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INTRODUCTORY REMARKS 

A considerable number of physical and mathematical problems 

have to be tackled in order to obtain a reasonable grasp of the 

processes involved in geothermal reservoir physics. True, 

petroleum reservoir engineering that is now a fairly well 

developed technology provides an extensive basis for the 

development of the parallel discipline of geothermal reservoir 

physics. However, although the problem setting may appear 

rather similar, one has to apply caution in the adoption of 

the principles and results of the petroleum sciences to the 

geothermal setting. The principal problems arise from the 

much greater involvement of geothermal resOurce physics with 

elastomechanical and thermodynamic problems than petroleum 

reservoir engineering. The collection of papers that follows 

has been assembled in order to highlight and discuss at 

lenght, some of the physical problems that we have to consider 

in the geothermal reservoir sciences. These problems are 

both in reservoir testing, as well in the production of 

geothermal fluids such as liquid water, steam, or mixtures 

thereof. 

Eight papers appear in this report. Four of the papers have 

not been published before and appear here for the first time, 

as individual chapters. Four papers already published in 

journals are also included in this report for completeness, 

and appear as appendices. 

Geothermal reservoir testing is almost invariably carried out 

on the basis of studies of the propagation of controlled or 

natural pressure signals through the reservoir formations. 

"A few remarks on liquid reservoir testing" and "Confined 

fluids as strain meters" give an overview of the theory of 

the propagation of test signals through ordinary porous 

reservoir formations without considering elastomechanical 

interactions between the fluid and the formation. The basic 

field equations of propagation are set forth and the basic 

input and derived parameters are defined . . 
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since we are here concerned with rather unconventional problems, 

we have had to introduce some unconventional terminology. 

The case in point is the concept of hydroelastic phenomena. 

These involve the elastomechanical interaction between the 

formation and the mass of the reservoir liquid. The elasticity 

of the formation provide the restoring force field and the 

liquid mass is the oscillating mass. 

It is now well known that most geothermal reservoirs are 

embedded in fractured formations such that the porous reservoir 

models may be rather unreliable and lead one astray. The 

propagation of pressure signals through fractures with elastic 

walls is then an important topic to be considered. The 

thrust of the paper entitled "Hydroelastic pressure field 

propagation in fracture spaces" concerns this problem setting. 

Again, the basic equations of propagation and the parameters 

involved are set forth and discussed. 

The papers in the collection entitled "Mechanics of two types 

of hydroelastic formation fields" and "Hydroelastic oscillations 

in borehole cavity systems" further elaborate on the hydroelastic 

phenomena of interest in the present context. The latter 

paper describes hydroelastic oscillations in their purest 

form. Here we assume that a borehole filled with a liquid 

mass can oscillate when it is connected to an elastic cavity. 

The mass of the liquid column oscillates with the help of the 

elastic restoring force of the cavity. The paper elaborates 

on the various field conditions where such phenomena can be 

observed. 

The paper entitled "Dynamics of borehole-fracture systems and 

the detection of fractures by acoustic techniques" considers 

a rather useful aspect of hydroelastic phenomena, that is, 

how they can be applied to detect the position of fractures 

and even furnish information on their width. This is of some 

interest in practical geothermal reservoir work. 

In the paper "Linearization techniques and surface operators 

in the theory of unconfined aquifers," we consider the particular 
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mathematical problems that are encountered in work on liquid 

phase flows in porous media aquifers with a free liquid 

surface. This type of problem setting does , in particular, 

lead to the introduction of Laplacian operators of a fractional 

order which is highly unusual in mathematical physics. 

The paper "The exergy of thermal water" turns to a topic of 

thermodynamics in geothermal engineering. The exergy is a 

very useful concept that has long been neglected. It gives 

the maximal amount of mechanical energy that can , at ideal 

conditions, be extracted from a unit mass of thermal water at 

a given temperature. Just as the enthalpy gives the amount 

of heat energy that can be extracted per unit mass, the 

exergy is a function of state. Because of the second law of 

thermodynamics, the exergy is considerably smaller than the 

enthalpy, when both properties are taken at the same temperature. 

I hope that this collection of papers will be of interest to 

students of geothermal reservoir physics. 

I am thankful to Dr. Jon-steinar Gudmundsson, the Director of 

the Geothermal Training P~ogramme of the United Nations 

University at the National Energy Authority in Iceland for 

promoting the pUblication of this report. 

Gunnar B6dvarsson 
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A FEW REMARKS ON LIQUID RESERVOIR TESTING 

Abstract 

The mechanics of liquid reservoir testing for p r incipal 

geometric and physical parameters is based on interstitial 

fluid press ure fields that are governed by partial differenti a l 

equations of the diffusion or parabolic type. Various types 

of standard and non- standard boundary conditions are to be 

adjoined to t he equations. The free - liquid surface condition 

is one of the most interesting non - standard conditions entering 

into consideration. The basic equations can be solved by a 

number of mathematical procedures that yield different types 

of solutions . The iteration type Taylor- series approach is 

suitable for the computation of short- term field development. 

The eigenfunction approach is more adopted to obtaining long ­

term types of solutions. Various types of diffusion field 

characteristic parameter s such as skin- depth, penetration 

depth and relaxation time are of considerable practical 

relevance. Particular methods are required to treat problems 

that arise due to f r acture- dominated situations. Analog to 

other types of geophysical field e xploration problems, the 

inter pretation of reservoir test data encounters severe 

problems due to non- uniqueness . The most extreme example is 

the considerable insensitivity of pressure- field testing to 

the dimensionality of the interpretation model . 



Introduction 

The primary targets of water, petroleum and geothermal resource 

exploration are total volume, flow and capacitive characteristics, 

chemical quality and in the particular case of geothermal resources, 

the reservoir temperature field. While geophysical exploration by 

surface methods may furnish some data on reservoir structure, tempera­

ture fields and give indications as to the reservoir volume, they 

furnish practically no informatirin on the fluid conductivity and other 

production parameters. Such information will generally have to be 

obtained by tests performed within the reservoir, primarily by pro­

duction and/or interference tests on sufficiently deep wells. Re­

servoir testing is therefore one of the most important tasks in an 

exploration program. 

In principle, reservoir testing has much in common with conven­

tional geophysical exploration. Although the physical fields applied 

are to some extent different, we face the same type of selection be­

tween controlled and natural drives, forward and inverse problem set­

ting, etc. The basic philosphy (Bodvarsson, 1966) is quite similar. 

Below, we will discuss some aspect s of reservoir testing where 

the fluid conductivity is the primary target. Although well known 

material, it is in this context useful to commence by reviewing a few 

fundamentals of the theory of Darcy type flow in slightly compres s ible 

porous formations. This material to be presented below, will help to 

put other results in a proper perspective. 
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Basic relations governing the pressure field in s~htly compressible 

Darcy type formations 

Diffusion equation. Let p(t , P) be the pressure field at time t and 

at the point P in a Darcy type domain B with the stationary boundary 

surface E. Consider a general setting where the permeability K is a 
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spatially variable linear matrix operator but the kinematic viscosity of 

the fluid v is taken to be constant. It is convenient to introduce the 

fluid conductivity operator c = K/V cnd express Darcy's law 

-+ q = -cvp (1 ) 

where ~ is the mass flow density. Moreover, let p be the fluid density, 

s the capacitivity or storage coefficient of the formation and f be a 

source density. Combining (1) with the equation for the conservation 

of mass, we obtain the diffusion equation for the pressure field 

(Bodvarsson, 1970) 
pSd t p + n(c)p = f (2) 

where n(c) = -v(cv) is a generalized Laplacian operator. Appropriate 

boundary conditions that may be of the Dirichlet, Neumann, mixed or . 

more complex convolution type, have to be adjoined to equation (2) 

The case of a homogeneo us/isotropic/isothermal formation results in 

the simplication n(c) = cn = -cv2 where c is a constant. Moreover, 

stationary press ure fi e ld s sat isfy the potential equat ion 

n(c)p = f. ( 3 ) 



Eigenfunctions of the Laplacian. 

B with (2) satisfy the equations 

The eigenfunctions u (P) of n(c) in 
n 
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(4) 

where the constants A are the eignvalues and the boundary conditions 

on E are homogeneous of the same type as those satisfied by p{t,P) in 

(2)and (3). 

Types of solutions. It is of interest to consider some general expres­

sions for the solutions of equation (2) above. The key to the equation 

is the causal impulse response or Green's function G(p,Q,t) which re -

presents the pressure response of the causal system to an instantaneous 

injection of a unit mass of fluid at t = 0+ at the source point Q. This 

function satisfies the same boundary conditions as the eigenfunctions 

un(P). Solutions to (2) in the case of a general source density f{t,P), 

non-causal initial values and general boundary conditions can then be 

expressed in terms of integrals over the Green's function (Duff and 

Naylor, 1966). 

Two fundamental types of expressions for the Green's function are 

available. First, in the case of simple layered domains B with a boundary 

E composed of a few plane faces, G{P,Q,t) can be expressed as a sum (or 

integral) over the fundamental whole space source function, 



and their images. The symbol U+(t) is the causal unit step function, 

a = c/ps the diffusivity, and rpQ is the distance from Q to P. Whenever 

applicable, sums of this type represent the most elementary local and/or 

global expressions for G(p,Q,t). 
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Second, the Green's function can be expanded in a serie s (or integral) 

over the eigenfunctions of rr(c). If p and s are constants, then 

G(P,Q,t) = (l/ps) I un(P)u~(Q)exp(-Ant/PS). (6) 
n 

The series expansion (6) is of a more general applicability than 

solutions of the type based on the fundamental source function (5). 

However, because of quite poor convergence properties, (6) is largely 

of a more global long-term relevance. It is less suited for the computation 

of local values. The formal link between .the two types of solution (5) 

and (6) is provided by the Poisson sUlTlllation formula (Stakgold, 1967). 

