannsdottir,

Figure	7.4	Depth and most important feeds of the Leira
		boreholes (from Armannsson, 1981)70
Figure	7.5	The log(Q/K) diagram for the Nanjin hot spring
		area
Figure	7.6	Cl - Br relation showing the mixing of meteoric
		water and seawater of the Zhangzhou geothermal
		area, Southeast China72
Figure	7.7	Giggenbach diagram for selected samples from the
		Zhangzhou geothermal area73

1. INTRODUCTION

Geothermal systems are complicated because of many thermal and chemical processes experienced by the thermal fluids rising to the surface from a deep reservoir. The present report begins with a short summary of the major processes which affect low temperature systems and a brief survey of the geochemical approaches used for understanding these processes.

Chemical equilibrium calculations have been made possible by the increasing thermodynamic data for many minerals found in geothermal systems. In recent geochemical work such calculations have been applied to geothermal investigations and such applications are the aim of the present project.

Sampling and analysis of geothermal fluids are very important parts of geochemical studies and their quality controls the accuracy of all consequent calculations. Geothermal fluid sampling from both low and high temperature wells, springs, fumaroles and laboratory analyses constitute the first part of the author's project work. A brief description of the work and some analytical methods used is included in this report.

The discussion of the geochemical methods brings us to the main point of the present report - the log(Q/K) diagram, a new approach to geothermometry and some hydrothermal processes that was first proposed by Reed and Spycher (1984). The theoretical background and the calculation procedures presented for the log(Q/K) approach and existing models are reviewed.

The computer programme WATCH that was used in the calculations for this report is described. Procedures for carrying out the calculations are explained and some factors that may influence the result of calculations are discussed with special emphasis on the effect of errors in pH

measurements.

The methodology for applying the log (Q/K) diagram to geothermometry and hydrothermal-chemical processes as suggested by the present author is discussed, followed by some case studies, either because they are of practical interest or as examples of low temperature geothermal areas of Iceland and China, which represent basaltic and granitic environments respectively.

Good understanding of the actual processes that take place in geothermal systems is shown to be very important by coupling different aspects of geothermal studies with geochemistry particularly as regards their site-specific features.

2. HYDROTHERMAL GEOCHEMICAL PROCESSES

2.1 General

Low temperature geothermal systems are widely distributed around the world and they are of interest especially for direct utilization. From a geological point of view, low temperature areas are located outside the active volcanic zones and are heated up by rocks with normal or fairly high heat flow.

A summary of water types found in geothermal systems is given by Henley (1984a). The chemistry of low temperature geothermal fluids is much simpler than that of high temperature ones. The origin of the thermal water is usually meteoric, but in some systems deep marine or some other saline waters (White, 1986) may be present. Geothermal systems near the coast may be fed by seawater or a mixture of seawater and meteoric water.

The chemistry of geothermal water in low temperature systems is mainly controlled by the reactions between thermal water and the host rocks and can be modified by hydrothermal processes such as boiling or mixing of thermal water with shallow groundwater.

2.2 Boiling

As hot water rises towards the surface the pressure on it by the overlying fluid decreases and a phase change - boiling of water may take place. The phase boundary is conventionally displayed as a boiling point - depth curve (Figure 2.1). Where boiling occurs there is a partitioning of dissolved constituents between the steam and the residual liquid; dissolved gases and other relatively volatile components concentrate in the steam and non-volatile components in the liquid in proportion to the amount of steam that separates.

2.3 Underground Mixing

Mixing of ascending hot with shallow cold groundwater in hydrothermal systems appears to be common. Mixing can also occur deep in hydrothermal systems, especially at the margins. (Fournier, 1977, 1979, 1981)

2.4 Hydrothermal Reactions

The composition of geothermal fluids is controlled by temperature-dependent reactions between minerals and fluids. Hydrolysis reactions are the most important but redox reactions occur too. If the residence time of the fluid is long enough, equilibria between the geothermal fluid constituents and the host rock may be reached. On the other hand, new equilibria may replace older ones if the system conditions change. In order to understand and model hydrothermal systems both the fluid constituents and the solids must be characterized.

3. GEOCHEMICAL APPROACHES

3.1 General

The most important geochemical approaches for understanding and modeling hydrothermal systems are:

- Comparison of conservative element concentrations (e.g. Cl) between wells and consideration of the effects of boiling and dilution (mixing diagrams).
- Relations between component ratios, concentrations and deep temperatures (Na/K, NaKCa, gas and silica geothermometers).
- Investigation of relations between the observed fluid chemistry and the alteration minerals found in the drillcores, based on thermodynamic data and highlighting the relationship between the different fluid components.
- * Calculation of multi-component chemical equilibria and reaction processes in hydrothermal systems.

3.2 Geothermometers

Reviews of conventional geothermometers that have been used in geothermal exploration were given by Fournier (1981) and Truesdell (1984). The most important ones are listed in Table 3.1. Most of them are empirical with assumptions regarding particular mineral equilibria, which in some cases may not be dominant or even exist.

3.3 Models for Boiling and Mixing

If the rate of the upflow is fast enough for the cooling of the fluid to be considered as approximately adiabatic, the final concentration C_f , of the remaining components in the residual liquid after one-stage steam separation at a given temperature, t_f , is given by the formula

$$C_f = (H_s - H_f) / (H_s - H_i) * C_i$$

where C_i is the initial concentration before boiling, H_i is the enthalpy of the initial liquid before boiling and H_f and H_s are the final enthalpies of the final liquid and steam respectively at t_f .

Mixing models have been used in cases where hot water mixes with cold water. Examples of such models using Si and Cl analytical results are shown in Figure 3.1.

3.4 Hydrolysis Reaction Studies

Thermodynamic calculations for hydrolysis reactions were summarized by Henley (1984b). Reactions between water and different minerals can be studied and thus can different fluid systems. Activity - activity diagrams can be drawn for different mineral assemblages from thermodynamic data. The diagram can then be used to see whether different minerals can co-exist as a mineral assemblage under certain conditions. Some of the thermodynamic data is listed in Table 3.2 and a typical activity-activity diagram is shown in Figure 3.2.

3.5 Chemical Equilibrium Calculations

Many geochemical systems can be understood in terms of the reaction of an aqueous phase with its mineral environment. These systems can be studied by calculating the properties of heterogeneous chemical equilibrium among minerals, gases and aqueous solutions for a specified bulk composition, temperature and pressure. By linking a series of calculations in which incremental changes of bulk composition, temperature or pressure are made, one can produce a chemical model of a dynamic geochemical process.

Thermodynamic data for whole system geochemical calculations of this kind have become available in recent years.

Reed (1982) has developed a new approach that can model geochemical processes involving composition changes by linking a series of discrete overall heterogeneous equilibrium calculations.

In many geochemical studies, it is necessary to use results of analyses and pH measurements made at room temperature and pressure. The measured chemical properties in such cases are different from those at high temperature and pressure because of gas separation, mineral precipitation, and temperature dependence of homogeneous equilibria. There are several methods available for calculating pH at high temperature from analytical results at low temperature, (Wilson, 1961; Arnorsson et al., 1982). All rely on estimates of "total ionizable hydrogen". A method presented by Reed and Spycher (1984) employing multi-component equilibrium calculations requires no judgment about "ionizable hydrogen" since it readily takes account of all H⁺ species and the effect of dissolved gases.

The latest developments in the field of chemical equilibrium calculations have benefited geothermal studies, but there are still some crucial limitations, one of them arises from the fact that in low temperature geothermal studies one has to deal with many kinds of clay minerals. The thermodynamic data necessary for natural clay minerals (especially those that contain impurities) are insufficient at the moment and this may cause difficulty in calculations of this kind.

4. GEOTHERMAL SAMPLING AND CHEMICAL ANALYSES

4.1 Introduction

Sampling and analysis of geothermal fluids are very important parts of geochemical studies, and their results control the accuracy of all the successive calculations. Geothermal fluid sampling from both low and high temperature wells, springs and fumaroles was practiced during this training and so was the analysis of some important constituents of the samples collected, in the laboratory of the National Energy Authority of Iceland. A brief description of the work and some of the analytical methods used follows.

4.2 Low Temperature Samples

One hot spring water sample was collected from England, in the Borgarfjordur geothermal area at a temperature of around 90 °C. Three water samples from well number 2 of Seltjarnarnes field were taken from depths of 80, 570 and 725 meters respectively, using a downhole sampler. A cold spring in Thvera, Borgarfjodur was also sampled. The method of collection is shown in Figure 4.1.

The sample portions are as follows:

Ru, raw untreated, 250ml in gas sampling tubes made of glass for the determination of pH and CO_2 .

Fu, filtered untreated, 200 - 500ml in plastic bottles for the determination of Cl and other anions.

Fd, filtered and diluted, 100ml in plastic bottles for silica determination, diluted 2 - 10x with distilled water to bring the silica concentration below 100ppm.

Fa, filtered and acidified, 100 - 500ml in plastic bottles for Na, Ca, Mg, Li, Al, Fe and Mn determinations. The chemical analyses of the volatile constituents like pH, H_2S , CO_2 were done by the author soon after collection. The methods used are as follows:

pH was measured with a pH meter with a glass electrode.

Total carbonate as CO₂ was measured by titration with 0.1N HCl from pH 8.2 to 3.8, adjusting the initial pH with HCl and NaOH.

 H_2S was determined by titration with 0.001 $Hg(CH_3COO)_2$ solution using dithizone as an indicator.

SiO2, Fe, and Mn were determined spectrophotometrically.

Cl was determined by titration with AgNO3.

Al was measured fluorimetrically.

4.3 High Temperature Samples

Sampling of two fumaroles in the Krafla area and one steam well, well number KG-24 was attended by the author. The method used is described by United Nations Development Programme (1986).

Three steam sample portions were collected from each fumarole and the steam well: The condensate of the fumarole steam, the non-condensable gas and the total fumarole steam dissolved in NaOH solution. Methods for collecting the samples were described by Armannsson (1985) and are shown in Figure 4.2.

A liquid water sample was also drawn from the well and divided into similar portions as the low temperature samples, with the addition of a portion labeled Fp (filtered, precipitated), where 10ml 0.2M Zn(CH₃COO)₂ are added to

490ml of sample to remove sulfide. This portion is used for sulphate analysis.

pH, H_2S and CO_2 were determined in the field laboratory of the Krafla geothermal power plant.

pH was measured with a pH meter.

 H_2S was determined by titration with $Hg(CH_3COO)_2$ solution using dithizone as an indicator.

 CO_2 was measured by titration with 0.1N HCl from pH 8.2 to 3.8 at room temperature.

5. THE LOG(Q/K) DIAGRAM

5.1 Theoretical Background and Established Models

Using the activities of aqueous component species calculated for homogeneous equilibrium at a series of temperatures, it is possible to compute the degree of super- or undersaturation of the aqueous phase with minerals at each temperature. This is expressed for mineral k in terms of $log(Q/K)_k$:

 $\log(Q/K)_{k} = \log I a_{1,k}^{vik} - \log K_{k}$

in which Q is the calculated ion activity product and K is the equilibrium constant for mineral k, $a_{i,k}$ is the activity and v_i , k is the stoichiometric coefficient of component species i in the equilibrium mass action expression for mineral k, written with the mineral on the left hand side.

Therefore, the log (Q/K) value for each mineral provides a measure of the proximity of the aqueous solution components to attaining equilibrium with the mineral. The numerical value of log(Q/K) is greater than zero for supersaturated minerals and less than zero for undersaturated minerals.

The increasing and improved thermodynamic data for various species in aqueous solutions and the established numerical methods mentioned above have made it possible to calculate the log(Q/K) value for many minerals using analytical values for the chemical components of geothermal fluids.

If an aqueous solution is in equilibrium with respect to a certain mineral assemblage, the temperature at which the components reach equilibrium can be identified. An ideal case (Figure 5.1) was given by Reed and Spycher (1984). The minerals that equilibrate with the fluid intersect the log(Q/K) = o line at the same temperature (250°C), but others do not.

This characteristic of convergence of $\log(Q/K)$ curves for the equilibrium assemblage to zero at the temperature of equilibration establishes a basis for geothermometry.

Effects of boiling and dilution of geothermal waters are discussed by Reed and Spycher (1984).

Boiling causes irregular dispersion of log(Q/K) curves because of the combined effects of concentration of aqueous components by water loss and pH change due to CO_2 loss. An example of this effect is shown in Figure 5.2.

In contrast, dilution causes a simple shift and dispersion of the mineral log(Q/K) curves which is readily recognized. The locus of most curve intersections (with log(Q/K) = 0) is displaced towards lower temperatures as is shown in Figure 5.3. The dilution considered here is the effect of mixing of a deep, hydrothermal solution with a relatively pure water.

5.2 The Computer Program WATCH

The computer program used in this study is the WATCH program of Arnorsson et al. (1982), which was developed to calculate the composition and aqueous speciation of geothermal reservoir waters including pH, redox potential and gas pressures. The program is specially suited to handle geochemical data from wet-steam wells, hot-water wells and boiling hot springs, but it may also be used for non-thermal waters.

Solubility data for 26 minerals commonly found in geothermal systems in Iceland were incorporated (Table 5.1 and Figure 5.4) to facilitate the study of fluid - mineral equilibria. Guides for the operation of the program were written by Svavarsson (1981) and Olafsson (1987).

The WATCH program comes in two parts, WATCH1 that can be used

with the results of chemical analyses of water and steam from steam producing wells, and WATCH3 that is exclusively used for the results of chemical analyses of water from boiling springs, hot springs and cold water. An example of a printout from WATCH3 is shown in Appendix I.

5.3 Preparation of the Log (Q/K) Diagram

The procedure for drawing the log (Q/K) diagrams is as follows:

- * Use the log solubility products data from the WATCH program's printout to calculate the log (Q/K) values at selected temperatures. An example of such data is given in Appendix II.
- * Use the calculated data to plot log (Q/K) against temperature for all minerals. An example of such a diagram is shown in Figure 5.5.

It is convenient to use the conventional geothermometer temperatures that are calculated by the WATCH program as a reference for the choice of temperature range for the calculation.

5.4 Interpretation of the Log(Q/K) Diagrams

5.4.1 Visual Specification

Visual interpretation of the diagrams gives us an impression of possible equilibria between the fluid constituents and the minerals or, if not, how close they are to equilibrium.