A different type of solution of (2) that is of interest in the 

present context can be obtained by operational methods. Limiting ourselves 

to the pure initial value problem with p(O,P) = po(P) in the case of an 

infinite domain, we can, since p, sand rr(c) are independent of t, 

formally express the solution of the homogeneous form of (2) as 

p = exp[- trr(c)/ps]p o 
(7) 

where the ex ponential operator is to be interpreted as a Taylor ser ies 

in the operator n(c) 

exp[-tn (c)/ ps ] 1 - [tn(c)/ps] + (1/ 2)[tn(c)/p s ]2 ... (8 ) 
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The series represents an iteration process where the convergence 

is limited to (properly defined) small values of t. The practical 

applicability is therefore fundamentally different from (6). Moreover, 

it is of considerable interest that rather general situations with re-

gard to rr{c) can be admitted in (7) and (8). 

A number of , other analytical and/or numerical techniques are 

available for solving (2). These include the path-integral technique 

of the Feynman-Kac type (Simon, 1979), compartmentalization or lumping 

and, as a matter of course, a series of numerical techniques. 

Nonstationary boundaries: effects of a free liquid surface 

The presense of a free liquid surface in a reservoir requires the 

introduction of a rather complex non-stationary surface boundary 

condition. Let L now represent the free liquid surface at equilibrium 

and n be the free surface in a perturbed state. The boundary n is 

a surface of constant press~re which without loss of generality can be 

taken to vanish. The free surface condition (Lamb, 1932) is then 

expressed 

Dp/Dtlp=o = 0 (9) 

where D/Dt is the material derivative. This is an essentially non-linear 

condition which leads to a much more complex problem setting. Losing the 

principle of superposition the construction of solutions to the forward 

problem become~ a difficult task. 

Bodvarsson (1977) has shown that when n deviate s only littl e from 

L, (9) can be simplified and linearized. For this purpo se, we place 



a rectangular coordinate system with the z-axis vertically down such 

that the (x, y) plane coincides with E. Moreover, let the amplitude 

of ~ relative to E be u and the scale of the undulation of ~ be L. 

Then provided lu/LI«l, the condition (9) can be replaced by the 

approximation 

(10) 

where w = cg/~ is a new parameter, namely, the free sinking velocity 

of the pore liquid ~~der gravity (g = acceleration of gravity). Under 

these circumstanGes, the solution of the forward problem is obtained 

by constructing ~ solu,tion to (2) which satisfies (10) at the free 

surface and appropriate conditions at other sections of the reservoir 

boundary. 

The presence of a first order derivative with respect to time in 

the free-surface condition (10) obviously leads to an additional 

relaxation process analog to the purely diffusive phenomena associated 

with the first order time derivative in the basic equation (2) As 

we shall conclude below, the individual time scales of the two 

phenomena are, however ~ different. 

For the sake of brevity, we shall limit the present discussion to 

the simplest but practically quite relevant case of the semi-infinite 

liquid saturated homogeneous, isotropic and i sotherma l half-space. To 

consider the pure free-surface related phenomena, we eliminate pressure 

field diffusion by neglecting the compress ibility of the liquid/rock 

system. In this setting we can combine the potential equat ion (3) and 

the surface condition (10) in one single equation confined to the 

E plane (Bodvarsson, 1984) which expressed in tenns of the fluid 

surface amplitude u(t, x, y) = p/pg take s the form 

10 
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( 11 ) 

k: k: 1 . where rr 2 = (-a -a ) 2 is the square root of the two-dimensional Lap aClan 2 xX'yy 
and f is an appropriately defined source density. To obtain the pressure 

field in the space z>O, the boundary values derived from (11) have 

to be continued into the lower half-space on the basis of standard 

potential theoretical methods. The fractional order of the Laplacian 

in (11) is quite unusual, but the operator is well defined and poses 

no mathematical problems. 

Some solutions of equations (11) of practical interest have been 

obtained by Bodvarsson (1977). Confining ourselves again to the simple 

semi-infinite half-space, the most important result is given by the 

causal impulse-response functions G(S,Q,t) which represents the response 

of the surface amplitude at the point S = (x,y) in E and time t~O+ to 

an instantaneous injection of a unit mass fluid at a point Q in the 

half-space at time t=O+. The system is assumed to be in equilibrium 

for t~O. Let Q = (O,O,d), the resulting expression for the surface 

amp 1 itude is 

(12 ) 

where U+(t) is the causal unit-step function. The impluse response is 

essentially the key to the solution of (11) for more general conditions. 

The pressure field in the half- space is obtained from (12) by a simple 



continuation technique where the singularity at Q ha s to be taken into 

consideration. The long term response of the surface amplitude to a 

periodic source function at Q is of particular interest in the present 

context. Let the mass flow injected at Q = (O,O,d) take the form 

exp(-iwt). The amplitude of the frequency response is th~n obtained 

by 

F(s,Q,wl = f: G(S,Q,Tlexp(iTwldT 

12 

(13 ) 

The present results on the dynamics of the free surface amplitude provide 

the basis for a technique of reservoir probing and testing which yields 

results on c and ~ that are supplementary to the conventional well test 

techniques (see Bodvarsson and Zais, 1981.). 

Fracture flow 

In many types of reservoir formations, the mode of fluid transport 

is dominated by flow through a network of fractures rather than through 

a porou s rock matri x. This applies in particular to geothermal reservoirs 

that are most frequently embedded in formation s of predominately igneous 

origin. Quite often the global characteristics of flows through relatively 

dense networks of very na rrow fractures can be taken to resemble Darcy 

type flows to such a degree that the global press ure field sa tisfies 

s impl e diffusion equations of the type (2) above. Th e above theory 

ba sed on Darcy's l aw would for al l pract ical purposes app ly in such cases. 
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Frequently, however, individual fractures with apertures of the order 

of mi11imeters, or linear arrays of such fractures, domiante the flow. 

The above theory is then a poor approximation and the flow through 

single fractures will have to be considered. The pressure field theory 

presented by 8odvarsson (1985) would then provide a basis 

for reservoir mode1ing. 

Linear arrays of fractures, or fracture ladders, as we shall 

call them, have, on the other hand, to be considered in the present 

context. Since the energy balance of many geotherma1 systems indicates 

fault zone controlled subsurface flows over very considerable distances 

(Bodvarsson, 1983a), it is likely that fracture ladders are present 

in major fracture zones where they may extend over distances of the 

order of tens or even hundreds of ki1ometers. We will attempt at 

presenting a very simple semi-quantitative theory for the pressure field 

in such structures. 

The model for the fracture ladder is sketched in Figure 1 below. 

The basic element is a fracture space of aperture h extending over a 

length L along the flow and over a similar length across the flow. The 

individual elements are connected at the lines of offset shown in the 

figure. There is no reason for mode1ing the offsets in any detail. 

They simply represent lines of discontinutity where the fracture walls 

touch and thereby terminate the open fracture spaces. As indicated by 

the terminology, we take that these can be some offset between the 
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Fig. 1 . The fracture ladder. 

individual elements along these lines. It is not necessary to assume 

a uniform aperture of the elements, but we assume that the offset 

connection are sufficiently open to provide a global fluid conductivity 

for the entire ladder. 

We can now establish the characteristic parameters of the ladder. 

Since this is a multiple-cavity system the capacitance and conductance 

parameters will be defined per units length both along and across the 

structure and wi 11 therefore represent speci fi c averages. 

Turning first to the capacitance, we note that the basic element 

is a square formed thin - box type fracture space of edge length Lo 

that is embedded in a homogeneous and isotropic Hookean elastic space. 

No analytical expressions are available for the elastance of such models. 

Fairly good approximation can be worked out, but because of the semi-

quantitative nature of our development here, we will resort to 
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estimating the e1astance with the help of results of Sneddon and Lowengrub 

(1969) for penny-shaped openings. It is quite evident that . the e1astance 

of the square fracture of edge length Lo will not deviate substantially 

from the e1astance of the penny-shaped fracture of diameter L. Let ~ 
o 

be the shear velocity of the rock, a good estimate for the e1astance is then 

provided by 

The capacitance per unit length along and across the flow, that 

is, per unit area, is then 

Moreover, we take that the total flow impedance of the entire ladder 

is Z and the impedance per unit area is therefore z/nL~ where n is 

the number of elements. The specific conductance is then 

In the case of a single ladder element of a constant aperture h, 

( 14 ) 

( 1 5 ) 

( 16) 

( 17) 

In other words, this is the cross-fracture integrated conductivity, 

that is analog to the transmisivity as defined in the litelJture on 

reservoir engineering. 

On the basis of (15) and (16) follows the diffusivity along the 

ladder 

Diffusion parameters 

( 18 ) 

The pressure field phenomena discussed above. are all of a diffusive 
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nature and exhibit therefore a typical relaxation behavior. This is 

evident from the nature of the time dependence of the Green's functions 

given by (5) · , (6) and (12). The character of the diffusive 

fields is best illustrated by three elementary physical parameters, viz., 

the skin depth ds ' the relaxation time tr and the penetration depth 

dp' A brief discussion follows of the derivation and relevance of 

these quantities in the C9se of the above models. 

The skin depth is, of course, a very well known parameter that 

represents the diffusion distance over which the amplitude of a 

harmonic wave is attenuated to (lie) = 0.37 of its initial value. The 

quantity is obtained by assuming a homogeneous one -dimensional 

model, inserting the wave-form exp[i(kx-wt)J into the basic equation 

and deriving the wave-number k as a function of w on the basis of 

the resulting dispersion equation. Let k = k +ik. and we obtain then r 1 

ds = (l/k i )· The real part kr determines the phase-lag associated 

with the diffusion. 