The number of mineral curves that cross the zero log (Q/K) horizontal line at the same temperature, or the number of minerals that co-exist in equilibrium is not great, 5 - 6 is the maximum in most cases.

5.4.2 Statistical Approach

Since different minerals may not reach equilibrium at exactly the same temperature, statistical methods can be used to search for the temperature range(s) where most minerals cross the horizontal zero line (Figure 5.6)

For cases where equilibrium curves for different minerals do not converge in the diagrams, statistical methods can be used to estimate the temperature range within which most of the minerals apparently equilibrate (Figure 5.7)

5.5 Basic Characteristics of the Log(Q/K) Diagram

5.5.1 Types of Curves

There are five types of curves classified by their slopes as they appear on the diagram shown in Figure 4.5 and listed in table 5.2. These curves of different slopes reflect their thermodynamic characteristics. Therefore, the indication of a possible equilibrium should be more reliable if the minerals that converge on the zero log(Q/K) line are of different types.

5.5.2 Effects of Mixing and Boiling

The effects of mixing and boiling discussed by Reed and Spycher (1984) were also evaluated by using the WATCH program with reference to a hot spring sample from Nanjin, China as an example. The results of such calculations as shown in Figures 5.8 and 5.9 are quite similar to those proposed by Reed and Spycher (1984). It seems possible that an optimum possible equilibrium can be attained by iteration calculations (with help the of a computer program).

5.6 Results for Some Natural Waters

Log (Q/K) calculations were performed with analytical data on

samples of different natural water types from the Zhangzhou geothermal area, Southeast China (Figure 5.10). The diagrams (Figures 5.11 - 5.13) show that the constituents of rainwater, riverwater, seawater and ambient temperature groundwater do not approach fluid-mineral equilibria.

5.6.1 Surface and Rain Waters

Images that imply the absence of equilibrium are seen in the results of the calculations for cold surface waters. Figures 5.11 and 5.12 show the diagrams for rainwater, seawater and riverwater from the same region.

5.6.2 Groundwater of Ambient Temperature

Cold groundwater is in most cases not in equilibrium with its host rock. This can be clearly seen in the diagrams in Figures 5.12 and 5.13. But convergent points far below the log(Q/K)=0 line reflect some possible ancient equilibria.

5.6.3 Geothermal Water

Calculations based on the results of chemical analyses of geothermal samples from Iceland and the Zhangzhou area, China were performed and the results show that the constituents of geothermal waters are in many cases quite close to equilibrium even though no exact equilibria can be identified. Figure 5.5 is an example of a calculated equilibrium situation. More detailed summary of the calculated results will be given in Chapter 6.

5.7 The Effect of Mixing with Seawater

The effect of the mixing of geothermal water with seawater can be seen quite clearly in a $\log(Q/K)$. This is a process that occurs widely in coastal geothermal areas in Iceland and China. This effect is evaluated for the geothermal water samples from the Zhangzhou geothermal area, Southeast China. The log(Q/K) curves for minerals that are closely related to the seawater components are highly elevated above the log(Q/K) = 0 line (Figure 5.14).

5.8 Factors Affecting the Convergence of Mineral Curves

The effect of analytical errors on the calculations was tested in this study. In general, an ionic balance of less than 10% will give good results. But a simple approximation of analytical errors on all particular constituents or sets of them is not easily made.

The influence of an error in the measurement of pH on the results was calculated for a Chinese hot spring sample from Nanjin, Southeast China. Results show that the change of pH (measured at air temperature) by 0.1 unit would not make any difference, a slight difference is caused by 0.2 units, but a change of 0.5 pH units will cause significant differences, which can be seen in the diagrams (Figure 5.15).

Statistical methods were used to evaluate this effect (Figure 5.16). In diagrams where the same number of minerals reach equilibrium, a minimum value is obtained for the standard deviation, which can be regarded as a measure of the extent to which the curves for individual minerals cluster on the zero line. This minimum value may be called the "optimum statistical equilibrium". In Figure 5.16 it can also be seen that the equilibrium temperature does not change significantly within a pH change of 0.4 units.

Log(Q/K) diagrams only provide us with an impression of possible equilibria between the thermal fluid constituents and the minerals considered. An actual mineral assemblage has to be studied before any conclusion about real equilibria can be reached. This will be discussed in the following chapter.

6. METHODOLOGY FOR APPLICATIONS

6.1 Introduction

The computations discussed above provide us with an overall look at the studied system in terms of chemical equilibria between geothermal fluid constituents and minerals. The main purpose of the following discussion is to show how they benefit the use of geothermometers and the understanding of the hydrothermal system studied. Mineralogical and hydrogeological aspects will be discussed with examples from Iceland and China.

All the conventional geothermotmeters reviewed in Chapter 2 have the basic assumption in common, that the solution constituents studied are in equilibrium with the particular mineral or mineral assemblage considered and this can not be verified by the geothermometers themselves. The log (Q/K) diagram can be used to get an impression of possible equilibria between the aqueous solution components and the minerals. The present study shows that it has to be coupled with alteration mineral studies and/or hydrogeological information about the studied area before a conclusion about the subsurface temperature and the history of the thermal fluids can be drawn with confidence.

6.2 Coupling with Alteration Mineral Studies

The possible equilibria noted in the log(Q/K) diagrams should be tested to determine the plausible fluid - mineral equilibria. There are two ways of doing this.

- Mineral stability calculations using thermodynamic data to evaluate the possibility of the co-existence of particular mineral assemblages.
- * Comparison of the minerals calculated to be in possible equilibrium with the alteration minerals

found in the geothermal wells.

The first method is useful for hot spring areas which have not been drilled. An example of the activity-activity diagrams was given in Chapter 3 and Figure 3.2. The second method can be used for gaining useful information from drillholes in different geothermal environments (conditions) which then can aid the choice of suitable geothermometers.

Examples from Iceland and China will be discussed in the following section. A general view of the alteration mineral studies of Icelandic low temperature ares will be given and and some fields discussed. An example from southeast China will also be presented.

The alteration minerals commonly found in active geothermal systems were summarized (Figures 6.1) by Henley & Ellis (1983). Those minerals used in the WATCH program are the ones that are most often found in Icelandic geothermal fields of different temperature. Summaries of these minerals and the common temperature ranges were given by Arnorsson et al. (1983) as shown in Figure 6.2, which gives one a general idea of the minerals or mineral assemblages that can reasonably be expected in the Icelandic systems. But different combinations of minerals are found in different areas.

6.3 Coupling with Hydrogeological Considerations

The effects of various hydrogeological processes on the use of conventional geothermometers were thoroughly discussed by Fournier (1979). The present concern is how the necessary considerations of hydrogeological information can benefit the log(Q/K) approach. Examples and preliminary discussion will follow.

In non-equilibrium cases, mixing and boiling may be the main factors that cause the non-convergence of the curves, as has been discussed in the previous sections of this report. On the other hand, geothermal water in different parts of the flow (circulation) system shows different characteristics in terms of equilibria, since we know whether the equilibria shown in a log(Q/K) diagram reflect the most recent situation of the fluid.

Reykjanes geothermal area is a low temperature area located on a tiny peninsula in Isafjardardjup, West Iceland (Figure 6.3), with a natural outflow of more than 10 liters per second of hot water. The highest subsurface temperature measured is 98°C (Bjornsson et al., 1987).

Analytical results for samples from different parts of the flow system (Benjaminsson, 1981) were used to calculate the log(Q/K) diagrams. Thr results of the calculations show that the closer to the discharge area the sampling point is, the closer it is to equilibrium (see Figure 6.4 and also Table 7.1).

Therefore, if samples from different parts of the system are available, it is helpful to the understanding of the system to do the same calculations for all the samples and interpret them together.

7. CASE STUDIES FROM ICELAND AND CHINA

7.1 General

The analytical results for about 50 water samples from Iceland and China were used in this study. The Icelandic data are from the published paper of Arnorsson et al (1983) and the National Energy Authority of Iceland. The locations of the Icelandic samples are shown in Figure 7.1. These data represent the low temperature geothermal water in basalt of Quaternary and Tertiary origin.

Data of the Chinese geothermal water and related natural waters used here was taken from a technical report of a cooperative study between French and Chinese geothermal scientists (Demange et al., 1986), represent a coastal geothermal area in a granitic environment. The samples were collected from geothermal wells in the Zhangzhou geothermal field and some hot springs around the area, which is shown in Figure 5.10.

A summary of the results of the log(Q/K) calculations is shown in Tables 7.1 and 7.2. Results were coupled with information from other methods for the cases of equilibrium. Non-equilibrium can explained by effects of boiling, dilution and the contamination by seawater.

7.2 Leira Area, West Iceland

The geothermal area is located in the Tertiary basaltic environment. Alteration products in wells suggest a high temperature geothermal system bearing little relation to the present situation (Tomasson and Kristmannsdottir, 1974). Four wells have been drilled in this region and a sample from well 4 was used for mineral equilibrium calculations. The fluid is a relatively saline, calcium-rich, carbon dioxide water, $\delta D =$ -73.8 and could be derived from water that has fallen as rain to the west of the Langjokull glacier, which is thought to be the origin of the water in the other Borgarfjordur geothermal area. Arnason (1976) concludes that this is the case and that the salinity is derived from the leaching of salty sediments. On the other hand this water could originate from a heavier water that mixed with seawater a long time ago and ion exchange with rocks has produced the present composition (Armannsson, 1981).

Well number 4 is 2019 meters deep, the flow rate was 8 liters per second, discharge temperature was 128 °C. The log(Q/K)diagram for this well is shown in Figure 7.2, which indicates clearly a possible equilibrium of five or six minerals at a temperature of 165 °C. The minerals are two montmorillonites, chalcedony, analcime and wairakite - a kind of zeolite. A comparison of this with the alteration minerals (Figure 7.3) shows that the calculated fluid - mineral equilibria are likely to a realistic. The well has more than one inflow zones as shown in Figure 7.4. The calculated temperature seems to be in agreement with the chalcedony temperature (161.9°C), but not with the NaK and quartz geothermometers.

7.3 Zhangzhou Geothermal Area, Southeast China

7.3.1 Nanjin Hot Spring

The Nanjin hot spring area is located about 30 kilometers to the west of the Zhangzhou geothermal field. The total natural flow rate of hot water from hot springs in this area is greater than 20 liters per second.

The log(Q/K) diagram for a sample from a spring with the highest temperature of the area (Figure 7.5) shows the convergence of five possible mineral equilibria to the same temperature. The minerals are two montmorillonites, chalcedony, fluorite and calcite, representing quite a reasonable mineral assemblage to equilibrate with the host rock at a low temperature.

A 628 meters deep drillhole has been drilled in the vicinity of the spring and the measured downhole temperature was around 90 °C, which is in very good agreement with the temperature calculated here.

7.3.2 Zhangzhou Geothermal Field

In the case of a coastal aquifer, the geothermal fluid is a relatively concentrated seawater mixture, which raises the concentration of Cl, Na, and other elements. The construction of $\log(Q/K)$ diagrams for hot water samples from the Zhangzhou area, a costal hydro-thermal basin in southeastern China and its surroundings provides a better understanding of the mixing process and facilitates the choice of suitable geothermometers.

Geochemical and isotopic studies revealed that the saline hot water in this region is a mixture of meteoric water (Figure 7.6) and seawater (Demange et al., 1986; Pang, 1987). A series of samples of different salinity were used to calculate the mineral equilibria and plot the log(Q/K) diagrams. Results show that the curves for Na, K, Mg related species are highly elevated in the diagrams, which means that the these components in the water are dominated by seawater. The more saline the water, the more elevated the curves (see Figure 5.14).

It was doubted that the water components had reached equilibrium with respect to certain minerals, for the NaK geothermometers give very scattered results for reservoir temperature and that indicates a deviation from the actual situation where the presence of the particular minerals is inherent in the use of the geothermometers.

The data from this area was also plotted in the Giggenbach diagram (Giggenbach, 1986) which was designed to recognize a mineral assemblage of K-feldspar, illite and chlorite. The result shows that the seawater-dominated geothermal fluids do not fall on the equilibrium curve in the diagram (Figure 7.7).

However, as is summarized in Table 7.2, the chalcedony geothermometer temperature is quite close to the reservoir temperature. In most of the log(Q/K) diagrams for this area, it can be seen that calcite and chalcedony cross the log(Q/K)= 0 line at the same or similar temperature. This indicates that these minerals are the ones that equilibrate with the host rock in this case and they are also the alteration minerals found widely in the geothermal area. Therefore, it is suggested that silica geothermometers be used in a coastal geothermal area like this one.

8. CONCLUSIONS

By using the chemical equilibrium computer program WATCH and plotting the log(Q/K) diagrams, possible equilibrium and non-equilibrium situations between studied fluid components and minerals can be identified for natural waters.

Chemical analysis with an ionic balance difference of less than 10% gives good results in most cases. An error of less than 0.2 units in pH measurement at the laboratory temperature does not cause a significant difference in the log(Q/K) diagrams.

Coupling the log(Q/K) diagrams with the results of alteration mineral studies and/or activity - activity diagrams shows for which minerals equilibrium is to be expected, and thus which geothermometers are applicable, making the geothermometry results more reliable than those obtained indiscriminately by conventional methods.

Hydrothermal-chemical processes can be modeled to certain extent by using the log(Q/K) diagrams.

Results for chemical analyses of water samples from Iceland and China show that this approach can benefit the study of different types of natural water(s) from the same region and aid the understanding of whole system.

ACKNOWLEDGEMENTS

The author wishes to thank his advisor, Dr. Halldor Armannsson of the National Energy Authority of Iceland for his guidance in this project work. Thanks are also due to Professor Stefan Arnorsson of the University of Iceland and Dr. Robert O. Fournier, the UNU guest lecturer for their helpful discussions with the author.

Special thanks are due to Dr. Jon-Steinar Gudmundsson, the director of the Geothermal Training Program for his successful operation of the program and the help the author has enjoyed from him during the training and this project work.

Mr. Magnus Olafsson is thanked for his help with the use of the WATCH program.

The author is indebted to many people of the National Energy Authority of Iceland, especially the people from the training programme and those of the geochemical laboratory that have provided help to the author in various ways.

This training of the author was supported by the United Nations University geothermal training programme and the Icelandic Government and was carried out in Reykjavik, Iceland.

NOMENCALTURE

- a = Activity of aqueous species (moles/kg)
- C = Concentration of chemical components (ppm)
- H = Enthalpy (kJ/kg)
- K = Theoretical equilibrium constant
- M = Molal unit of chemical components (moles/kg of solvent)
- N = Equivalents per liter
- P = Pressure (bar)
- pH = Negative log of hydrogen ion activity
- Q = Calculated log solubility products
- T = Temperature (°C)
- v = Stoichiometric coefficient of species
- wt% = Weight percent

 $\delta D = H^2/H^1$ ratio with reference to SMOW (standard mean ocean water)

REFERENCES

Armannsson, H., 1981, Leira, Borgarfjordur, Chemical composition of borehole fluids and possibilities of deposition. Report OS81028/JHD16, National Energy Authority (in Icelandic), 53 pp.

Armannsson, H., 1985, A field guide to sampling of high temperature wells, selected analytical procedures and preliminary composition calculations, VIRKIR/NEA.

Arnason, B., 1976, Ground water systems in Iceland traced by deuterium. Icelandic Sci. Soc. Publication, 42, 236 pp.

Arnorsson, S., Sigurdsson, S. and Svavarsson, H., 1982, The chemistry of geothermal waters in Iceland. I. Calculations of aqueous speciation from 0° to 370°C, Geochim. Coschim. Acta 46, 1515-1532.

Arnorsson, S., Gunnlaugsson, E. and Svavarsson, H., 1983, The chemistry of geothermal waters in Iceland II. Mineral equilibria and independent variables controlling water compositions, Geochim. Coschim. Acta, 47, 547-566.

Benjaminsson, J., 1981, The Northwestern Peninsula, Iceland, Chemistry of geothermal waters, Report OS81010/JHD06, National Energy Authority (in Icelandic), 121 pp.

Bjornsson, G., Hersir, G. P. and Smarason, O. B., 1987, Well test of drillhole 2 of Reykjanes area, Report GrB/GPH/OBS-87/02, National Energy Authority (in Icelandic).

Demange, J., Fabriol, R., Tournaye, D., 1986, Geothermal potential assessment of Zhangzhou area, Fujian province, People's republic of China, 86 CFG 022, 40 pp.

Fournier, R., 1977, Chemical geothermometers and mixing models for geothermal systems, Geothermics, 5, 31-40.

Fournier, R., 1979, Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot spring systems, J. Volc. Geotherm. Res., 5, 1-16.

Fournier, R. 1981, Application of water chemistry to Geothermal Exploration and Reservoir Engineering, Chapter 4 in: Geothermal Systems, Principles and case histories, Editors: Rybach, L., and Muffler, L. J. P., 109 - 140.

Giggenbach, W., 1986, Graphical techniques for the evaluation of the water/rock equilibration conditions by use of Na, K, Mg and Ca contents of discharge waters, Proc. 8th NZ geothermal workshop, 37 - 43.

Haas, J. L., 1971, The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure: Econ. Geol. 66, 940 - 946.

Helgesson, H. C., Delany, J. M., Nesbitt, H. W. and Bird, D. K., 1978, Summary and critique of the thermodynamic properties of rock forming minerals: Am. J. Sci. 274, 1199 -1261.

Henley, R., 1984a, Chemical structure of geothermal systems, Chapter 2 in: Henley, R. W., Truesdell, A. H. and Barton, P. B., Fluid - mineral equilibria in hydrothermal systems, Reviews in Economic Geology, Vol. 1 (Robertson, J., series editor), Soc. Econ. Geol., 9 - 28.

Henley, R. W., 1984b, Hydrolysis reactions in hydrothermal fluids, Chapter 6 in: Henley, R. W., Truesdell, A. H. and Barton, P. B., Fluid-mineral equilibria in hydrothermal systems, Reviews in Economic Geology, Vol. 1 (Robertson, J., series editor), Soc. Econ. Geol., 65 - 82.

Henley, R. W. and Ellis, A. J., 1983, Geothermal systems,

ancient and modern: a geochemical review: Earth Sci. Reviews, 19, 1 - 50.

Olafsson, M., 1987, How to operate the WATCH and the PRI programmes -- an instructional manual, National Energy Authority of Iceland.

Pang, Z., 1987, Zhangzhou basin geothermal system - genesis model, energy potential and the occurrence of thermal water, Ph.D. disertation, Inst. Geol., Academia Sinica (in Chinese with English abstract), 310 pp.

Reed, M., 1982, Calculation of multi-component chemical equilibria and reaction processes in systems involving minerals, gases and aqueous phase, Geochim. Cosmochim. Acta, 46, 513-528.

Reed, M. and Spycher, 1984, Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution, Geochim. Cosmochim. Acta, 48, 1479-1492.

Svavarsson, H., 1981, The "WATCH1" and "WATCH3" programmes. A Guide for Users. National Energy Authority of Iceland.

Tomasson, J. and Kristmannsdottir, H., 1974, Leira, Well No. 4, Report OSJHD7551, National Energy Authority (in Icelandic), 22 pp.

Truesdell, A., 1984, Chemical geothermometers for geothermal exploration, Chapter 3 in Henley, R. W., Truesdell, A.H. and Barton, P. B., Fluid - mineral equilibria in hydrothermal systems, Reviews in Economic Geology, Vol. 1 (Robertson, J. M., series editor), Soc. Econ. Geol., 31 - 43.

United Nations Development Programme, 1986, Geothermal sampling and chemical analyses, Project: Exploration for Geothermal Energy KEN/82/002 - UN/DTCD. White, D. E., 1986, Subsurface waters of different origins, Fifth international symposium on water-rock interaction (extended abstracts), Intern. Assoc. Geoch. Cosmoch. and National Energy Authority of Iceland, 629 - 632.

Wilson, S., 1961, pH of a natural hydrothermal solution, Geochim. Coschim. Acta, 25, 233-235. Appendix I. An example of a printout from the WATCH program (WATCH3).

8511158-14 Nanjin, hot spring - 1

PROGRAM WATCH2.

WATER SAMPLE (PPM) STEAM SAMPLE PH/DEG.C 8.24/25.0 GAS (VOL.%) REFERENCE TENP. DEGREES C 180.0 (ARBITRARY) 8102 73.31 C02 NA 139.46 H28 SAMPLING PRESSURE BARS ABS. K 2.49 H2 DISCHARGE ENTHALPY NJOUL/KG CA 4.29 02 DISCHARGE KG/SEC. 17.4 MG .100 CH4 CO2 119.58 N2 MEASURED TEMPERATURE DEGREES C 78.5 804 133.52 RESISTIVITY/TEMP. OHNM/DBG.C .0/ .0 H2S .00 BH/TEMP. MV/DBG.C .000/ .0 CL 25.70 F 15.00 LITERS GAS PER EG DISS.SOLIDS 455.66 CONDENSATE/DEG.C NEASURED DOWNHOLE TEMP. FLUID INFLOW DEGREES C/NETERS DRPTH (MRTRRS) AL .1220 B .1490 .0260 CONDENSATE (PPN) .0 FB .0 .0 .0 .0 .0 NH3 .0000 PH/DBG.C .0 .0 C02 .0 .0 .0 .0 H2S NA .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 CONDENSATE WITH NAOH (PPN) .0 .0 C02 .0 .0 .0 H2S .0 .0 .0 CATIONS (MOL.BQ.) .00632090 IONIC STRENGTH = .00816 IONIC BALANCE : ANIONS (MOL.BQ.) .00700134 -10.22 DIFFERENCE (%) GAS PRESSURES (BARS ABS.) DEEP STEAN (PPM) DEEP WATER (PPN) CO2 .497B-01 119.58 C02 .00 SI02 73.32 C02 H28 .00 H2S .000B+00 139.46 H23 .00 NA .000B+00 H2 .00 82 .00 H2 R 2.49 .00 .00 02 .000R+00 02 02 CA 4.29 .00 CH4 .000R+00 CH4 .00 MG .100 CH4 .000B+00 N2 133.52 N2 .00 N2 .00 **S04** NH3 NH3 .00 NH3 .000B+00 25.70 .00 CL H20 .100R+02 15.00 F TOTAL .101B+02 DISS.S. 455.66 .1220 AL H20 (%) .00 .1490 B BOILING PORTION ,00 FB .0260

10410149 00	PPPIOTPUS	S IN DEEP WATE	in.				
Ht	.885	ESO4-	.875	88		DDGL .	
OH-	.869	F-	.815	FB++	.593	FBCL+	.870
H38I04-	.870	CL-		FB+++	.337	AL+++	.337
H2SI04	.588		.867	FBOH+	.874	ALOH++	.588
H2BO3-		NA+	.870	FB(OH)3-	.874	AL(OH)2+	.875
	.865	E+	.867	FB(OH)4	.584	AL(OH)4-	.872
HC03-	.870	CA++	.593	FBOH++	.584	ALSO4+	.872
C03	.580	NG++	.609	FB(OH)2+	.875	AL(804)2-	.872
HS-	.869	CAHCO3+		FB(OH)4-	.875	ALF++	.588
S	.584	NGHCO3+		FBSO4+	.874	ALF2+	.875
HS04-	.872	CAOH+	.877	FBCL++	.584	ALF4-	.872
S04	.576	MGOH+	.878	FECL2+	.874	ALF5	.580
NASO4-	.875	NH4+	.865	FBCL4-	.870	ALF6	.294
			(PPM AND LOG NO	LE)			
H+ (ACT.)	.00	-7.706	MG++	.03 -5.943	FE(OH)3	.00	.000
OH-	4.12	-3.616	NACL	.11 -5.713	FB(OH)4-	.00	.000
H4SI04	106.27	-2.956	ECL	.00 -8.006	FBCL+	.00	-10.050
H3SI04-	10.22	-3.969	NASO4-	6.43 -4.268	FECL2	.00	-18.389
H2SI04	.01	-7.112	KS04-	.39 -5.538	FBCL++	.00	.000
NAH3SIO4	.82	-5.159	CASO4	3.73 -4.563	FECL2+	.00	.000
H3BO3	.80	-4.889	NGSO4	.32 -5.580	FECL3	.00	.000
H2BO3-		-6.064	CACO3	.97 -5.013	FBCL4-	.00	.000
H2CO3		-3.462	NGCO3	.00 -7.486	FBS04	.00	-8.823
HCO3-		-2.633	CAHCO3+	2.84 -4.552	FBS04+	.00	.000
C03		-5.286	NGHC03+	.01 -7.113	AL+++	.00	-23.123
H28	.00	.000	CAOH+	.04 -6.181	ALON++	.00	-15.948
HS-	.00	.000	NGOH +	.01 -6.636	AL(OH)2+		-9.466
8	.00	.000	NH40H	.00 .000	AL(OH)3	.20	-5.586
H2304		15.540	NH47	.00 .000	AL(OH)4-		-5.715
HSO4-		-6.600	FB++	.00 -8.233	ALSO4+	.00	-22.328
804		-2.885	FB+++	.00 .000	AL(804)2-		-22.984
HF		-6.225	FBOH+	.01 -6.782	ALF++	.00	-18.069
F-		-3.103	FB(OH)2	.02 -6.602	ALF2+	.00	-14.563
CL-		-3.141	FB(OH)3-	.00 -7.369	ALF3	.00	-13.019
NA t		-2.222	FB(OH) 4	.00 -11.769	ALF4-	.00	-13.354
Et .	2.38	-4.216	FB(OH)++	.00 .000	ALF5	.00	-14.906
CA++		-4.384	FB(OH)2+	.00 .000	ALP6	.00	-17.752
UNTT	1.00	-1.903	rbloulet	.00 .000	AUTV		111105
IONIC STREN	GTH = .0	00784 ION		CATIONS (MOL.BQ. ANIONS (NOL.BQ. DIFFERENCE (%	.00680935		
CHBMICAL GB	OTHERMOMET	TERS DEGREES C		1000/T DEGEBES E	BLVIN = 2.21		
QUARTZ	110 3						
CHALCEDONY							
NAR	00.4						
OXIDATION P	OTENTIAL ((VOLTS) :	BH H28= 99.999	BH CH4= 99.9	99 BH H2= 99	.999 BH	
		TAGANTM TO PT	S IN DEEP WATER	,			× (*)
DOG BOBODID		CALC.	U IN VODI WAIDI	TEOR. CALC		180	R. CALC.
ADUL ADTA	12 0.00	10 550	NUT BETER	14 505 10 55	THIS AND AND	11 0	003 01 000
ANDARIA	-10.001	1 -10.004	CILCIPD	11 020 -10.10		-11.0	120 _2 055
ANGIUNITED	-0.00.	3 -1.131	PLUODITE	-11.003 -10.13		1 - 6.5	
HU-CHLOKITS	-60.828	-13.681	FLOUELTE	-10.043 -10.94		-1.3 D 00 0	
LAURUNTITE	-64.815	-61.693	NICKUCLINE	-13.364 -18.39	A RAUNBIIT		33 33.333
CA-MUNTHUE.	-14.275	-101.180	R-RONTHOR.	-33.686 -32.56		JE13.0	150 -106.733
NA-HUNTHUR.	-30.486	-20.303	NUSCOVITE	-18.321 -22.00	PESHNITS	-30.8	-30.634
PIERHUTITE	-09.075	33.333	PIRITE	-20.213 23.23	QUARTZ	-6.4	-4.930
WAIRARITE	-23.816	-27.245	WOLLASTONITE	8.794 7.84	ZUISITE	-35.1	20 -21.985
RAIDOLB ·	-38.031	33.333	MARCASITE	-14.325 -16.55 -11.059 -10.13 -10.643 -10.94 -15.982 -18.55 -35.282 -52.56 -18.327 -22.00 -90.579 99.99 8.794 7.84 -71.229 99.99	3		

UNU Geothernal Training Programme

.