The relaxation timet r is a related quantity that represents the 

time during which the amplitude of a stationary harmonic wave-form 

decreases to (lie) = 0.37 of its initial value. The quantity is obtained by 

inserting the wave-form exp[-(t/t )+ikxJ into the basic equation and r 

evaluating the resulting dispersion eq uat ion . 

Finally, the penetration depth d provides a measure of the 
p 

penetration of a step- like boundary transient into a homogeneous 



half- space. In other words, in the present context we assume a homo-

geneous and isotropic Darcy type half- space with an initial pressure 

distribution p = O. At time t = 0, the pressure at the boundary is 

suddenly raised to Po' An elementary exercise in simple diffusion 

theory (equation (i) ) (Carslaw and Jaeger, 1959, section 2.5) shows 

that the associated fluid flow"into the solid is 

17 

(19 ) 

which we write 

(20 ) 

where 

(21 ) 

is the contact conductance and 
1 

dp = {1Tat) 2 (22) 

is the thickness of the boundary resistance. The parameter dp defined 

by (22) is a measure of the penetration of the surface pressure 

disturbance into the solid and is therefore called the penetration depth. 

It is to be noted that the above definition of dp is restricted to the 

simple homogeneous and isotropic Darcy type case. Other types of 

diffusion lead to different expressions for the parameter. 

The above parameters are closely related. This i s mo st obvious in 

the case of simple homog eneous and isotropic Darcy type solids . 

Identifying in thi s case the penetration time with the oscill ation 

period we obtain 

(23 ) 
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and identifying penetration time with the rela xa tion time results in 

(24) 

where L = 2rr/k is the wave-length associated with the wave-number k. 

Omitting further details of derivation, expressions for the 

three parameters defined above are listed in Table below for the 

three diffusion model~ that have been discussed, viz., the Darcy flow 

case, the single fracture case (Bodvarsson, 1985) and the fracture ladder. 

Moreover, the skin-depth and relaxation time for the free surface diffusion 

have been added as a fourth case in the second and fourth columns of Table 

I. These quantities are derived on the basis of (11) (Bodvarsson, 1984). 

Obviously, the skin -depth of the surface is not a well defined concept. 

Because of the very much longer relaxation ~imes for the free surface, the 

compressibility effects are being neglected in this case . Notation is the 

same as has been used hitherto. It should be rieterated that the Darcy 

flow and the fracture ladder cases are governed by similar simple 

diffusion equations (2) with constant parameters, while the sinqle 

fracture case leads to the more complex case (see Bodvarsson, 1985). At 

this time, we are unable to derive an analytical expression for the 

penetration depth for the single fracture or the free surface. 

For later development, it is of interest to list also a modified 

version of the expressions in Table I. The vertically integrated 

specific conductance or the transmissivity C of a homogeneous Darcy 

type layer of thickness H is simply C = cH. The corresponding expression 

for a fracture space of uniform aperture h is given by equation (17). 

Expressing the parameters in cases (1) to (3) in Table in terms of 

the specific conductance rather than conductivity and inserting expressions 

for the diffusivity a we obtain the list in Table 11 below. In the 



Table I. 

Diffusion Parameters 

Model Diffusivity Skin-depth Penetra t ion Re 1 axa ti on 
depth time 

ds dp tr 

1 1 

1/ak2 (1) Da rcy flow a = c/ps (2a/w)2 (1Tat)2 

(2) Single 1/3 no analytical 3 not defined [ho~/2pRw(1-a)] k /[ho~/2pR(1-a)] 
fracture * expression 

1 1 

1/ak2 (3) Fracture a = C/pS = 4C~/pLo (2a/w)2 (1Tat)2 
ladder 

(4) Free liquid not defi ned w/w = cg/ ~w no analytical l/wk = ~L/21T Cg 
surface over expression 
2. Darcy flow 
hal f-space ** 

- - - - -

k = 21T/ L = wave number, L = wave length 

w = 21T/T = angular frequency, T = period 

Lo= length of ladder element, w = cg/ ~ 

~ 

* Bodvarsson (1985). 
** R~nv~r"nn (lgR4). 



Model 

(1 ) Darcy fl ow 

(2 ) Single 
fracture * 

(3 ) Fracture 
ladder 

Da:rcy flow 

Single fracture 

Fracture ladder 

* Bodvarsson (1985). 

TableII 

Diffus ion parameters in terms of 
specific conductances 

Diffusivity Skin -depth 

d s 

1 

a = C/psH (2C/psHw)2 
: 
! 

not defined [C~/2pw(1-a)J 1/3 

. 1 

a = 4C~/pLo (8C~/pLow)2 

Penetration Relaxation 
depth time 
d tr p 

(rrCt/pSH)~ 2 2 psHL /4rr C 

No analytical 
3 3 (21T) /[C~/2pR(1 -a )JL 

expression 

1 2 2 
(4rrC~ t/ pLo)"2" pLoL /l6rr C~ 

C = cH H = Thickness of Darcy layer 

3 C = ho /l2\J 

C = empirical parameter 

I 

I 

N 
o 



single fracture case, it is being as sumed that R 12v /h~ (Bodvarsson, 

1985) and hence C= ho
3/12v. 

Overview of reservoir test methods 

Reservoir testing is an important exploration technology that has 

? 1 

developed rapidly during the past f ew decades . In particular, petroleum 

reservoir engineering and testing are highly developed and there is a 

volumous literature available on these subjects (see for example. 

Matthews and Russel. 1967,and Earlougher, 1977). An important paper 

on geothermal well testing has been published by Ramey (1976). 

There is therefore, no reason for including a review of reservoir 

test methods in this report. Only a few topics of specific relevance 

to the subject matter of this paper will be reviewed briefly in the 

following. 

Fi~ld techniques. To obtain some clarity as to the concepts 

set forth it is of interest to include the compact overview of present 

reservoir test procedures 1 isted in Table Ill. Figure 2 supplements the 

table by indicating signal paths. Moreover, the period ranges of the 

natural drives are given in Table IV below. 

• One - port 

Scattering 
.:.':. regIOn 

/~~ 
/ ~ . ~ 

In - port Out - port 

Fi g. 2. Si gnal paths in reservoir test in g. 



Table lIT Reservoir test procedures 

Driving/observation Signal path Drive 
port arrangement Controlled 

One-port back Production/injection 
Driving-point scatter step-drive 
response well-pressure 

bui ldup/drawdown 

Multi-po r t 
transfer response transfer Production/injection 

& scatter step-drive 
well-interference 

Unconventional Free liquid surface 
techniques response to 

production 

Hydroelastic 
resonance tests 

Natural 

Osc i 11 a tory 
tidal/meteorological/ 
seismic 

o sc ill a tory 
tidal/meteorological/ 
seismic, but scattered 
signal weak 

Targets 

Diffusivities, 

Fl uid 
conductivity 

Fracture 
elastance 
dimensions 

I 

~-­

~-- ' 

~. . ~~., _.e_~~· .. ~ 
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Tab1 e IV 

Periods of natural drives in seconds 

(1) Seismic displacement/strain 1-103 

(2) Solid earth tidal strain 104_106 
. . 

(3) Atmospheric pressure (barometric) 104_106 

(4) Precipitation load 104_106 

(5) Seasonal water- level variations 106-108 

Items (2) and (3) provide the most suitable natural drives. Cases 

(1 ) , (4) and (5) are possibilities that have not been given much attention 

and remain to be tested. 

Unconventional test techniques based on pre sent results 

The development set forth above provides a basis for the discussion 

of a number of unconventional reservoir ~est techniques that will be re -

vi e'lled bri efl y. 

Natural field drive. The natural drives listed in Table IV above can 

be applied to carry out simple one - port driving point tests on individual 

boreholes that are available for such purpose s . The tidal and barometri c 

drives are of particular intere st in thi s respect. Their frequency band 

is generally subinertial and ob se rva t ional data on uncompli cated field 

situations are quite eas ily interpret ed in t erms of the lumped syst em 

parameters, such as el as tance , res i st ances and/or admit t an ces that are 

relevan t in individu al cases. To generate suf fi cien t data a mul t ifreq uency 

drive must be avail able. 

Bodvarsson and Hanson (1981) and Bodvarsson (1983b) have di scu ssed such re -
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servoir test procedures based on solid earth tidal drive. It is important 

to remark that the former paper is devoted mainly to the case of a free liquid 

level in the borehole and the limitations on the tidal factor resolution 

imposed by this -setup are considered. The results by Bodvarsson (1983b) 

show that this difficulty can be largely alleviated by reducing the bore-

hole stiffness S with the help of a surface basin or a comparable arrange­

ment. Clearly, the one-port tidal test can only provide reservoir data 

of a local nature. In cases where the amplitude of borehole -borehole 

scattered signals can be resolved there is some possibility of obtaining 

more global interference data on the basis of tidal tests. 

The use of seismic, precipitation and seasonal water-level drives in 

reservoir testing has not received much attention. The theory of 

seismic and seasonal drive models is briefly covered by Bodvarsson (1983c). 

Formation pressure variations due to precipitation load pose no theoretical 

problems but this topic will not be perused further in this paper. 

Free liquid surface responses. The presence of a free liquid surface is 

an important complication in the case of many water and geothermal 

reservoir s. As indicated above, Bodvarsson (1977, 1984) has derived 

a simple technique of lineari zing the non-stationary boundary condition 

involved that i s quite helpful in simplifying the theory of pressure diffusion 

in reservo irs with a free surface . Sin ce this surface i s a constant pressure 

boundary, the monitorin g ~ it s shape and position yield s important data on the 
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reservoir pressure field and provides the basis of the free surface re ­

servoir test method that has been discussed by Bodvarsson and Zais 

(1981) . A numerical investigation shows that at normal porositie s and 

fluid conductivities, the free surface relaxation times (see Table I) 

are substantially longer than corresponding times for compresi -

bility related phenomena. The two processes can thus be separated and 

treated independently as has been the procedure in this report. 