8-	.894	CAHO	.900	FB	(OH)4-	.899			
03	. 648	MGt	1014 - 1012	PB	(OH)2+	.899	AL(SO4)2-		
5-	.031	MOU	300 .300	FR	804+	.898	ALF2+		
	.001	CLO	0034 .035	RR	CL++				
504-	.031	MCOL	u 009	22	0111	898	ALF5		
1904	. 544	NHA	ATER 899 .894 .892 .895 .892 659 672 203+ .900 CO3+ .895 H+ .900 H+ .902 + .891	FB	CL4-	.895	ALP6	.377	
1204-	.033								
				INTRI					
(ACT.)	.00	-7.741	KG++	.06	-5.626	FB(OH)	3 .00	.000	
	.58	-4.470	NACL	.04	-6.115	FB(OH)	400	.000	
ISI04	109.60	-2.943	ECL	.00	-8.504	FBCL +	.00	-9.361	
38104-	7.16	-4.124	NASO4-	2.68	-4.647	FBCL2		-22.931	
28104	.01	-7.238	TEE (PPH AND LOG H NGCL ECL NASO4- ESO4- CASO4 NGSO4	.15	-5.965	FECL		.000	
AH38104	.54	-5.339	CASO4	1.92	-4.850	FECL2	.00	.000	
3803	.80	-4.890	MGSO4	.19	-5.797	FBCL3	.00	.000	
2803-	.00	-0.040	CACUS	+ 1 1	-0.000	1 BOHI	00	.000	
2003	6.60	-3.973	MGCO3	.00	-7.363	FBS04		-7.615	
- 203	157.47	-2.588	CAHCO3+	1.08	-4.971	FBS04	+ .00	.000	
03	.87	-4.839	MGHCO3+ CAOH+	.01	-7.060	AL+++	.00	-18.909	
28	.00	.000	CAOH+	.00	-7.186	ALOH+	+ .00	-13.798	
8-	.00	.000	CAOH+ MGOH+ NH40H NH4+ PB++ PB++ PB++ PB++ PB(OH)2 PB(OH)3- PB(OH)3-	.00	-7.682	AL(OH)2+ .00	-9.222	
	.00	.000	NH4OH	.00	.000	AL(OH)3 .05	-6.193	
2504	.00	-17.476	NH4+	.00	.000	AL(OH)437	-5.411	
S04-	.00	-7.766	FB++	.01	-6.768	ALSO4	+ .00	-18.754	
04	129.73	-2.869	FB+++	.00	.000	AL(SO	4)200	-19.711	
P	.00	-7.054	FEOH+	.02	-6.587	ALF++	.00	-14.808	
-	15.00	-3.103	FB(OH)2	.00	-7.940	ALF2+	.00	-12.087	
Լ-	25.67	-3.140	FB(OH)3-	.00	-10.626	ALF3	.00	-11.030	
A+	138.64	-6.613	FRIONIA	.00	-19.095	ALLA-		-11.649	
+		-4.203	FE(OH)++	.00	.000	ALF5-		-13.316	
\++	3.11	-4.111	FB(OH)2+	.00	.000	ALF6-	00	-15.981	
	- 4040	.00805	IONIC BALANCE :	CATTONS	(MOL.BQ.)	00627197			
JAIG SIE	sadiu -	.00003	IVALO DADAROB .		(MOL.BQ.)				
				DIFFERI		-10.09			
IDATION	POTENTIAL	(VOLTS) :	BH H28= 99.9	99 BH	CH4= 99.995	9 BH H2=	99.999 BH	NH3= 99.999	
DC SOLUEI	LITY PROD	UCTS OF MIN	BRALS IN DEEP WAT	RR				×.	
1 100001	TEO			TEOS	R. CALC.		TR	OR. CALC.	
DULARIA		22 -18.474			-16.488			199 -13.545	
NHYDRITE		07 -7.353			-9.320			841 -2.943	
REIVALIA		02 -84.753						674 99.999	
								703 99.999	
G-CHLORIT	-27.1	66 - 60.848	HIV60001100						
G-CHLORIT AUMONTITE		82 -26.848 59 -90.309			8 -47.261	MG-MO	NTHOR86.	708 -91.816	
G-CHLORIT AUMONTITE A-MONTMOB	885.5	59 -90.309 60 -45.276	E-MONTMOR.	-41.64	18 -47.261 51 -20.222			708 -91.816 778 -37.234	
G-CHLORIT AUMONTITE A-NONTHOB	R85.5 R41.6	59 -90.309	E-MONTHOR. MUSCOVITE	-41.64	18 -47.261 51 -20.222 12 99.999	PREHN	ITB -36.	708 -91.816 778 -37.234 098 -2.943	

SAMPLE =	851115001		I Ne						
									••••••
		NTS IN DBBP							
H+	.919	ESO		I	B++	.698	FECL+	.909	
OH-	.908	- F-	.908	1	B+++	.472	AL+++	.472	
H3SI04-	.909	CL-	.907	1	BOH+	.912	ALOH++	.695	
H2SI04	.695	NA+	.909		B(OH)3-	.912	AL(OH)2+	.912	
H2BO3-	.906	K+	.907		E(OH) 4	. 692	AL(OH)4-	.910	
HCO3-	.909				BOH++	.692	ALSO4+	.910	
C03	.689				B(OH)2+	.912			
HS-	.908		.914				AL(S04)2-		
S					B(OH)4-	.912	ALF++	.695	
	.692	MGHC			ESO4+	.912	ALF2+	.912	
HS04-	.910	CAOH		F	BCL++	.692	ALF4-	.910	
\$04	.685	MGOH	+ .915	F	BCL2+	.912	ALF5	.689	
NASO4-	.912	NH4+	.906	F	BCL4-	.909	ALF6	.432	
CHEMICAL (COMPONENTS	IN DEEP WAT	BR (PPM AND LOG M	OLE)					
H+ (ACT.)			NG++		-5.444	FB(OH)3	.00	.000	
OH-		-5.818	NACL		-7.043	FB(OH)4			
H4SI04		2.923	KCL		-8.988	FRCL+		-10.180	
H38104-		-4.598							
			NASO4-		-5.043	FECL2		-31.670	
H2SI04		-8.002	KS04-		-6.420	FECL++			
NAH3SIO4	.21		CASO4		-5.187		.00		
H3RO3	.77		NGSO4		-6.409	FRCL3	.00	.000	
H2R03-	.08	-5.875	CACO3		-5.792	FECL4-	.00	.000	
H2C03	1.96	-4.501	NGCO3	.00	-7.352	FBS04	.01	-7.382	
HC03-	161.96	-2.576	CAHCO3+	.16	-5.793	FESO4+	.00	.000	
C03	1.68		NGHCO3+		-7.113 .			-14.748	
H2S	.00	.000	CAOH+		-8.790	ALOH++		-11.525	
HS-	.00	.000	NGOH+	.00		AL(OH)24		-8.706	
					000	AT LOTIA			
S	.00		NH40H	.00		AL(OH)3		-6.413	
H2SO4		-20.737	NH4+	.00		AL(OH)4-			
HS04-	.00		FE++		-6.393	ALSO4+		-15.077	
\$04	131.94	-2.862	FE+++	.00	.000	AL(SO4)2	.00	-16.222	
HF	.00	-8.302	FBOH+	.00	-7.707	ALF++		-11.102	
F-	15.00	-3.103	FB(OH)2	.00	-10.891	ALF2+	.00	-8.765	
CL-		-3.140	FB(OH)3-		-15.933	ALF3		-7.901	÷.
NA+		-2.218	FB(OH)4		-22.058	ALF4-		-8.624	
R+	2.47		FB(OH)++	.00		ALF5		-10.293	
CA++	3.90		FB(OH)2+	.00		ALF6		-12.716	
IONIC STRE	BNGTH =	.00816	IONIC BALANCB :		S (MOL.EQ.) (MOL.EQ.) ENCE (%)	.00700387			
OXIDATION	POTENTIAL	, (VOLTS) :	BH H28= 99.99	9 BH	CH4= 99.999	9 BH H2= 99	9.999 BH	NH3= 99.999	
LOG SOLUBI			RALS IN DEEP WATE				***		
INUTION		R. CALC.	AFRIME LOU		R. CALC. 45 -16.415	INITATIO		DR. CALC.	
ADULARIA		69 -18.396							
ANHYDRITE		65 -7.194	CALCITE		57 -8.883			-2.923	
		90 -94.379	FLUORITE		26 -10.457			64 99.999	
LAUMONTITE		62 -26.632	MICROCLINE		47 -18.396			99.999	
		23 -73.562			33 -38.938			20 -74.986	
NA-MONTMOR	R56.3	47 -36.956	MUSCOVITE	-28.0	29 -17.448	PREHNITI	B -41.1	553 -39.596	
PYRRHOTITE	-140.9	94 99.999	PYRITE	-212.0	14 99.999	QUARTZ	-4.0)55 -2.923	
WATRAKITE		04 -26.632						005 -39.122	
EPIDOTE		82 99.999			35 99.999			and the second se	
	0010		11110/00110						

Appendix II. An example of data used for log(Q/K) diagram construction.

SINO-9, WELL18

	MINERALS		TEMPERATU	IRES		
	LOG(Q/K) \ T°C		20	40	60	80
	ADULARIA	1	5.107	3.712	2.51	1.479
	ANHYDRITE	2	-0.594	-0.447	-0.285	-0.117
	CA-MONTMOR	5	65.629	51.228	38.255	27.04
	NA-MONTMOR	6	32.159	24.759	18.093	12.321
5	WAIRAKITE	8	4.428	3.246	2.256	1.445
6	ALBITE LOW	10	5.597	4.325	3.226	2.28
7	CALCITE	11	-0.634	-0.476	-0.306	-0.13
8	MICROCLINE	13	7.185	5.588	4.202	3.00
9	K-MONTMOR	14	30.93	23.396	16.625	10.76
10	PYRITE	16	36.95	27.742	19.519	12.25
11	MARCASITE	18	7.171	-0.139	-6.698	-12.49
12	ANALCIME	19	4.149	3.177	2.338	1.62
13	CHALCEDONY	20	0.827	0.587	0.376	0.188
14	GOETHITE	21	-1.421	-0.812	-0.264	0.23
15	MAGNETITE	22	-1.575	0.287	1.97	3.502
16	MG-MONTMOR	23	64.347	50.117	37.287	26.192
17	QUARTZ	25	1.236	0.951	0.7	0.47
	NTNEDNIC		memore a mu	DEC		
	MINERALS		TEMPERATU		140	160
1	LOG(Q/K)\ T°C		100	120	140 -0.747	
	LOG(Q/K)\ T°C ADULARIA	1	100 0.604	120 -0.134	-0.747	-1.249
2	LOG(Q/K)\ T°C ADULARIA ANHYDRITE	1 2	100 0.604 0.065	120 -0.134 0.249	-0.747 0.439	0.631
23	LOG (Q/K) \ T°C ADULARIA ANHYDRITE CA-MONTMOR	1 2 5	100 0.604 0.065 17.621	120 -0.134 0.249 9.874	-0.747 0.439 3.601	-1.249 0.631 -1.429
2 3 4	LOG (Q/K) \ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR	1 2 5 6	100 0.604 0.065 17.621 7.461	120 -0.134 0.249 9.874 3.448	-0.747 0.439 3.601 0.181	-1.249 0.631 -1.429 -2.457
2345	LOG(Q/K)\ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR WAIRAKITE	1 2 5 6 8	100 0.604 0.065 17.621 7.461 0.803	120 -0.134 0.249 9.874 3.448 0.319	-0.747 0.439 3.601 0.181 -0.021	-1.249 0.630 -1.429 -2.457 -0.23
23456	LOG(Q/K)\ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR WAIRAKITE ALBITE LOW	1 2 5 6 8 10	100 0.604 0.065 17.621 7.461 0.803 1.481	120 -0.134 0.249 9.874 3.448 0.319 0.806	-0.747 0.439 3.601 0.181 -0.021 0.247	-1.249 0.631 -1.429 -2.457 -0.23 -0.208
2 3 4 5 6 7	LOG (Q/K) \ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR WAIRAKITE ALBITE LOW CALCITE	1 2 5 6 8 10 11	100 0.604 0.065 17.621 7.461 0.803 1.481 0.038	120 -0.134 0.249 9.874 3.448 0.319 0.806 0.207	-0.747 0.439 3.601 0.181 -0.021 0.247 0.375	-1.249 0.633 -1.429 -2.457 -0.208 0.549
2345678	LOG (Q/K) \ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR WAIRAKITE ALBITE LOW CALCITE MICROCLINE	1 2 5 6 8 10 11 13	100 0.604 0.065 17.621 7.461 0.803 1.481 0.038 1.98	120 -0.134 0.249 9.874 3.448 0.319 0.806 0.207 1.108	-0.747 0.439 3.601 0.181 -0.021 0.247 0.375 0.375	-1.249 0.631 -1.429 -2.457 -0.23 -0.208 0.549 -0.234
23456789	LOG (Q/K) \ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR WAIRAKITE ALBITE LOW CALCITE MICROCLINE K-MONTMOR	1 2 5 6 8 10 11 13 14	100 0.604 0.065 17.621 7.461 0.803 1.481 0.038 1.98 5.835	120 -0.134 0.249 9.874 3.448 0.319 0.806 0.207 1.108 1.762	-0.747 0.439 3.601 0.181 -0.021 0.247 0.375 0.375 -1.557	-1.249 0.631 -1.429 -2.457 -0.208 0.549 -0.234 -0.234 -0.234
2 3 4 5 6 7 8 9 10	LOG (Q/K) \ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR WAIRAKITE ALBITE LOW CALCITE MICROCLINE K-MONTMOR PYRITE	1 2 5 6 8 10 11 13 14 16	100 0.604 0.065 17.621 7.461 0.803 1.481 0.038 1.98 5.835 5.844	120 -0.134 0.249 9.874 3.448 0.319 0.806 0.207 1.108 1.762 0.156	-0.747 0.439 3.601 0.181 -0.021 0.247 0.375 0.375 -1.557 -4.991	-1.249 0.631 -1.429 -2.457 -0.208 0.549 -0.234 -0.234 -4.24 -10.298
2 3 4 5 6 7 8 9 10	LOG (Q/K) \ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR WAIRAKITE ALBITE LOW CALCITE MICROCLINE K-MONTMOR	1 2 5 6 8 10 11 13 14 16 18	100 0.604 0.065 17.621 7.461 0.803 1.481 0.038 1.98 5.835 5.844 -17.593	120 -0.134 0.249 9.874 3.448 0.319 0.806 0.207 1.108 1.762	-0.747 0.439 3.601 0.181 -0.021 0.247 0.375 0.375 -1.557	$ \begin{array}{r} -1.249\\ 0.632\\ -1.429\\ -2.457\\ -0.208\\ 0.549\\ -0.234\\ -4.24\\ -10.298\\ -30.532\end{array} $
2 3 4 5 6 7 8 9 10 11 12	LOG (Q/K) \ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR WAIRAKITE ALBITE LOW CALCITE MICROCLINE K-MONTMOR PYRITE MARCASITE ANALCIME	1 2 5 6 8 10 11 13 14 16 18 19	100 0.604 0.065 17.621 7.461 0.803 1.481 0.038 1.98 5.835 5.844 -17.593 1.016	120 -0.134 0.249 9.874 3.448 0.319 0.806 0.207 1.108 1.762 0.156 -22.105 0.513	$\begin{array}{r} -0.747\\ 0.439\\ 3.601\\ 0.181\\ -0.021\\ 0.247\\ 0.375\\ 0.375\\ -1.557\\ -4.991\\ -26.189\\ 0.102\end{array}$	-1.249 0.631 -1.429 -2.457 -0.208 0.549 -0.234 -4.24 -10.298 -30.531 -0.223
2 3 4 5 6 7 8 9 10 11 12 13	LOG (Q/K) \ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR WAIRAKITE ALBITE LOW CALCITE MICROCLINE K-MONTMOR PYRITE MARCASITE ANALCIME CHALCEDONY	1 2 5 6 8 10 11 13 14 16 18 19 20	100 0.604 0.065 17.621 7.461 0.803 1.481 0.038 1.98 5.835 5.844 -17.593 1.016 0.02	120 -0.134 0.249 9.874 3.448 0.319 0.806 0.207 1.108 1.762 0.156 -22.105 0.513 -0.131	-0.747 0.439 3.601 0.181 -0.021 0.247 0.375 0.375 -1.557 -4.991 -26.189 0.102 -0.267	-1.249 0.637 -1.429 -2.457 -0.208 0.549 -0.234 -4.24 -10.298 -30.537 -0.225 -0.225 -0.397
2 3 4 5 6 7 8 9 10 11 12 13 14	LOG (Q/K) \ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR WAIRAKITE ALBITE LOW CALCITE MICROCLINE K-MONTMOR PYRITE MARCASITE ANALCIME CHALCEDONY GOETHITE	1 2 5 6 8 10 11 13 14 16 18 19 20 21	100 0.604 0.065 17.621 7.461 0.803 1.481 0.038 1.98 5.835 5.844 -17.593 1.016 0.02 0.681	120 -0.134 0.249 9.874 3.448 0.319 0.806 0.207 1.108 1.762 0.156 -22.105 0.513 -0.131 1.087	-0.747 0.439 3.601 0.181 -0.021 0.247 0.375 -1.557 -4.991 -26.189 0.102 -0.267 1.447	-1.249 0.637 -1.429 -2.457 -0.208 0.549 -0.234 -4.24 -10.298 -30.537 -0.225 -0.225 -0.225 -0.298 -30.537 -0.225 -0.299 -0.2
2 3 4 5 6 7 8 9 10 11 12 13 14	LOG (Q/K) \ T°C ADULARIA ANHYDRITE CA-MONTMOR NA-MONTMOR WAIRAKITE ALBITE LOW CALCITE MICROCLINE K-MONTMOR PYRITE MARCASITE ANALCIME CHALCEDONY	1 2 5 6 8 10 11 13 14 16 18 19 20	100 0.604 0.065 17.621 7.461 0.803 1.481 0.038 1.98 5.835 5.844 -17.593 1.016 0.02	120 -0.134 0.249 9.874 3.448 0.319 0.806 0.207 1.108 1.762 0.156 -22.105 0.513 -0.131	-0.747 0.439 3.601 0.181 -0.021 0.247 0.375 0.375 -1.557 -4.991 -26.189 0.102 -0.267	-1.249 0.631 -1.429 -2.457

Table 3.1 List of conventional geothermometers (from Fournier, 1981)

Geothermometer	Equation	Restrictions
a. Quartz-no steam loss	$t^{\circ}C = \frac{1309}{5 \cdot 19 - \log C} - 273 \cdot 15$	$t = 0-250^{\circ}C$
b. Quartz-maximum steam loss	$t^{\circ}C = \frac{1522}{5.75 - \log C} - 273.15$	$t = 0 - 250^{\circ} \text{C}$
c. Chalcedony	$t^{\circ}C = \frac{1032}{4.69 - \log C} - 273.15$	$t = 0 - 250^{\circ} \text{C}$
d. α-Cristobalite	$t^{\circ}C = \frac{1000}{4.78 - \log C} - 273.15$	$t = 0 - 250^{\circ} \text{C}$
e. β -Cristabalite	$t^{\circ}C = \frac{781}{4.51 - \log C} - 273.15$	$t = 0 - 250^{\circ}$ C
f. Amorphous silica	$t^{\circ}C = \frac{731}{4.52 - \log C} - 273.15$	$t = 0 - 250^{\circ}$ C
g. Na/K (Fournier)	$t^{\circ}C = \frac{1217}{\log (Nn/K) + 1.483} - 273.15$	t>150°C
h. Na/K (Truesdell)	$t^{\circ}C = \frac{855 \cdot 6}{\log (Na/K) + 0.8573} - 273 \cdot 15$	t>150°C
i. Na-K-Ca	$t^{\circ}C = \frac{1647}{\log (Na/K) + \beta [\log(\sqrt{Ca}/Na) + 2.06] + 2.47} - 273.15$	$t < 100^{\circ}$ C, $\beta = 4/2$ $t > 100^{\circ}$ C, $\beta = 1/2$
j. ∆ ¹⁸ O(SO ₄ [*] – H ₂ O)	1000 ln $\alpha = 2.88(10^6 T^{-2}) - 4.1$ $\alpha = \frac{1000 + \delta^{18}O(HSO_4^{-})}{1000 + \delta^{18}O(H_2O)}$ and $T = {^{\circ}K}$	

Table 3.2 Free energies of formation of minerals and aqueous species in kJ/mole at the saturated vapor pressure of pure water (from Helgeson et al., 1978)

		r	emperature	(°C)		
	100	150	200	250	300	350
Quartz	-859.8	-862.7	-865.7	-869.0	-872.4	-876.5
Albite	-3725.9	-3739.3	-3754.3	-3770.6	-3787.8	-3805.8
K-feldspar	-3763.9	-3777.7	-3793.2	-3810.0	-3827.5	-3845.9
Muscovite	-5615.8	-5639.2	-5656.8	-5680.6	-5706.1	-5732.9
Kaolinite	-3806.6	-3820.4	-3836.3	-3853.5	-3872.3	-3892.4
Calcite	-1137.6	-1143.9	-1150.2	-1157.3	-1164.4	-1172.4
Wairakite	-6215.8	-6235.0	-6274.7	-6307.4	-6342.5	-6378.9
Zoisite	-6515.3	-6534.6	-6556.3	-6580.2	-6606.1	-6633.7
н+	0	0	0	0	0	0
Na ⁺	-266.9	-270.7	-274.9	-279.1	-283.7	-286.2
к+	-290.4	-295.8	-301.7	-307.5	-312.5	-317.6
Ca ⁺⁺	-548.9	-546.0	-543.5	-540.6	-535.6	-523.8
H ₂ O liquid	-243.1	-247.7	-252.7	-258.2	-264.0	-269.9
H ₂ O vapor	-243.1	-253.1	-263.2	-273.2	-284.1	-294.6
co ₂ , gas	-410.9	-422.2	-433.5	-445.2	-457.3	-469.4

Table 5.1. Equilibrium constants for minerals used in the WATCH program (from Arnorsson et al., 1982)

MINERAL	REACTION	TEMPERATURE FUNCTION ("R)
401 ADULARIA	HAISI 308 + 8H20 - K" + AI (CH) + 3H4510	+38.85 -0.0458T -17260/T +1012722/T2
402 LON-ALBITE	MaALSI,0 + 8H20 - Ha* + AL (CH) + 3H2510	+36.83 -0.04397 -16474/T +1004631/T2
403 ANALCINE	NaA151.06 . H.O + SH.O - Na" + A1 (OH) + 24,510	+34.08 -0.04071 -14577/T +970981/T2
404 ANNYORITE	Casto, - Ca ⁺² + sto, ²	+6.20 -0.0229T -1217/T
605 CALCITE	$c_{acco_{3}} = c_{a}^{*2} + c_{0}^{*2}$	+10.22 -0.03497 -2476/7
406 CHALCEDONY	\$10, + 2H,0 - H, \$10	+0.11 -1101/7
107 No CHLORITE	My AL SI 3010 (CH) + 10H 0 - 5Hg + AL (CH) + 3H SIO + 8CH	-1022.12 -0.3861T +9363/T +412.4610gT
408 FLUCRITE	Call, - Ca ⁺² + 27	+66.54 -4310/T -25.47100T
409 CUETHITE	PECCH + H_0 + CH" - Pe (CH)	-80.34 +0.0991 +20290/1 -2179296/12
410 LAUNINTITE	CaA1_51_012 -4H_0 + 8H_0 - Ca+2 + 2A1 (CH) + 4H_5104	+65.95 -0.0828T -28358/T +1916098/T ²
411 MICROCLINE	101.181.00 + 84.0 - R" + AL (CH) + 34.810"	+44.55 -0.04987 -19883/T +1214019/T
412 PRONETTE	Pe,04 + 4H,0 - 2Pe (OH) + Pe+2	-155.58 +0.1658T +35298/T -4258774/T
413 Co-HONTHOR.	6Ca _{0.167} Al _{2.33} Bl _{3.67} O ₁₀ (CH) + 601.0 + 12CH" - Ca ² + 14A1(CH) + 22H_810*	+30499.49 +3.5109T -1954295/T +125536640/T ² -10715.661cq1
414 R-MONTHOR.	310, 33 A1 2, 33 S1 3, 670 10 (CH) 2 + 30H 20 + 6CH" - R" + 7A1 (CH) 4 + 11H 8104	+15075.11 +1.73467 -967127/7 +61985927/7 ² -5294.7210q7
415 Mg-MONTHOR.	64470.167422.33812.67010 (CH1 + 604.0 + 12CH - 149*2 + 1441 (CH1 + 22H_B10*	+30514.07 +3.51807 -1953043/T +125530030/T ² -10723.711og7
416 Na-MONTMOR.	3Nn _{0.33} A1 _{2.33} 81 _{3.67} 0 ₁₀ (CH) ₂ + 30H ₃ O + 6CH [*] - Nn ⁺ + 7AL (CH) [*] ₄ + 11H ₄ 510 [*] ₄	+15273.90 +1.76237 -978782/T +62805036/T ² -5366.181oaT
417 HUSCOVITE	121,51,010 (CH) + 10H,0 + 20H - R + 3AL (CH) + 3H4510	+6113.68 +0.6914T -394755/T +25226323/T ² -2144.771ogT
418 PREMITE	Ca_A1_S1_3010 (CH) + 10H20 - 2Ca*2 + 2A1 (CH) + 2CH" + 3H4S104	+90.53 -0.1298T -36162/T +2511432/T2
419 PYIOROTITE	8Fe8 + 504 + 22H20 + 6CH - 8Fe (CH) + 9H25	+3014.68 +1.2522T -103450/T -1284.861ogT
420 PYRITE	Bres, + 26H,0 + 10CH" - BFe (CH1 + 504 + 15H,5	+4523.89 +1.6002T -180405/T -1860.331ogT
421 QUARTE	510, * 2H,0 - H,510"	+0.41 -1309/T (0-250°C); +0.12 -1164/T (180-300°C)
	CaA12514012.5H20 + 10H20 - Ca*2 + 2A1 (OH) + 4H45104	+61.00 -0.0847T -25018/T +1801911/T ²
423 NOLLASTONIT	Casio, + 2H* + H,0 - Ca*2 + H,SIO	-222.85 -0.0337T +16258/T -671106/T ² +80.681ogT
424 BOISITE	Ca_A1_51_0_12 (CH) + 12H_0 = 2Ca+2 + 3A1 (CH) + 3H_510 + CH	+106.61 -0.1497T -40448/T +3028977/T ²
425 EPIDOTE	$Ca_2 PeAl_2 SI_3 O_{12} (CH) + 12H_2 O = 2Ca^{+2} + Pe (CH)_4^{-1}$ + 2Al (CH)_4^{-1} + 3H_4 SIO_4^{+1} + CH^{-1}	-27399.84 -3.8749T +1542767/T -92778364/T ² +9850.381ocT
426 HURCHSITE	Brus, + 26H,0 + 100H" - Bre(OH) + 80-2 + 15H,8	+4467.61 +1.5879T -169944/T -1838.451ogT

GROUP	MINERAL(S)	CHEMICAL COMPOSITION	
1.	MG-MONIMOR. CA-MONIMOR.	Mg _{0.33} AL ₂ Si ₄ O ₁₀ (OH) 2° nH ₂ O Ca _{0.33} Al ₂ Si ₄ O ₁₀ (OH) 2° nH ₂ O	
	NA-MONIMOR. K-MONIMOR.	$Na_{0.33}Al_2Si_4O_{10}(OH)_2*nH_2OK_{0.33}Al_2Si_4O_0(OH)_2*nH_2OK_0$	
2.	MUSCOVITE LAUMONITIE MICROCLINE ALBITE LOW ADULARIA ANALCIME FREHNITE WALRAKITE ZOISITE	$KAl_{2}(AlSi_{3})O_{10}(OH)_{2}$ $CaAl_{2}Si_{4}O^{1}_{2}\cdot 4H_{2}O$ $KAlSi_{3}O_{8}$ $NaAlSi_{3}O_{8}$ $NaAlSi_{2}O_{6}\cdot H_{2}O$ $Ca_{2}Al_{2}Si_{3}O_{10}(OH)_{2}$ $CaAl_{2}Si_{4}O_{12}\cdot 2H_{2}O$ $Ca_{2}Al_{2}Si_{3}O_{12}(OH)$	
3.	QUARIZ CHALCEDONY FILIORITE	SiO ₂ SiO ₂ CaF ₂	
4.	CALCITE ANHYDRITE WOLLASTONITE	CaCO3 CaSO4 CaSIO3	
5.	MG-CHLORITE	Mg6AlSi3010 (OH) 8	
MINERALS OUT	OF SCALE PYRRHOITIE EPIDOIE MARSCASIIE PYRIIE GOEIHIIE MAGNEITIE	Fe _{1-X} S Ca ₂ (A1, Fe) ₃ Si ₃ O ₁₂ (OH) FeS ₂ FSS ₂ &FeO (OH) (Fe, Mg) Fe ₂ O ₄	

Table 5.2. Classification of log(Q/K) curves by their slope as they appear in the diagrams and chemical composition of the minerals (see Figure 5.5).