Frequently there is an interest in a downward continuation of the 

pressure disturbance due to the free surface deformation. A convenient 

technique for this purpose is described in a short note by Bodvarsson (1983d). 

Fracture tests based on hydroelastic resonances. In a number of field 

situations there is an interest in estimating dimensions of open 

fracture spaces that are connected to boreholes. Problems of this type 

occur, in particular, in hot -dry- rock technology where water/rock con ­

tact areas are of dominant interest. 

Obviously, unless the fracture geometry is known there is no clear 

relation between the fracture dimensions and elastance. Moreover, 

only in the case of the penny- shaped fracture is there a simple relation 

between the radius and the elastance Bodvarsson (1983c). However, making 

certain assumption s about the geometry one can establish useful s emi ~ 

quantitative relations of this type. Such relations can, for exampl e , 

be established in the case of rectangular fractures that, as a matter of 

fact, appear to be likely field ca ses. The observation of data on 



26 

fracture elastance therefore opens up some possibilities for estimating 

dimensions. Clearly, in the case of non-leaking systems the most 

convenient way of observing the elastance e would be to carry out a 

subinertial test either with the help of barometric excitation 

or by applying controlled pressure loading at the surface. 

Observing both the cavity pressure p and the associated borehole flow 

q will then yield data on the elastance e (see Bodvarsson, 1983b). 

Difficulties are encountered in the case of leaky systems where the 

cavity admittance is finite. One possible avenue consists then in carrying 

out a special long-term leak test to determine the admittance and then proceed 

with the measurement of e. The procedure will have to be considered 

in detail in individual cases. Appreciable values of the admittance 

requries shorter periods and consequentiy dynamic testing that is based 

on observing the Helmholtz mode of the system. The theory of this 

method is discussed in detail by Bodvarsson (1983c) and the 

required field procedures are straight forward. A controlled square-wave 

injection drive combined with the monitoring of the cavity or bottom­

hole pressure appears most convenient. 

Observational port effects, resolution and interpretational problems 

A number of problems of a varied nature are to be dealt with in re­

servoir testing. Below, we will briefly mention three aspects that 

deserve some attention. 

Perturbations due to observational port capacitance. The borehole s 

that house the pressure sensors in well testing have a noticeabl e 

capacitance that perturbs the local formation pressure field and can 
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therefore distort the pressure data under observation. This matter 

is of some concern and has been cons idered bri efl y by Bodvarsson (1981). 

Test resolution. The Green's function of the Darcy flow model given by 

equation (6) is a typical diffusion or parabolic type i~pusle response that 

consists of a sum over exponentials with negative exponents. With the help 

of the development by Bodvarsson (1984) a similar form can be obtained for 

the free surface Green's function given in (12). Moreover, the fracture 

ladder is a simple diffusion model, and a similary structured Green ' s 

function can be obtained for the single fracture model as governed by the 

equation given by Bodvarsson (1985). 

In a general sense, all interpretational \\ork on diffusion 

model s consists in an attempt at a separation of sums of the type 

(6) . Because of the "similarity" of the individual 

terms in the series, a separation of even a few of the lowest order 

terms is practically not possibl e unless very precise observational 

input data are available. Since all field data are inevitably noisy, 

the separation task is fraud with difficulties and the overall resolution 

power of field test therefore very low. In other words, an infinity 

of different diffusion type models lead to very similar test response 

data and we have great difficulty in separating out the relevant model. 

This is best explained on the basis of the following observation. 

Consider two homogeneous and isotropic Darcy flow models of 

different spatial dimension. One is a two-dimensional axi-symmetric case 

where there is a unit -ste p line source of strength m kg/ms, and the 

other one a three-dimensional point-symmetric case with a unit-ste p 



point source of strength m kg/so The systems are in equilibrium at 

times t < 0 and both sources are activated at t = O. The pressure 

signals emitted by the sources are observed at time t and distances 

r from the sources. For convenience, we introduce the Fourier numbers 

2 F = 4at/r where a is the formation diffusivity. Moreover, as before, 

let c be the formation fluid conductivity. On the basis of simple 

diffusion theory (Carslaw and Jaeger, 1959), we find that the pressure 

signals are given by the .following functions 

axi-symmetric 
two-dimension 

point-symmetric 
three-dimension 
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. -1 
p(r,t) = -(m/4nc)Ei(-F ), p(r,t) = (m/4ncr)erfc(F-~) (25) 

where Ei is the exponential integral and erfc the complementary error 

functions. Using mathematical tables and -plotting the two response 

functions over F as shown in Figure 3 we find that they are practically 

identical for O<F<O.5 

The short-term well interference test is therefore largely "bl ind" 

with regard to the space dimensions involved. Although the value of the 

amplitude factor is observable, its structure depends critically on the 

space dimension and this data does therefore not convey any information 

unless strong assumptions can be made with regard to the underlying 

model. Considerable caution is therefore called for in the interpretation 

of well interference data, and it would appear that too much confidence 

has been placed in the applicability of the axi-symmetric two-dimensional 

Theis-type solution. 

Darcy flow layers versus fracture networks. Another interpertational 

indeterminacy is of a very considerable practical importance. We \..,ill 

again consider the use of well - interference data to determine re servoir 

fluid conductances or transmissivitie s . 
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Fig. 3. Plot of Ei and erfc functions. 

Consider the case of a fracture network of element length Lo as 

described above versus simple Darcy flow through a homogeneous 

~nd isotropic layer of thickness H. Let the subscript D refer to Darcy 

flow and N to the network . The ratios rd of penetration depths with 

equal conductance and r of conductances with equal penetration depths 
c 

can then be obtained from Table I and II. Using the same notation 

and assuming ~ = 2xl010 Pa and s = 5xlO- ll Pa - l such that ~s = 1 we find 

that 

and 
rc = (CD/CN) = (H/Lo) 

Since it is unlikely that natural fractures at depth can remain 

continuously open over large distances, we would tend to estimate Lo 

to be the order of say tens of meters at most. Therefore , considering 

cases of formation thickness 102 to 103 m, the essence of equation 

(26) 

(27 ) 



(27) is that the interpretation of fracture network situations in 

terms of Darcy flow layers can lead to a gross overestimation of the 

actual specific conductance or transmissivity. Ratio of the order of 

10 would appear possible. 

Unfortunately, an investigation of actual field data in terms of 

the above conclusions has not been possible. Very few relevant data 

are available in the open literature. We can only mention the case 
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of the Raft River geothermal area in southern Idaho, U.S.A. Well interference 

tests conducted by Narasimham and Witherspoon (1977) were interpreted 

in terms of specific conductance of about 6 x 10-11 m3 (60 darcymeters) 

whereas production tests reveal values of about 1.5xlO- ll m3. This 

discrepancy may possibly be understood on the basis of our discussion 

above. 

Moreover, any global directional high conductivity inhomogeneity 

connecting driving and observational ports will channel the pressure 

signal and simulate higher overall conductivities than actually is 

the case. Interpretation in terms of homogeneous models can then lead 

to a gross overestimate of the reservoir conductance. Fracture 

systems connecting the two observation ports would be plausible causes 

of this type of situation. For example, boreholes into geothermal 

reservoirs are preferably sited to intercept fracture zones at depth. 

Many such structures are highly anisotropic and may channel pressure 

signals in the way discussed above. 
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HYDROELASTIC PRESSURE PROPAGATION IN FRACTURE SPACES 

Abstract 

Liquid-filled fracture spaces propagate liquid pressure 

signals in a hyrdoelastic mode that results from an 

interaction of wall elasticity with the inertia of the moving 

liquid. The basic differential equation governing the hydro­

elastic pressure mode is unusual in the sense that it includes 

fractional powers of the Laplacian operator. Depending on 

frequency, the hydroelastic modes can be divided into two 

types of classes. First, at higher frequencies, the 

propagation is approximately wave-like with a phase velocity 

that may be from 10- 3 to 10-1 times the seismic shear velocity 

in the surrounding rock formation. Second, at lower frequencies, 

the propagation is approximately diffusive with skin depths 

of 104 to 106 times the aperture of the fracture. 
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I NTRODUCTI ON 

Hydroelastic phenomena involve the interaction of elastic st~ess/strain 

fields with the flow/pressure fields of liquids contained in cavities, 

fractures and other openings in rock formations. In a recent paper 

(Bodvarsson, 1983), the ~Jriter has discussed hydroelastic oscillations in 

borehole-cavity systems, that are modeled as the dynamic ' interaction of a 

single lumped liquid mass in the borehole with the lumped elastance of a 

single cavity intersected by the hole. While system lumping of this type 

is a useful and convenient approximation, the dynamics of the underlying 

model does by no means cover many of the hydroelastic phenomena that may 

occur in natural systems. For further development of the theory, we will 

have to consider distributed systems, in particular, cases where the cavity 

consist of a fracture that has the proper aperture for the hydroe1astic 

propagation of pressure signals. In the present paper, we will derive the 

basic equations for these phenomena in fracture-type structures. Before 

entering into the main subject a few mathematical results will be needed. 

Surface operator~ 

In the present section, we will introduce surface operators in a 

slightly more general context than necessary below (Bodvarsson, 1977). 

Consider a rectangular coordinate system and a simply connected 

2-dimension domain E with a piecewise smooth boundary y embedded in the 

plane z = O. Let B be the 3- dimensiona1 cylindrical product domain 

of E and the interval (O,d) on the z-axis. Moreover, let E + r denote 

the boundary of B where r consists of the side surface of B and the 

end face in the z = d plane. The general field point in B is P = (x,y,z). 