Sample Number and Location Equilibria Condi		s Temperatures ° C						
Bailte Marter an Incarrow	Mutthen ownedos	Sampling	Locus	Equilibrium		Chalcedony	Quartz	Nak
16, Reykir, well 17	No*	76	50 - 95		75 - 81	65	91	78
18, Reykjavik, well 30	No (boiling)	100	93 - 110		93 - 110	90	114	119
20, Seltjamannes, well 4	No (boiling)	114	30 - 100		119 - 126	112	135	91
20-1, well 2, 80 meter depth	No (dilution) *	Nm	65 - 100		119 - 126	61	86	52
20-2, well 2, 570 meter depth	Yes	Nm	95 - 130	110	119 - 126	102	125	82
20-3, well 2, 725 meter depth	Yes	Nm	95 - 135	130	119 - 126	98	122	69
21, Reykir, Lundareykjad., spring	No (dilution)*	75	60 - 140		?	130	152	110
21-1, Thvera, cold spring	No (dilution)	3.6	45 - 80		Ambient	24	49	112
21-2, England, hot spring	No* 140	91	70 - 140		95	130	152	104
39, Saudarkrokur, well 1	No*	68	40 - 110		70	79	103	67
50, Urridavatn, well 3	No (dilution)*	39	30 - 80		59	52	78	54
50-1, well 8	No (dilution)	77	40 - 100		77	77	102	65
50-2, well 4	No (dilution)	60	30 - 90		65	68	93	57
55, Leira, well 4	Yes	128	150 - 190	164	134 - 173	162	183	214
60, Reykjanes, Isafjardard., spring	No (dilution)	84	40 - 100		96	86	110	82
60-1, hot spring 11 - 301	Yes	78.8	72 - 120	85	96	91	115	94
60-2, hot spring 11 - 302	No (dilution) *	94	50 - 110		96	94	118	71
60-3, hot spring 11 - 306	No (dilution) *	84	50 - 110		96	91	115	72
61, Gjogur, spring	Yes	72	60 - 95	77	?	71	96	82
63, Lysuholl, well 6	No (dilution)	60	105 - 160		63	141	163	171
IRDP, Areyjar	No	42.8	30 - 160		47 - 78	74	51	99

Table 7.1 Summary of results for the Icelandic samples

Notes: 1. The sample numbers are the same as in Arnorsson's paper (1983a), but the ones followed by dashes are somples taken by the National Energy Authority from the same areas or very close to the locations marked in Figure 6.1; 2. The ones marked with * are those with very widely dispersed clay minerals in their log(Q/K) diagrams;

Table 7.2 Summary of results for the Chinese samples

San	ple Number and Location	Equilibria Conditions		Temperatures ° C					
		agenties of the second	Sampling	Locus	Equilibrium	Reservoir	Chalcedony	Quartz	Nak
1.	Hot springs of western Zhanhzhou	, no seawater influence							
1.1	Nanjin	Yes	78.5	70 - 115	90	90	86	111	66
1.2	Hua-an	No (dilution)	61.7	65 - 105			85	109	104
1.3	Xingtang	No (dilution)	35.4	50 - 85		50	81	105	70
2.	Hot springs of western Zhangzhou	, mixing with seawater				90 - 110			
2.1	. Tang-an	No (contamination)	79.9	100 - 13			97	120	126
2.2	Xinlin	No (contamination)	93.3	100 - 170			103	126	90
2.3	Gangwei	No (contamination)	77.7	80 - 125			84	109	95
3.	Geothermal well water from the Z	hangzhou geothennal field				120 - 125			
3.1	Longsi	No (contamination)	98	110 - 175			113	146	145
3.2	Shuihuazan	No (contamination)	97.4	110 - 175			115	138	144
3.:	Xingjiangzaotang	Close (slight dilution)	37.2	85 - 140	117		83	108	182
	Jucizan	No (contamination)	78.8	100 - 160			102	126	119
3.5	5 Sizhongyiyuan	No (contamination)	51.6	85 - 140			83	107	131
	Xiazuang	No (contamination)	56.3	95 - 140			74	99	101

Notes: 1. Non-geothermal waters for which the calculations have been performed calculations on are not included in this table; 2. Inflow temperature (for wells) or the highest measured temperature (for hot springs) are used for the reference " reservior temperature in the table.

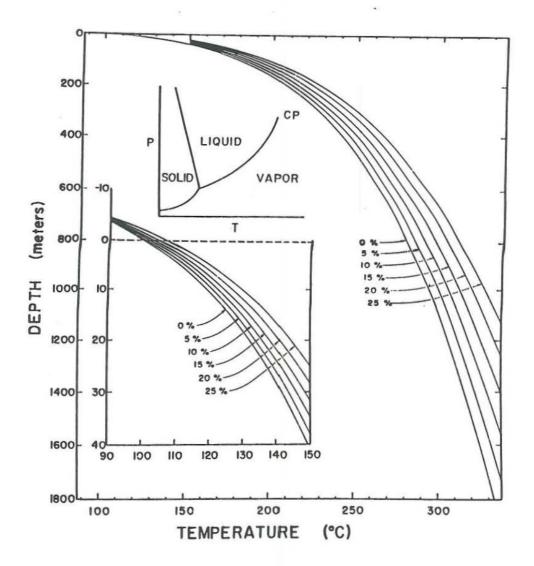
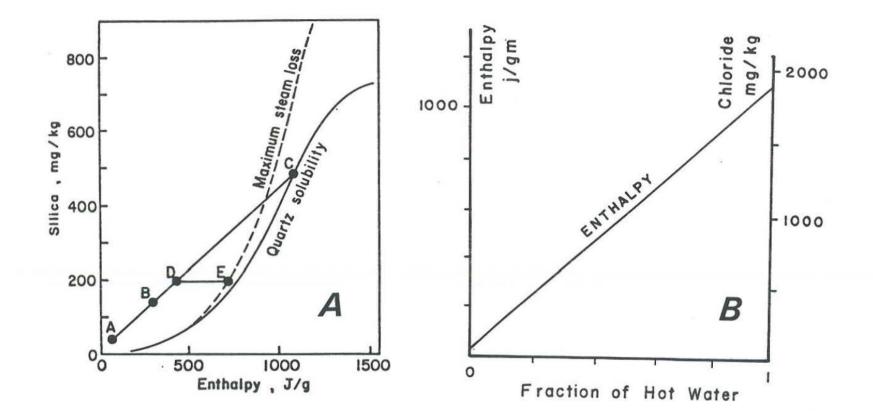
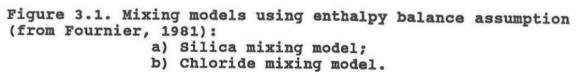




Figure 2.1. Boiling - point versus depth curves for waters with different wt% of NaCl compositions (from Haas, 1971).

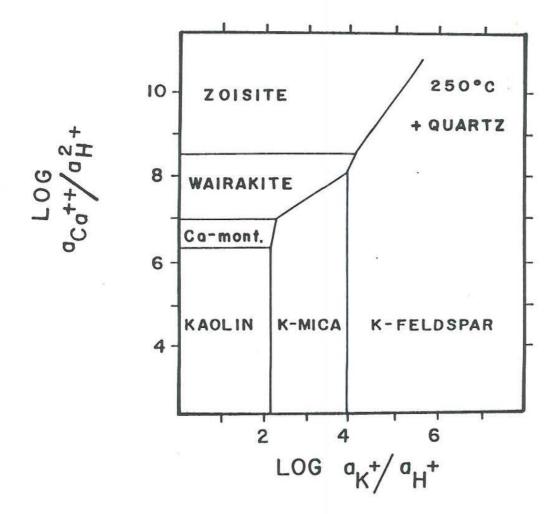
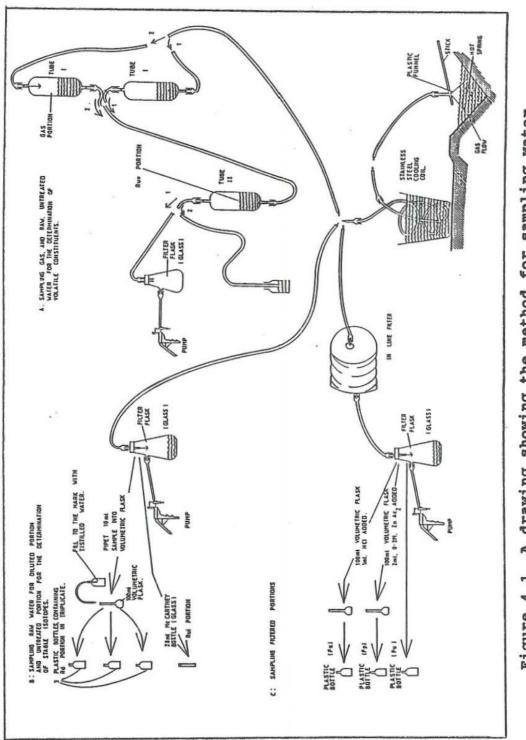
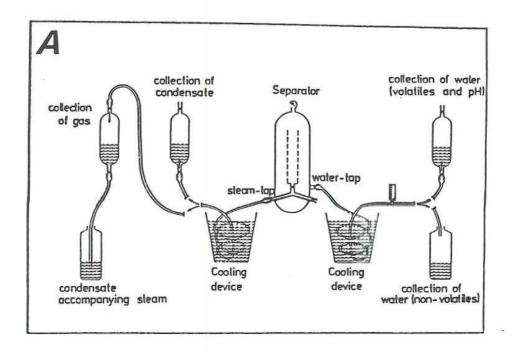




Figure 3.2. An example of an activity - activity diagram (from Henley, 1984b)

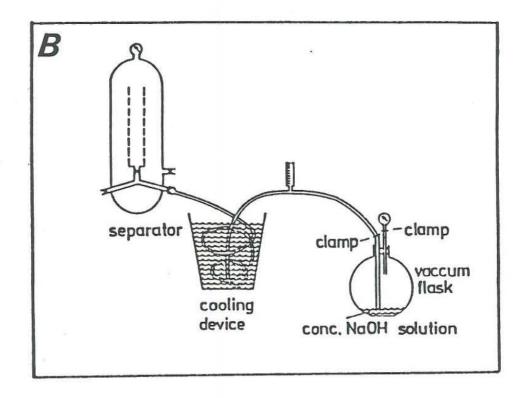


Figure 4.2. Schematic drawing showing the system for sampling from high temperature wells:

 a) Collecting water, condensate and non-condensable gas fractions;

b) Collecting total steam.

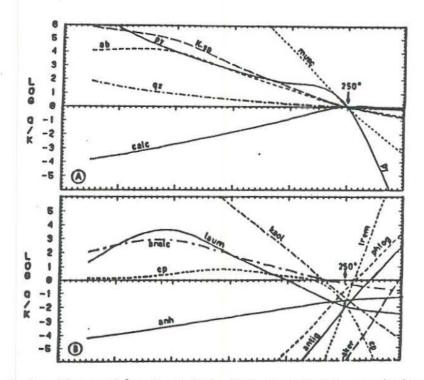


Figure 5.1. Theoretical model for log(Q/K) equilibria for a synthetic geothermal water that was arbitrarily equilibrated with muscovite, K-spar, pyrite, albite, quartz and calcite at 250°C by a heterogeneous equilibrium calculation (from Reed and Spycher, 1984) showing:

a) The curves for minerals that equilibrate cross the log(Q/K) = 0 line at the same given temperature;

b) Minerals that do not equilibrate do not conform with the theoretical equilibria.

. 1

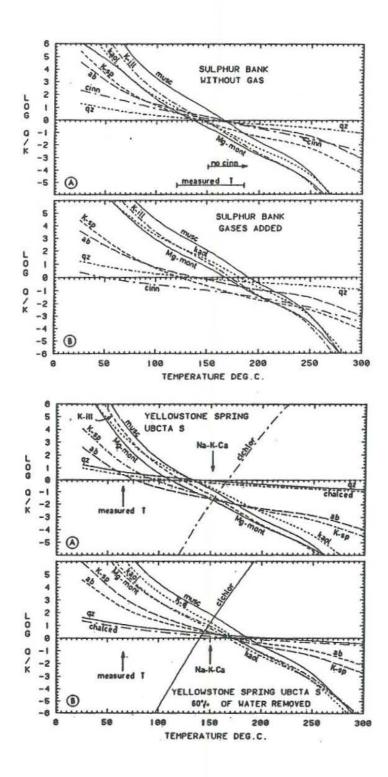


Figure 5.2. Examples showing the effects of boiling.

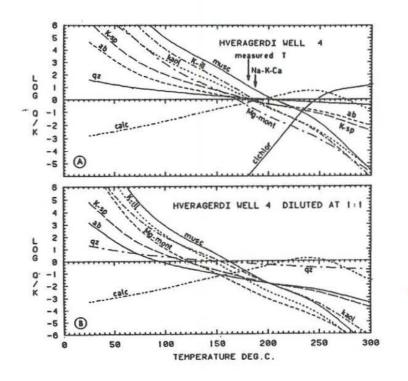


Figure 5.3 An example showing the effect of dilution.

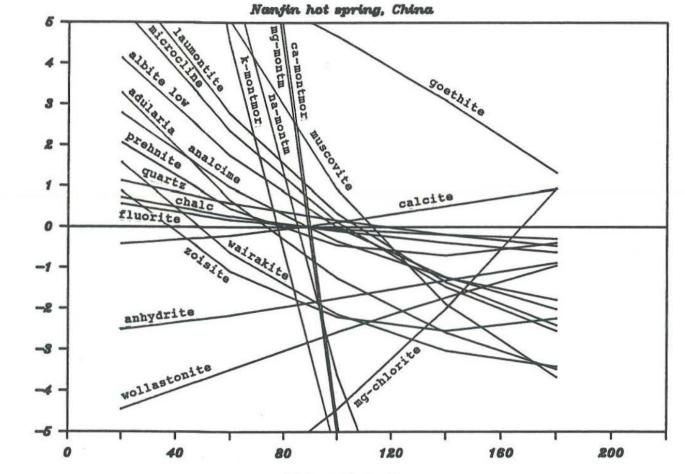
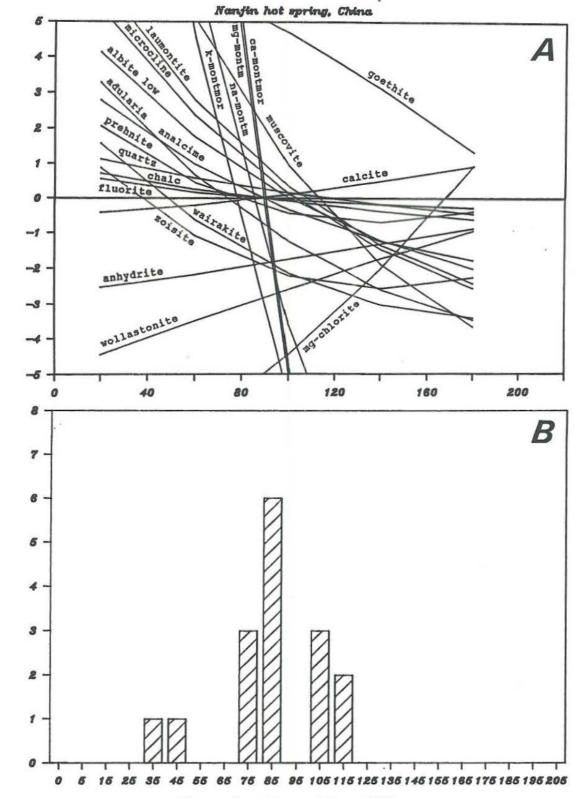


Figure 5.4 Theoretical solubility (logK) curves from the WATCH program.

Figure 5.5 An example showing the $\log(Q/K)$ diagram for all minerals that stay within the selected temperature and $\log(Q/K)$ scale ranges.

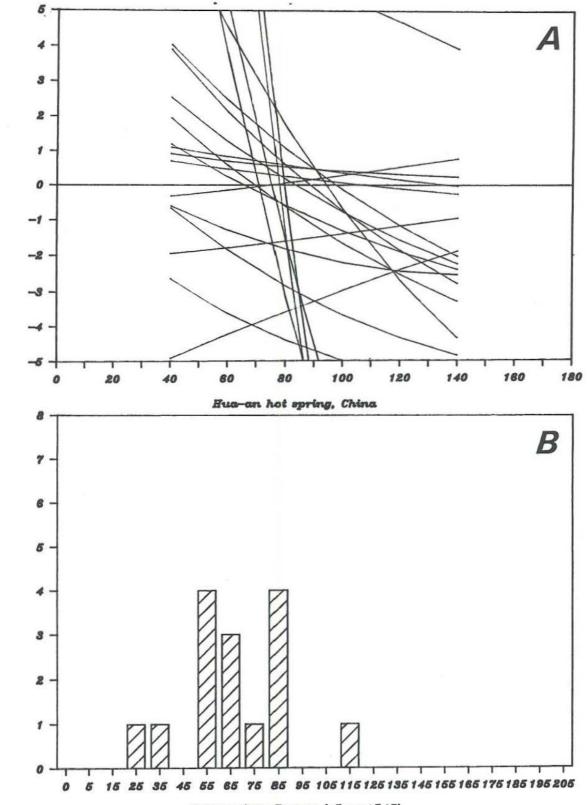

٠

(W/b) 807

Temperature 'C

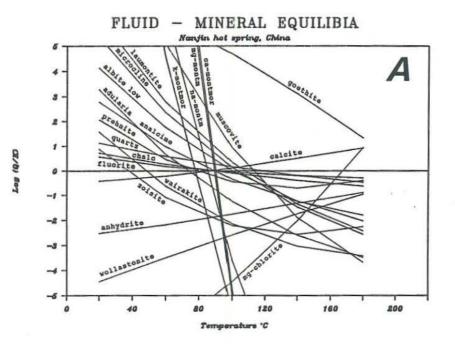
Figure 5.6 An example showing the distribution of possible equilibrium temperatures in the $\log(Q/K)$ diagram in a case of equilibrium.

CI/b) Boy


Number of Minerale at Equilibria

Temperature Ranges (-5 - +6 °C)

Figure 5.7 An example showing the distribution of possible equilibrium temperatures in the log(Q/K) diagram in a case of non-equilibrium.


CT/B) DOT

Number of Minerale at Equilibria

Temperature Ranges (-5 --- +5 °C)

Figure 5.8 Log(Q/K) diagrams from WATCH showing the effect of dilution by mixing of relatively "pure" groundwater (1:1 ratio).

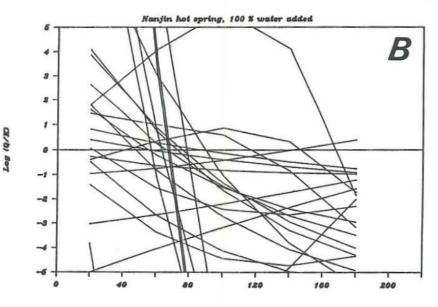
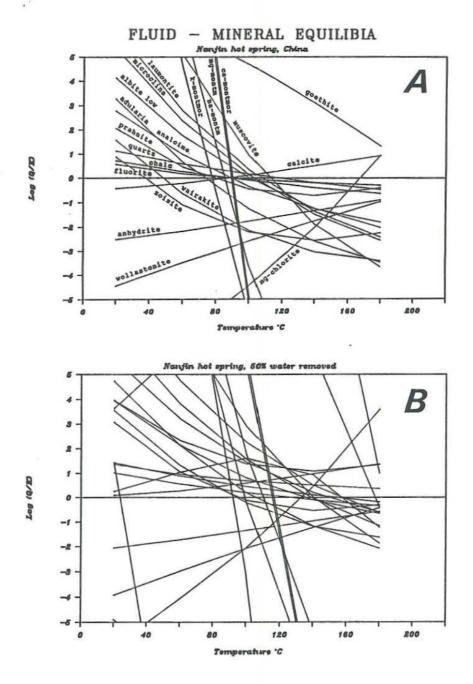



Figure 5.9 Log(Q/R) diagram from WATCH showing the effect of simple removal of water from the sample (simple steam loss).



Figure 5.10 A map of Fujian Province, Southeast China showing the location of the Zhangzhou geothermal field and the surrounding areas where the Chinese samples were taken.

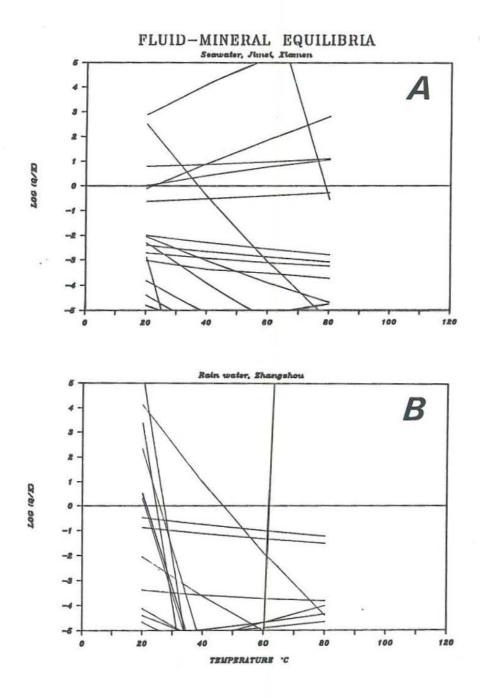


Figure 5.11 The log(Q/R) diagrams for seawater and rainwater from the Zhangzhou geothermal area and surroundings, Southeast China.

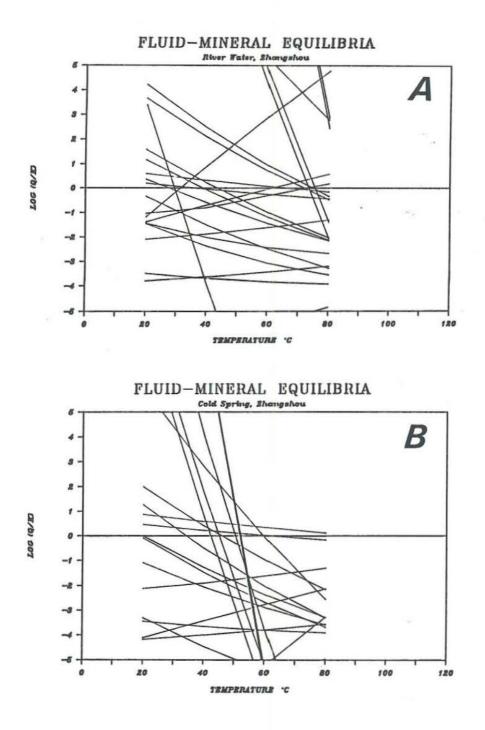


Figure 5.12 The $\log(Q/K)$ diagrams for riverwater and cold spring water from the Zhangzhou geothermal area and surroundings.

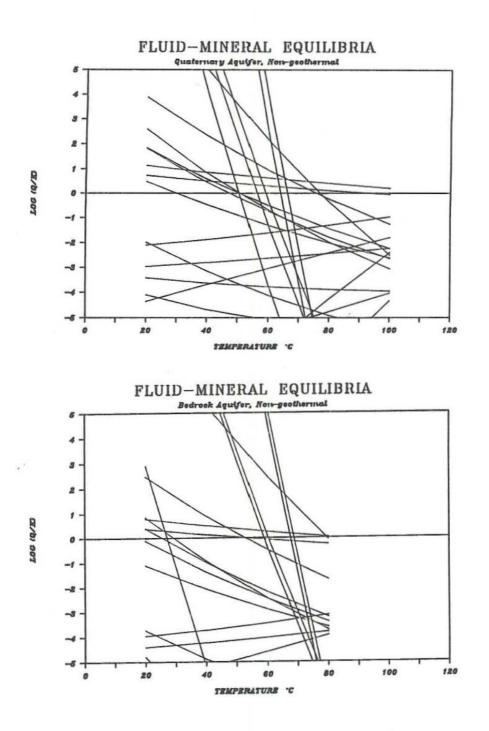


Figure 5.13 The log(Q/K) diagrams for groundwater of ambient temperature.

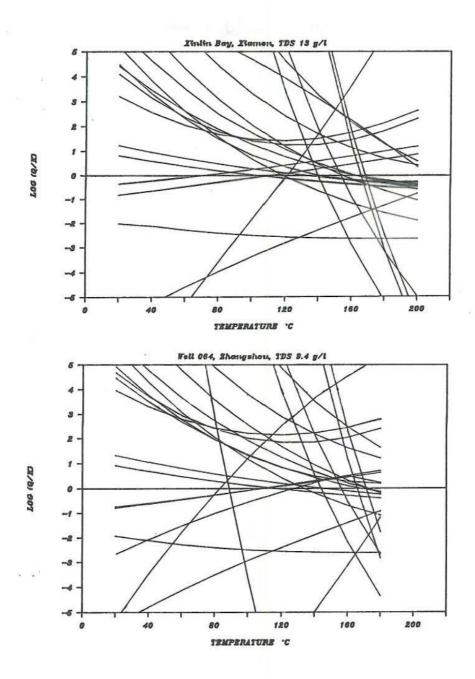


Figure 5.14 The $\log(Q/K)$ diagrams for some coastal geothermal water samples from the Zhangzhou area, which are chemically dominated by seawater.

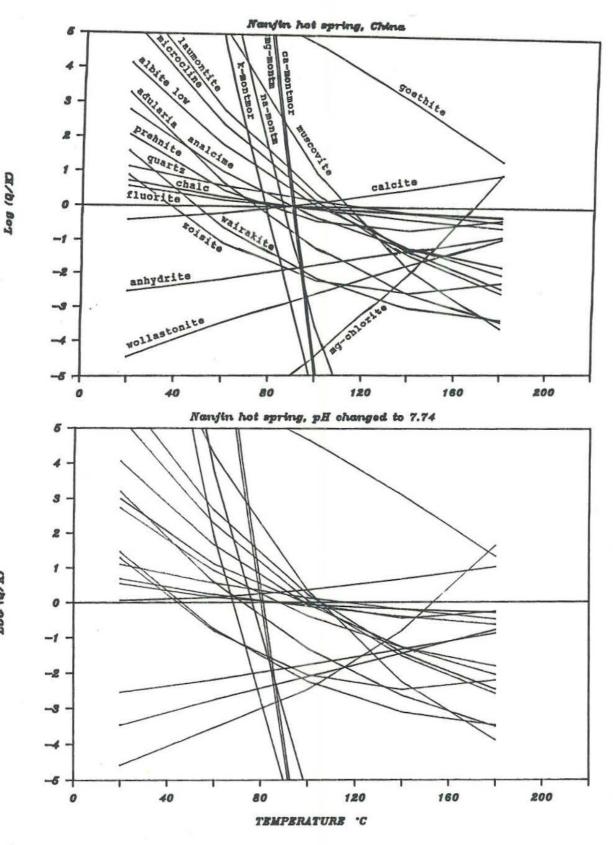
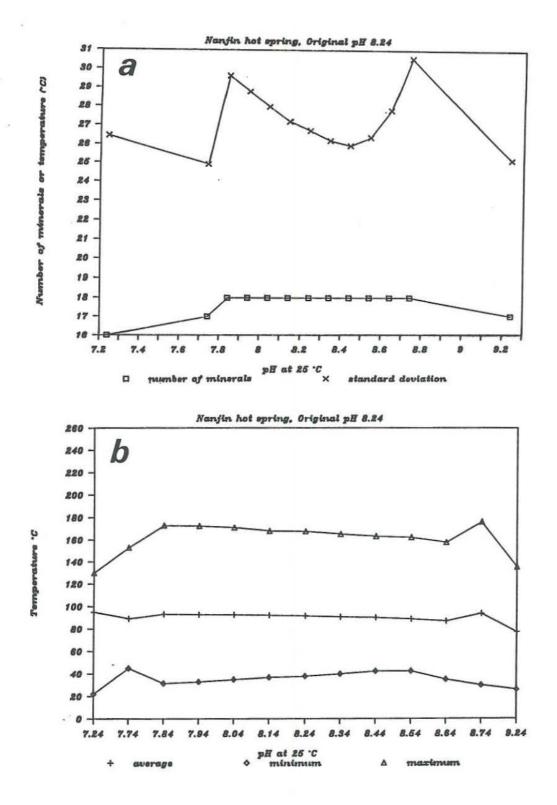



Figure 5.15 Log(Q/K) diagrams showing the effect of pH change by 0.5 units.