Let u(P) be a function which is harmonic in B, that is, 

nu = 0 , Pin B, (1) 
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where n = _Q2 is the Laplacian operator. We assume that u(P) satisfies 

the Neuman type boundary condition on r, 

au/an = 0 P on r 

-where n is the outward normal to r. Since u(P) is harmonic in Band 

satisfies a prescribed conditiqn on r, ist values in B are uniquely 

determined by the bound~ry values uo(S) on E where S = (x,y) is a 

field point on E. The fun~tion can be represented (Duff and Naylor, 

1966) by an integral over E 

Pin B, 

where G(P,T) is the appropriate Robin function, T = (Xl ,yl) and 

da = dxldyl. Evidently, 
T 

lim G(P,T) = o(S-T) 
HO 

where o(S- T) is the 2-dimensional delta function of S centered at T. 

(2 ) 

(3 ) 

(4 ) 

Moreover, the various derivatives of u(P) can also be represented 

by integral expressions derived from (3). We are particularly 

interested in the negative derivative with respect to z taken at 

E, that is, at z = O. This quantity is conveniently expressed 

(5 ) 

where L is the integral -differential operator 

L = -az l jG(P,T), 
HO E 

Pin B (6 ) 
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and the integration is with respect to T. This is a cross- surface 

differential operator which generates the derivative of the harmonic 

function u(P} across the surface ~ in terms of the values of u(P) on ~ . 

The principal characteristics of L are immediately revealed by 

the observation that applying L twice to uo(S) we obtain because of 

(1) and the smoothness of u(P) 

where 

and consequently 

IT = -(a + a ) 2 xx yy 

k 
L = IT 2 

2 

that is, the operator L acts as a square root of the 2-dimensional 

Laplacian. 

The property (9) does not determine L uniquely. There is also 

a dependance on d. The simplest, and in the present context the most 

important, case is obtained when d ~ 00. We can then construct the 

following eigenfunction representation of L. 

Let $j(S) be the eigenfunctions and Aj the eigenvalues of IT2 on 

L with the Neuman type boundary condition (2) on y, viz., 

IT 2$j = 1..$. j = 1 ,2 S in ~ 
J J 

, , 

and 

a$/aii = 0, S on y 

Considering now the case where d ~ 00, it is a simple matter to show 

that any solution of (1) which satisfies (2) can be represented 

by the following eigenfunction expansion, 

(7) 

(3) 

(9) 

(la) 

(11 ) 



U(P) = La. et> .( S)exp(->..liz ) 
j J J J 

( 12 ) 

where the a.ls are expansion co~fficients. The Laplacian on L with J - , 

the condition (11) has the representation 

IT2 =1 :? Ajet>j(S )et> /(T). 
L J 

(13 ) 

A little algebra based on (6) and (7) reveals that 

IT 2~ = 1 i m 1 L A. ~et> . ( S ) et> . * (T) ex p ( - A . ~z ), ( 14 ) 
z+O j J J J J 

L and has an inverse 

-k2 
IT = 2 1 im f L A

J
. -~CPJ' (S} cp .* (T}exp( - A . ~z ). 

z+O j J J 
L 

( 1 5 ) 

These results hold for P in B, for d + 00 only, and the integration in 

(13) to (15) is again with respect to T. Analog results for finite 

depths d are easily derived but some of the above simplicity is lost. 

A reflection factor has to be included in (14) and (15). 

Let u(P} be a Fourier transformable function of the general field 

point P in a three-space. ~loreover, let F(u(P}} = Q(K} be its Fourier 

transform into K-space with the general field point K = (k
l

,k
2

,k
3

). 

We know then that 
2A 

F(ITu} = k u ( 16 ) 

where k2 is the square of the length of a general vector in K-s pace. 

The Laplacian is thus transformed into the simple operator k2. From 
k 

this \ve infer that the transform of IT 2 is ± k and that this relation is 

independent of dimen sion such that also 

( 17) 
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In the following, we will refer to operators of the type n2

2 or 

3/2 n2 ,etc., as surface operators. They are important devices to 

simp1fy our development below. 

Sti ffness opera_~ors 

Consider an elastic body that in the unstressed equilibrium state 

has a surface L with the general surface point S. Loading the surface 

with vector forces f(S) leads to the displacement u(S). 

Under quite general conditions there will be a causal relation 

between f and u that can be expressed 
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f = Hu or (18 ) 

where H is an operator that enables us to determine the. applied force field 

on the basis of the disp1acements. We will refer to the operator as 

the stiffness operator of the surface L. 

The simplest, and in the present context, the most relevant 

example is the case of the homogeneous and isotropic Hookean half-space 

that is loaded with liquid pressure at the surface L. Let p(S) be the 

liquid pressure at the surface point S~ w(S) be the resulting displacement 

measured perpendicular to L and positive into the solid, ~ be the 

modulus of rigidity and a be the Poisson ratio of the material. 

A well known result in the theory of Hookean sol ids (Love, 1927) 

states that 

where T is again the surface point of integration, rST the distance 

between Sand T and da T is the surface element at T. Equation (19) 

(19 ) 
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is a convolution and a 2-dimensiona1 Fourier transform in L will there-

fore convert it into a simple product of the transforms of (l/rpT ) and 

p(T). Since F(l/rpT ) = (l/k) and let p and w be the transforms of 

p and w respectively, we find that equation (19) transforms into 

the simple form 

w(K) = [(l-o)/~](l/k)p(K), (20) 

where K is the field point in transform space. Hence, 

p = [~/(l-o)]kw (21) 

and comparing with equation (17) shows that the inverse transform of 

(21) is 
k 

p(S) = [~/(1-o)Jn2~(S) 

k k 
where n2

2 = (-\7 2 ) 2 is a surface opera tor of the type defi ned in the 
2 

preceding paragraph. 

(22) 

The operator on the right side of (22) is the stiffness operator 

thatwe are interested in. For the present purpose, it is, however, 

convenient to modify the operator in the following way. 

Consider a flat fracture space embedded between two elastic ha1f-

spaces of the type defined above. The fracture is filled with a 1 iquid 

that exerts a pressure on both surfaces and we assume that the 

fracture aperture h is everywhere so small that the pressure p can be 

taken to be constant over the aperture. Let p vary along the fracture 

causing a deformation of the surfaces bounding the fracture. l~e define 

the stiffness operator for the fracture such that 

p(S) = Hh(S) (23) 
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where H is the stiffness operator and conclude then on the basis of 

(22) that 

(24) 

In performing the operations involved, we assume that the independent 

variable is the surface point S = (x,y) in the middle plane of the 

fracture. 

Equations for hydroelastic pressure propagation and diffusion in 

fracture spaces 

Following the above preliminaries, we can now derive the basic 

equations for the hydroelastic mode of pressure propagation and diffusion 

in fracture spaces. The theory to be presented below is an approximation 

that rests on two main assumptions. First, only small amplitude motions 

will be considered so that all non-linear terms in the pressure and 

liquid velocity can be neglected. Moreover, the longitudinal scale or 

wavelength of the motions is assumed to be very large as compared with 

the aperture h of the fract~re space. As a consequence, the liquid 

pressure p can be assumed to be constant over the aperture and the 

dynamic equations can then be stated in terms of the cross section 

average velocity vector U. In other words, we are operating with 

essentially two -dimensional pressure and velocity fields where as 

stated above, the independent variable is the point S = (x,y) in 

the middle plane of the fracture space. Moreover, in accordance with 

linearity, the specifi c pressure loss due to frictional 

losses is assumed to be given by pRu where R is an appropriate 

resistance factor or operator. The structure of R will be taken up 

for discussion below. The fracture model that is being introduced 
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is sketched in Figur e 1 below . 
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Fig.l. Sketch of fracture model. 

Let h be the equilibrium aperture of the fracture that is assumed o . 

to be constant, h the local aperture of the pressuri zed frac t ure and 

y be the compressibility of the liquid. Moreover, let v2 be the del ta 

operator with regard to field points S in t he two -space of the fracture 

middle plane. Finally, to retain some generali ty , we introduce a 

source term m(S) that gives the inflow of liquid ma ss per unit area of 

the middle pl ane. 

Referring t o Figure 1, t he dyn amic equ at ion i s then 

mo reover , con servat ion of liquid mass requi res t hat 

(25 ) 
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(26) 

and because of the elasticity of the bounding surfaces 

p = Hh ( 27) 

These equations with appropriate boundary conditions form a 

complete set to determine the three unknowns p(S), ~(S) and h(S). It 

is of advantage to eliminate, for example, u and h. Inserting u 

from (25) and applying (27) results in an equation in the pressure 

(28 ) 

where H is the stiffness operator given byequation (24). Again, it 

is to be emphasized that boundary conditions have to be ajoined to 

(28). This equation is our final result. It is characterized by the 
k 3/2 unusual surface operator5 IT~ and IT2 requiring special solution methods 

that have yet to be developed. Since our interest is mainly limited to 

propagation characteristics, we will turn our attention to fracture 

spaces of infinite extent where the boundary conditions are eliminated. 

The resistance factor and liquid compressibility 

To account for energy losses due to liquid viscosity , a term of the 

form Ru has been introduced into the above equations (25) to (28). On 

a linear small amplitude theory, the term R is assumed to be a constant. 

There are good reasons to assume laminar flow when the Reynold number 

(uh/v) ~ l03 _2xl03 where v is the kinematic viscosity of the liquid. 

Elementary laminar flow theory (Lamb , 1932) gives then a value 

R = l2v/h2 ~ 12v/h~ (29) 
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\) = 

Assumi ng an aperture ho = 1O- 3m and wa ter at 100 0 C ha vi ng 

3xlO-7m2/s, the above Reynold number condition would imply a limiting 

velocity of 0.3 to 0.6 m/so At most natural and many controlled con-

ditions, this is a fairly substantial velocity that leads to 

a mass flow of 0.3 to 0.6 kg/s per meter fracture. On the present 

small amplitude theory, we may therefore with guarded confidence 

assume the form for R given by equation (29). It will, nevertheless, 

have to be underlined that very little data is available to support 

the above estimate of R and that further work, mainly experimental, 

in this field is needed. 

The influence of the liquid compressibility is indicated by the 

magnitude of the term yhoH on the left of equation (28) as compared 

to unity. Since for -10 -1 water y = 5xlO Pa and the magnitude of the 

opera tor H is of the order of IT ~/L where ~ can be taken to be 2xl010 

Pa and L is the wavelength, we find that for L>one meter, the term 

yh H wi 11 not exceed 30ho' Fracture apertures of interest a re, on the 
0 

other hand of the order of 10- 2 m at most, and we therefore conclude 

tha tin mos t cases of practical interest the term YhoH wi 11 be 

considerably less than unity and can therefore be neglected. 

Pressure propagation 

Equation (28) includes the operator (at + R) which according to 

the arguments given in the previous paragraph can be taken to be 

[at + (12\)/h~)1. Assuming harmonic pressure fields, that is, 

p ~ exp(iwt), we conclude that the characteristics of the field are 



largely determined by the relative magnitude of wand R. If w»R, 

the resistance can be neglected and the pressure field will propagate 

as a wave-field. Disregarding liquid compressibility, equation (28) 

then reduces to 
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(30) 

which is a wave-type equation. To obtain propagation characteristics, 

we insert the operator H from (24) and consider the homogeneous form 

of (30), 

Inserting a wave-form p = exp[i(wt-kx)J where k = (2TI/L) is the 

wave ~number into (31), and observing that in one dimension 

we obtain the dispersion equation 

. 3 
-pw 2 + [h ~/2(1-a)Jk = 0 o 

and hence the phase - velocity 

k 
V = w/k = [h k~/2p(1-a)r 2 

o 

Taking that the liquid is water with p = 103kg / m3, the density of the 

rock p = 2.700 kg/m3 , the Poisson ratio a = 0.25 and the shear wave 
r 

k 
velocity is Vs = (~/Pr) 2, the above equation (34) can be restated in 

the sir.1ple fonn 

(31 ) 

(32) 

(33) 

(34) 

(35) 



where L is the wave - length of the hydroelastic pressure wave. A 

numerical evaluation of equation (35) is given in Fig. 2 below. 

Pressure diffusion 

Assuming that w«R, that is, ICltl«R in (28), and neglecting 

again liquid compressibility, we obtain a resistance dominated or 

diffusion equation for the pressure field 

Inserting H from (24), the homogeneous form of (36) is 
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(36) 

( 37) 

which is the diffusion counterpart of the wave-equation (31). Inserting 

a purely attenuated wave-form p = exp[iwt - (x/d
s
))' where d

s 
is the skin­

depth, into (37), we obtain with the help of (32) the dispersion equation 

and hence the skin- depth 

Inserting R = (12v/h2) into (39) and observing that the absolute o 

viscosity of the liquid n = pv leads to the result 

. 1/3 
= [~/24nw(1 -a )J 

Assuming for the rock ~ = 2xl010pa, q = 0.25, for water at lOO oC 

n = 3xlO-
4 

kg/ms and w = 2n/T where T is the period, we obtain 

(38) 

(39) 

(40) 
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(41 ) 

A numerical evaluation of the relation is given in Figure 3 below· 

10 . 1 .-----------------.------------------,--------------~r1 

10. 2 ~------------~~.1_----------------_r----------------~ 

h/L 

Fig. 2. Pressure propagation in water filled fractures of 
width h, where Vs =shear wave velocity in the rock. 
L = wave length. and v = phase velocity for pressure 
waves assuming that w»12v/h2 ~ 

10 6 
.-----------,------------,-----------,-----------, 

ds/h 

10 5 ~----------~---------/ .+-----------~----------~ 

10 

Fig. 3. Skin depth ds for pressure diffusion in fractures 
of width h fl11ed with water at 100°C and assuming 
that w« 12v/h 2. 
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MECHANICS OF TWO TYPES OF HYDROELASTIC 

FORMATION FI ELDS 

Abstract 

The pressure field of interstitial fluids that are contained 

4 9 

in pores or fractu r es affects the elastomechanics of many 

types of natural formations . Moreover, the observation of 

interstitial fluid pressure ' furnishes an important method of 

monitoring formation strain t r ansients. We refer to these 

topics as hydroelastic phenomena. The present paper discusses 

the mechanics of two particular types of hydroelastic models 

where the deformation is generated by barometric transients 

and solid earth tides. Inertia forces can be neglected in 

such cases . The first case involves the estimating of the 

interstitial liquid pressure in a vertically fractured slab 

that is affected by bar ometric pressure transients. The 

second model concerns the estimating of interstitial liquid 

pressure field oscillations due to solid earth tides in fault 

zones with a porous gouge. 
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Introduction 

Natural formations generally contain fluids in pores, fractures and 

intercystalline spaces. Liquid water is the most prominent of such 

interstitial fluids. Most igneous formations have a very low porosity 

and the interaction of the interstitial water pressure with the forma -

tion elastic fields can then for most practical purposes be neglected. 

The situation in more fractured formations and clastic sediments, is 

however, different and the hydroelastic interactions, as we shall name 

them can then not be neglected. Moreover, the observation of fracture/ 

pore fluid pressure is an intergral part of elastomechanical exploration 

work. We will therefore devote some space to the basic set of hydro-

elastic field equations for porous media that can be assumed to govern 

such processes to a satisfactory approximation. 

(1) Basic equations 

Consider a porous and/or fractured liquid saturated Hookean elastic 

formation that can be assumed to be homogeneous and isotropic on a scale 

much larger than the dimensions of the liquid carrying fractures. Let 

p and A be the large scale or average Lam~parameters, ~(P) be the dis­

placement vector at the field point P = (x;y,z) and p(P) be 

the interstitial liquid pressure at the field point. To establish 

the basic elastic field equations for this type of formation, we follow 

a procedure of Biot (1947) where the force field acting on the formation 

matrix generated by the interstitial liquid pressure is assumed to be 

repres~nted by a simple body force density equal to - svp wheres is a 
-+ 

dimensionless parameter that is less than unity. Moreover, let f{P} 

be an impressed body force density. The basic large scale equations 

for the displacement field are then 



This equation has to be adjoined by an equation for the fluid 

transport inside the solid. Here, we will follow a procedure of 

Bodvarsson (1970) and introduce the equation for the fluid pressure 

(1 ) 

(2) 

where rr=-v~ a = C/ps is the hydraulic diffusivity, C the hydraulic 

conductivity, p the density of the fluid, s the hydraulic capacitivity 

and 6 is the matrix coefficient introduced . by Bodvarsson (1970). Equa­

tions (1) and (2) with appropriate boundary conditions constitute 

the basic equations that are assumed to approximately govern the 

hydroelastic fields of interest in the present context. 

The simpl ified and approximate character of (1) ' and (2) is, 

however, to be noted. Without further elaboration, we will state that 

(1) is likely to hold mainly for fonnations of low fluid content as 

is the case for igneous formations. Moreover, the parameters 9 and 6 

are to be taken to be purely empirical and are therefore to be adjusted 

to individual situations. 

As may emerge a little more clearly, the pressure term in (1) ' 

has been introduced to mainly account for the pressure/elastic inter-

action whereas the forces on the matrix due to the flow resistance are 

. being neglected. This approach is likely to be permissible in the case 
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of formations of low porosity and fluid content. The introduction of 

the friction terms would greatly complexify the equations without much 

enhanci ng the va 1 idi ty for the present purpose. 

There are no formal difficulties in inc14ding formation rheic 

effects in (1). 
, 

For this purpose, we will replace the Lame parameters 

in (1) by operators such that 

where ~ and A are new parameters. Equation (3) thus includes 

elastic, rheic and hydroe1astic effects. 

Obviously, equations (1) to (3) are quite involved and more 

(3) 

general types of solution are not derived too easily. However, as al -

ready emphasized, the parameter e is generally less than unity and this 

permits a first order decoup1ing of the .equations, that can then be 

solved by a perturbation approach. As a matter of fact, we are generally 

only interested in first order effects . The procedure is then to 

neglect the pressure tenn in (l) and solve for the first order 

displacement field~. This field is then introduced as the source term 

in (2) that can then be solved uniquely. The matrix parameter 6 

is somewhat uncertain but is in most cases probably close to unity. 

The perturbation method outlined allows us to solve for the hydroe1astic 

fields . 

(2) A specific hydroelastic model 

It is instructive to consider a simple specific hydroe1astic 

model that has the advantage of allowing a specific estimate of the 
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parameter 6. This is the case of the vertically fractured elastic half-

space t hat is loaded by a spatially uniform pressure p on the surface 
o 

plalte Eo The vertical fractures are assumed to extend from the surface 

dovm to a fixed depth and be liquid saturated. T~e overall porosity <p 

due to the fractures is assumed to be uniform and small compared to unity. 

We will now derive the basic equations for this model that is sketched in 

Fi gure 1. 

pressure p 
0""2 

r 
OJ 

fluid - filled 
vertical fractures 

-til--impermeoble solid 

I I I 
........ ..... ~ .;.. ::', :.: .... :':.':: :: ........ :: .......... ; ........ : .... : ".\~" : .~"'."" "".':: ~ .. :.; .. : .. : .. : 
':':::':-:::' Im·permeable::.Basement :.:: :' .. ; .. : ........ :: .... :. '<' . 