CU/6/ 207

Figure 5.16. Statistical results of the evaluation of pH effect.

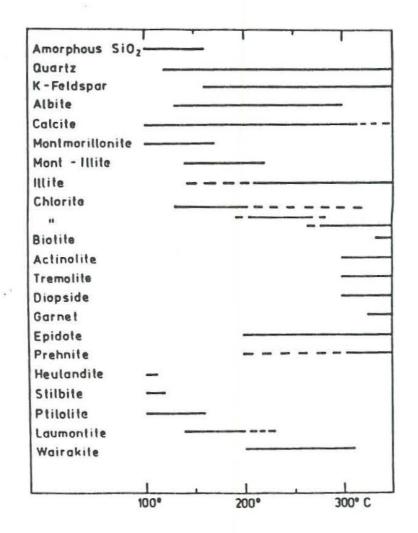


Figure 6.1 Distribution of some hydrothermal minerals in active geothermal systems (from Henley and Ellis, 1983).

300	200	100	0	
		ł		Temperature 'C
			-	CHALCEDONY
				QUARTZ
			-	CALCITE
			-	ANHYDRITE
			-	FLUORITED
				LOW ALBITE
				K-FELDSPAR
		server and all strengtheness and		SMECTITEC
				CHLORITE
				PYRITE
			-	MARCASITE
			-	PYRRHOTITE
			-	IRON HYDROXIDES

Figure 6.2 Distribution of minerals in geothermal systems in Iceland with which the water equilibrates(from Arnorsson et al., 1983).

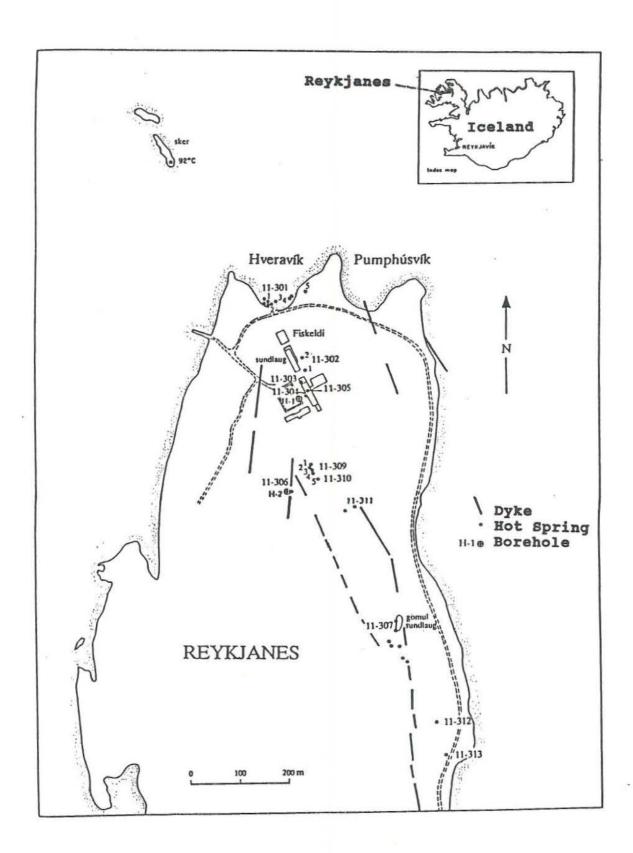


Figure 6.3 Location map of the Reykjane's area.

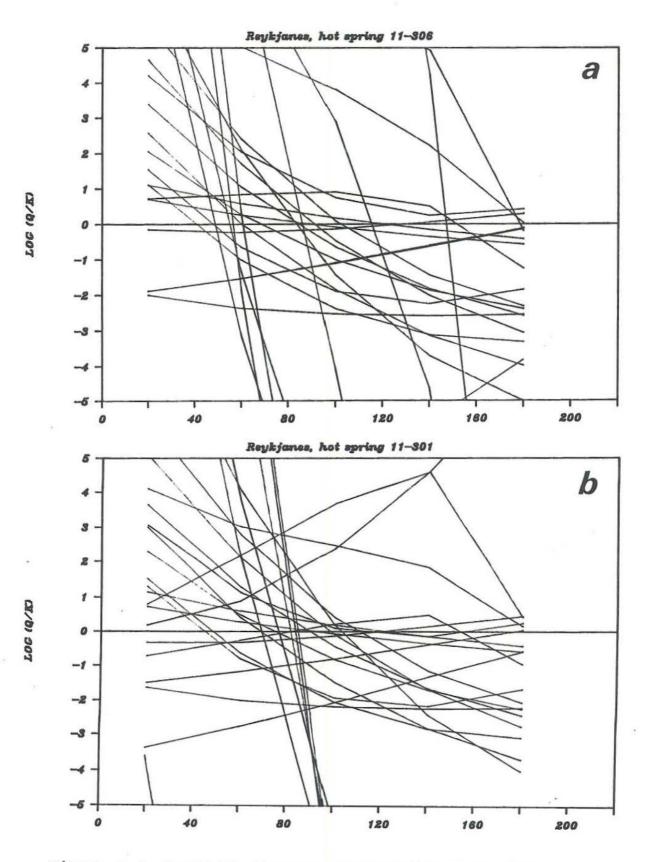
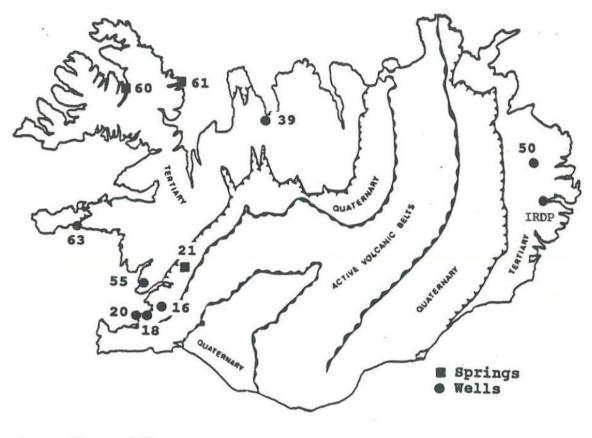



Figure 6.4 Log(Q/K) diagrams for samples from different parts of the system.

0 50 100 km

Figure 7.1 A map of Iceland showing the location of the samples selected for the calculations.

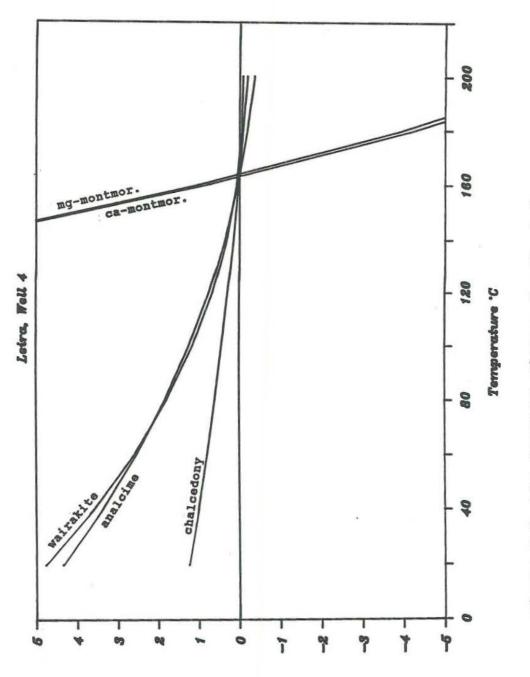


Figure 7.2 The log(Q/K) diagram for the Leira area.

(X/8) 607

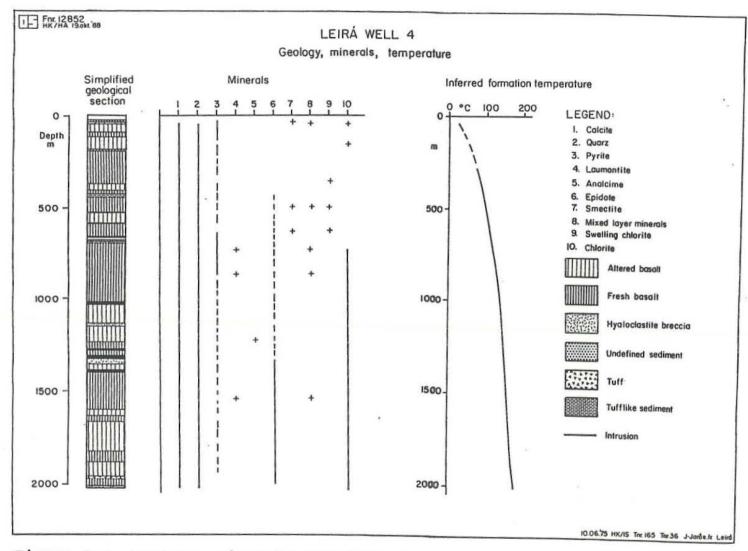
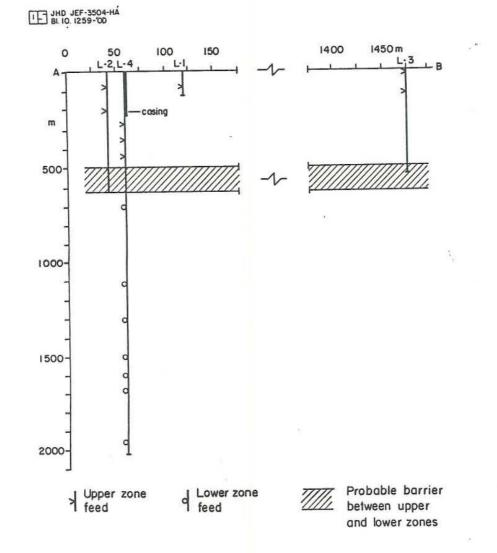
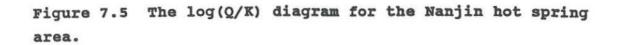
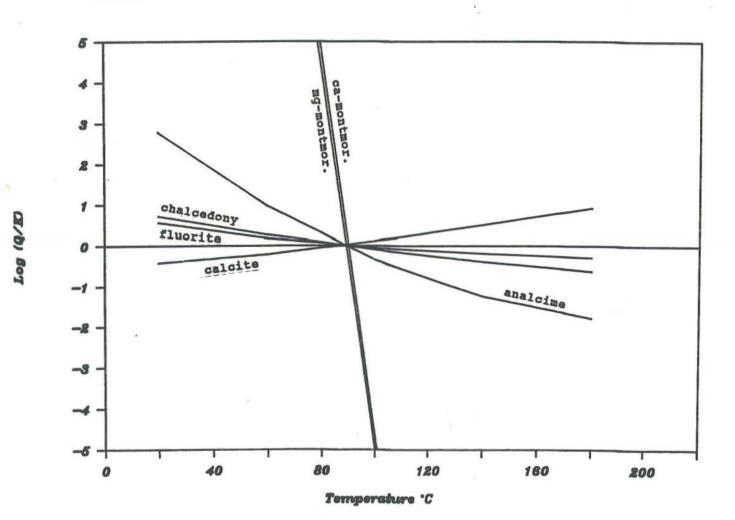





Figure 7.3 Geology, minerals and temperature in well 4, Leira area (from Tomasson and Kristmannsdottir, 1974).

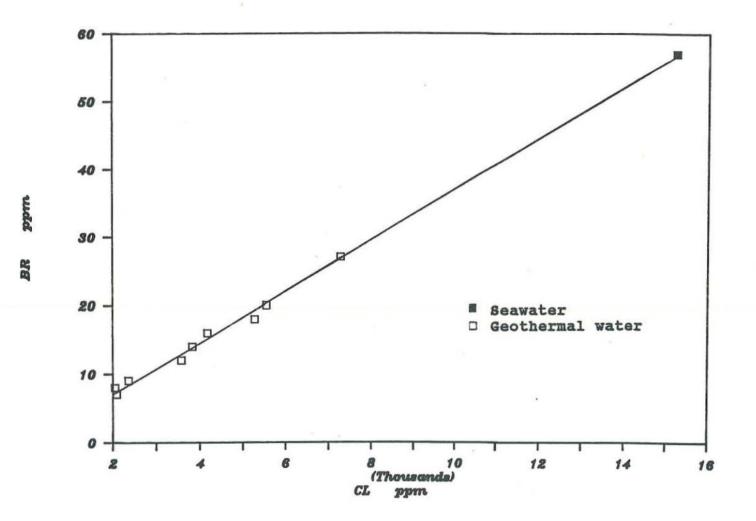
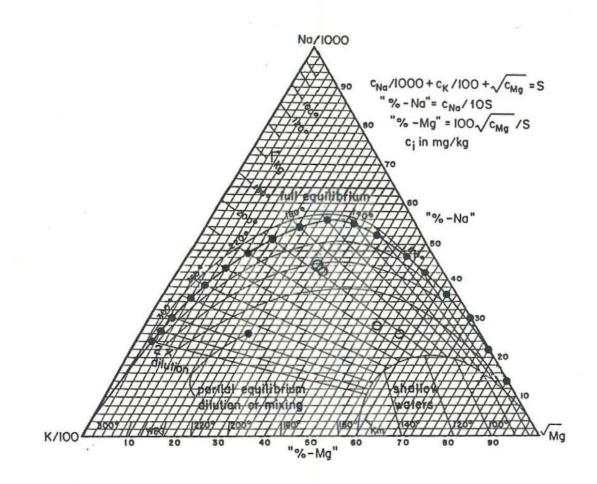



Figure 7.6 Cl - Br relation showing the mixing of meteoric water and seawater in the Zhangzhou geothermal area, Southeast China.

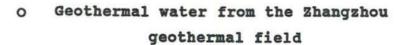


Figure 7.7 Giggenbach diagram for samples from the Zhangzhou geothermal area.