• • • • ' • • 0 ••• • • • "0 • ••• ,0 ••• '. '. • • • • 

Fi gure 1. A specific hydroelastic model. 
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Let 01 and 02 be the vertical, respectively hori zontal principal 

stresses in the solid material. Similarly, let El and E2 be the 

corresponding principal strains. ' Moreover, let p be the liquid pressure 

in the fractures. Due to the horizontal homogeneity, all quantities 

are functions of depth and time only. Using the notation above, we 

have then the modified Hooke's law for the solid material 

( 4 ) 

(5 ) 

I 

I 

I 

I 
I 

I 
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Moreover, let q be the vertical liquid mass flow, p the density and 

cf the compressibility of the liquid. The conservation of liquid mass re­

qui res that 

Equation (5) gives 

and the liquid flow can be' assumed to be governed by Darcy's law 

q = -Ca p z 

(6) 

(7) 

(8) 

where C is the liquid conductivity. Let u be the vertical displacement 

and hence ~l = dZU. Inserting these quantities in (6) yields the 

equation for the liquid pressure 

and (4) modifies to 

(10) 

If f is a vertical volume force, we obtain then the elastic equation 

( 1 1 ) 



Equation (-11) corr:esponds to one component of (1) and (9) is the 

present version of (2) . 

The above equations can now be simplified by assuming Poisson's 

relation A = ~ and i~troducing the d~ffusivity a = C/pc f , Moreover, 

the factor (1/2c/A+~))«1 and hence (9) simplifies finally to 
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( 1 2 ) 

and (11) is 

2.5~a u-(1/2)a p+f = 0 zz z 

Hence, in this particular case, the parameter 6 = 1/2. 

(3) Oisplacement/interstitial liquid pressu~e relations 

(13 ) 

Observations of interstitial liquid pressure surface, displacement and 

tilt are complementary and the relation between these observables are of 

considerable interest. In the following, we will discuss this topic in 

a little more detail in the case of a homogeneous/isotropic permeable slab 

of uniform thickness h that can be assumed to be governed by equations 

(1) and (2) . The slab is assumed to be liquid - saturated, placed on 

an impermeable fixed basement and for convenience we assume that the 

thickness h is large compared with the hydraulic skin depth at the time 

frequencies of main interest. The surface load is assumed to be baro -

metric of the unit step type in time and uniform in space with an ampli-

tude b(t). Notation is as in previous sections. Before turning to the 

basic equations, a few remarks have to be made as to the boundary condi-

tions for the fluid pressure at the upper surface that will coincide with 



the ground water level. Several types of situations are possible. 

In the case when the ground water level coincides with the free 

surface, the boundary pressure on the interstitial liquid would be the 

same as on the solid matrix. that is, 

p = b(t). z = o. ( 14 ) 
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However. in most types of terrain, in the SW of the U.S., in particular. 

the ground wa ter table is qui te low and there is a thi ck dry surface 

layer that is saturated by air. 

Since the ratio of air/water compressibil ity is- of -the order of 

104 and the corresponding viscosity ratio is roughly 1/25, the com-

pressibility by viscosity ratio is 400 and hence. assuming the same per­

meability, the pressure diffusivity in the wet formation will be 400 

times as large as that of the dry layer. In fact, the diffusivity of 

the dry layer will in general be so small that barometric pressure tran­

sients will penetrate only a few tens of meters into the layer. A 

thick dry surface layer will therefore be largely isobaric with regard 

to pore/fracture pressure during normal barometric loading at the sur-

face. 

In this situation, the barometric load transmitted down to the 

wet formation results in an increased pore/fracture pressure that forces 

the interstitial water upward. Assuming small- amplitudes. we have then 

because of the cons tant pressure a boundarY ' cond'iti on of the mi xed type 

at the ground water level (Bodvarssoh. 1977). that is 

( 1 5 ) 



where g is the acceleration of gravity. 

We can now express the basic equation for this one-dimensional 

case of (1) and (2), 

(A+2~ )a u-ea p = 0, zz z ( 16 ) 

and 

( 17) 

where p can now be taken to be the pressure in excess of hydrostatic. 

Moreover, in the present case, we assume causal initial conditions and 

taking that the barometric load is of the unit-step type of amplitude 

b, the boundary conditions for the displacement are 

- (A+2~ )a ul = bU(t), 
z z=o 

(18 ) 

where U(t) is the unit-step function, and at the base of the slab 

u = 0, Z = h (19 ) 

There are no formal problems in solving the above equations with 

either condition (14) 'or (15). However, since we are here only 

considering the general character of the hydroelastic effects, we ~ill 

resort to discussing the simplest case that results when a low porosity 

wet formation is overlain by a high porosity drY layer such that the 

condition at the ground water level placed at z = 0 degenerates into the 

simple condition 

p = 0, z = ° (20) 
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Proceeding with solving for this specific case, we assume that the 

porosity is sufficiently low that the above set of equations can be 

decoupled and solved by the perturbation procedure referred to above. 

The first order term u1 is then obtained by 

that yields 

U = Az+B 1 

(21 ) 

(22) 

where A and B are constants for t>O. On the basis of the boundary con -

ditions follows that 

u
l 

= (b/(A+2~))(h - z)U(t), 

Inserti ng in (15) ' results in 

and because of the large thickness h this equation has the approximate 

solution (Carslaw' and Jaeger, 1959) 

On the basis of (16), a second order displacement is obtained 

from 

(23) 

(24) 

5 9 
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where A is again a constant. We obtain 

z 
u2 = (8/(A+2~)1 p,dZ+Az 

o 

and since u = 0 at z = h 2 

which results then in 

h 

A = - (8/(A+2~)h)f Pldz 
o 

where ierfc is the integral-erfc function. The displacement at z = 0, 

that is the quantity of main interest is then to the second order 

( 27) 

(28) 

(29) 

ulz=o = (bh/(A+2~))[1 - (86/S(A+2~)(1 -F-l (ierfc(F) _0.56))] (30) 

where F = h/2(at)1/2 is the Fourier number. The extreme values of the 

second order approximation are then 

t = 0+, ulz=o = (bh/(A+2~ ))[1 - (86/S(A+2u))] 

(31 ) 

This can be portrayed in the graph in Fig. 2. below 
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Figure 2. 

time 

Displacement response of a porous 
fluid saturated solid~ 

Hence, the solid behaves as a firmoviscous or Kelvin-Vogt solid. 

The first order pore/fracture pressure as given by equation (25) 

above is a monotonously decreasing function of time with the initial 

amplitude (6b/s(A+2~)). 

(4) Further development 

Although the material in the previous section presents the hydro -

elastic processes in a very simple setting, many of the essential fea-

tures emerge quite clearly. In particular, liquid saturated, low-porosity 

formati on"s tend to exhi bit a Ke 1 vi n- Vogt type of behavi or. There are 

no difficulties in extending our results to a more general setting. The 

general solution for Pl in the one -dimensional case with the mixed type 

of boundary condition given by (15) is given by Carslaw and Jaeger 

(1959) and can be easily applied t o generali ze the above development. 

However, the algebra becomes more involved and it would appear that 

further work along these lines would not be warranted at this juncture. 
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Obviously. the same applies to the study of more general three -dimensional 



models. There are no principal difficulties but the algebra is very 

involved. As of now, the main interest centers on obtaining field data. 

It is, nevertheless, appropriate to indicate the procedure of 

applying a s~ccessive substitution or iteration technique to the 

hydroelastic setting. In essence, we would then reduce the displace­

ment vector equation (1) to a one-dimensional form and insert only 

one displacement component in the divergence on the right of the 

pressure equation (2). However, it will depend on the geometry and 

the diffusion parameters whether any reduction of the number of in­

dependent variables in (2) can be made. This will have to be 

considered in the case of each individual model. 

(5) Monitoring of interstitial liquid pressure 

The interstitial tiquid pressure has been included as a scalar p 

in the above equations implying that this quantity can be taken to be 

a localized point-function. Although there are no formal difficulties 

involved, it must, nevertheless, be underlined that because of observa­

tional port effects, the observation of strictly local values of p 

presents some difficulty. 

The monitoring of p is generally carried out by placing pressure 

transducers in boreholes that extend to sufficient depths and serve as 

observation ports. Two difficulties arise under these circumstances. 

First, although the holes can be cased over most of their depth, most 

holes have an open section of a finite length and this tends to preclude 

the observation of strictly local values of the pressure. The values 

obtained are more likely to be averages over the open section. Second, 

all boreholes have a finite capacitance such that it is impossible 

to observe instantaneous values of the pressure. Again, only weighted 

62 



63 
-

averages over certain periods of time can be observed. The capaci-

tance is particularly large in the c~se of open holes with a free liquid 

surface. 

The capacitive -effects of observation ports have been discussed briefly 

in a paper by Bodvarsson (1981). Although the paper addresses the 

problem mainly from the point of view of well interference testing, 

the results have relevance to a more general setting involving fluid 

pressure monitoring in boreholes. 

(6) Exploratory relevance of interstitial fluid pressure data 

The practical importance of the fluid pressure data in elastomechan­

lcal exploration and testing rests primarily with the pressure/volume­

strain relation given by equation (2) above. Let H be the diffusion 

operator on the left of (2) and e the volume strain such that the 

equation can be expressed as 

(32) 

and its solution then 

(33) 

In the case of uniform strain, or very low liquid diffusivity, and 

at distances substantially larger than hydraulic skin depths from 

boundaries, equation (33) reduces to the simple relation 

p = - (6/s)e (34) 



implying that the liquid pressure is proportional to the volume strain ; 

Thus, provided the pressure data can be processed for observation port 

effects and the material parameter (6/s) is known, the data give a direct 

information on the local value of the strain. Herein lies the main 

importance of the pressure observations. 

The development above has been designed mainly to 

app ly to the case of barometri c forci ng at the ground surface. In 

other words, the forcing field is vertical and generates mainly a 

vertical displacement. The situation with tidal forcing is different 
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in that the forcing stress field has then to be taken to be mainly horizontal 

such that local displacements and tilts observed at the surface and 

reduced for global effects are primarily due to Poisson contraction 

and local inhomogeneity effects under the "horizontal strain. In general, 

the theory of such effects tends to be more involved than the case of 

barometric forcing. 

(7) Hydroelastic phenomena in a fault zone with a permeable gouge 

An interesting tidally induced phenomenon concerns the hydro ­

elastic effects in interstitial fault gouge liquids that are of 

direct relevance to the observation of interstitial fluid pressure 

and formation volume strain. We will elaborate briefly on this 

subject. 

From a more general point of view, the mechanics of tidally 

induced hydroelastic processes in fault zones is a specific case of 

a more general problem that can be stated as follows. Given an in ­

finite impermeable elastic space that includes a region B of an 



65 

elastic fluid sa.turated porous/fracture material. The region B has 

a finite fluid conductivity such that the interstitial fluid flows in 

response to impressed pressure gradients. The entire elastic space is 

deformed by an impressed slowly oscillating stress field. In the 

general case, the elastic parameters of region B differ from the 

surrounding space and the region and its neighborhood will therefore 

be deformed relative to the space. The interstitial liquid moves in 

response to the impressed stress resulting in a time-dependent 

modification of the liquid pressure that again acts on the elastic 

matrix of region B and the surroundings. We are here confronted with 

a case of interacting elastic and liquid pressure fields. The basic 

equations are (1) and (2) with appropriate boundary conditions. 

Since the present paper is mainly concerned with the more general 

physical implications of the hydroelastic effects, we will resort to 

briefly considering the following simplified model of a fault zone system. 

Consider a porous/permeable . liquid saturated slab of thickness 2h that 

is embedded between two symmetric elastic half-spaces. The model is 

sketched in Figure 3. The slab is Hookean in a generalized sense 

but can be inhomogeneous on a scale that is large compared to the thick­

ness 2h. Moreover, the thickness can very on a similar scale. The 

inhomogeneities are, however, restricted such that there is a well 

defined average thickness 2h and average material properties. The o 
flow of the interstitial liquid is assumed to be governed by Oarcy's 

law. Both half- spaces are homogeneous Hookean with a Poisson ratio 

0.25 and a modulus of rigidity ~. 

The entire system ;s acted on by an oscillating force field that 

;s perpendicular to the plane of the slab and generates a principal 

I 
I 
I 
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stress of 0
0 

in both half-spaces. Since the slab is inhomogeneous, the 

stress varies in its neighborhood but takes on the constant asymptotic 

value 0 away from the slab. Obiously, the slab will breathe under the o 
stress and the inhomogeneities will then lead to local oscillating 

movements of the interstitial fluid. 

Figure 3. Model of a porous slab. 

As of now, no assumptions have been made with regard to the 10ngi-

tudinal dimensions of the slab. For the present purpose where the 

interest centers on the hydroelastic effects, it is most convenient to 

assume that the slab is of infinite dimension. Without a significant loss 

of generality this eliminates boundary conditions that tend to complicate 

the analytical development. Because of the symmetry of the model, we 

have then only to consider one half of it, that is, the half-s lab of 

thickness h welded to the adjacent half- space. The outer surface of 

this truncated model has to ~emain flat under the imposed stress. We 

place a rectangular coordinate' system with the (x,y) plane in this 

surface and the z-axis vertically into the ha lf-space . 



On the truncated model the breathing of the slab leads ' to a dis-

placement of the slab/half-space interface in the direction of the z-

axis that conveniently is expressed (u + u) where u is an average o 0 

value that is uniform over the entire slab and u(x,y) is a perturba-

tion due to local inhomogenities in the slab material. This displace­

ment (uo + u) results in a linear strain of (u + u)/h parallel to the o . 

z-axis and it is again convenient to separate this quantity into two 

components such that 

6 7 

(35) 

where wois the averaged component 'corresponding to uo. Associated with 

the strain is a resulting stress component parallel to the z-axis that 

we likewise write (0
0 

+o) and a pressure of the interstitial fluid of 

(po + p) where 0
0 

and Po are again uniform over the entire slab. 

Since the material of the slab is Hookean, there is a linear re -

lation between the strain, stress and the fluid pressure that can be 

expressed 

0
0 

+ a = (k(uo + u)/h) - ~(po + p) (36) 

where k is a specific elastic modulus, a variant of Young's modulus that 

depends on the material, pore geometry and the scale of the inhomogenei -

ties. The second parameter a is, on the other hand, a pure number that 

is considerably less than unity. We adjust the parameters such that 
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00 = (ku /h) -ap 
o 0 

( 37) 

and hence 

° = (ku/h) - aP (38) 

Because of the scale of the inhomogeneities, the stress in (36) 

and the interstitial fluid pressure are approximately constant across the 

slab and the equation for the pressure then reduces to a field equation 

in two independent variables (x,y) 

(39) 

where ~= (a ,a ) and c is the fluid conductivity. Because Po is uniform over 
L x y . 

the slab this term drops out of the second term on the left of (39). The ex-

pression on the right represents the effects of the volume strain where the 

dimensionless parameter 6, that has values of the order of unity, has been in-

troduced to relate the volume strain to the linear strain and to account for the 

effects of the pressure reactance. 

Finally, the displacement parallel to the z-axis, the resulting stress 

in the slab and the fluid pressure are related by the displacement/stress 

equation for the surface of the half- space. To avoid a singularity, the 

relation includes only the perturbation components such that 

(<PP - (J) = Hw (40) 

where H = (\1 /1 .S )1l2 l /2 is a surface operator as defined by Bodvarsson c -

(1984) and et> is a dimension1ess parameter that is about equal to the 

area porosity -and has been introduced to account for the effects of the 
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pressure on the half- space . The addition of (40) completes the 

system of equations. 

Although the underlying model has been simplified considerably, and 

the resulting equations are linear, the solution of the set (37) to 

(40) poses a non - trivial problem. The combination of the diffusion 

and the half-space operator H is at the center of the difficulty. This 

underlines the complexity of the general tidal deformation problem we 

are considering in this section. 

To look into the phystcs of the above model, we observe that when 

all parameters are constant, equation · (39) reduces to the time integrated 

form ',. 

hsp = 6 w o 0 
( 41) 

and the perturbation components vanish. In the inhomogeneous case where 

the integrated capacitivity- hs varies along the slab, and there are no 

externa1 · f1uid sources, Po is the source of p. Turning to a conventional 

perturbation case where . all parameter/component perturbations are small 

compared to the zero order set, we obtain the following situation for 

the first order components . Asuming that the conductivity c is constant 

but the capacitivity hs = h s + C where C is a perturbation, we take that 
o 0 

now 

h s P = 6w o 0 0 0 

(42) 

and the first order form of (39) then ·reduces to 

(43) 

I 
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2 where n2 = (-V2 ) . 

The displacement w can be eliminated with the help of (38) com­

. bined with (40) and it is convenient to introduce the diffusivity 

a = c/pso • Equation (43) can be expressed in a final form 
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where the term on the right is now a source term for the pressure field. 

To draw essential physical conclusions on the basis of (44) it is 

of main interest to consider the magnitude of the operator term in the 

brackets of the first term on the left. Since the operator H has a posi­

tive norm, the term (h s H + ks ) is bounded from below by ks. In the 
000 0 

case of rock formations of interest in the present context, the capaci-

tivity s is generally of the order of a few 10-11pa- l • Moreover, the o 

parameter k is of the same magnitude as Young's modulus that generally 

is a few 1010pa. Hence, ks o will generally be of the order unity plus, 

that is, in the range 2 to 3. Moreover, a - is of the order of unity and 

based on the definition of. and a, the sum of these parameters is likely 

to be no larger than 0.2 to 0.5. Hence, the norm of the entir~ operator 

term in the brackets of the first term on the left of (44) is in most 

cases below 0.2 to 0.4 and the entire brackets therefore of the order of 

unity. In most practical cases, equation (44) therefore is a typical 

diffusion equation and the related phenomena therefore dominated by the 

hydraulic skin-depth. This parameter gives a measure of the range of 

pressure diffusion under oscillatory stress. Most low-to-medium fluid 

conductivity cases are at tidal frequencies associated with skin-depths 

of the order of no more than 100 m (see Bodvarsson, 1970). We can there-
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fore conclude that hydroelastic phenomena are not likely to greatly 

affect the tidal breathing of fault zones with a moderately conductive 

gouge . The phenomena are , however, of definite interest in the case of 

higher conductivities involving permeabilities well in excess of 0. 1 

Darcy. Skin depths can then amount to several l02m and are likely to 

substantially modify the fault breathing. In particurar, the portion of 

the fault zone within a distance of one skin depth from the surface will 

be affected . The various types of tidal borehole tests discussed above 

provide important tools of obtaining experimental data on both stress 

and strain fields around fault zones of this type. 



72 

References 

Biot, M.A., 1941, General theory of three -dimensional consolidations, 
J. of Applied Physics, 12;155-164. 

Bodvarsson, G., 1970, Confined fluids as strain meters, J. Geophys. 
Res., 75(14):2711-2718. 

BodvarssQn, G., 1977, Unconfined aquifer flow with a linearized free 
surface condition, Jokull, 27:84-87. 

BodvarssQn, G., 1981, Capacitive perturbations in well interference 
testing, J. Eng. Ass. Iceland, 66(4):60-62. 

Bodvarsson, G., 1984, Linearization techniques and surface operators 
in the theory of unconfined aquifers, Water Resources Research, 
20(9):1271 -1276. 

Carslaw, H.W. and J.C. Jaeger, 1959, Conduction of heat in solids, 
2nd ed., 496 pp. Oxford at the Claredon Press. 



73 

DYNAMICS OF BOREHOLE-FRACTURE SYSTEMS 

AND THE DETECTION OF FRACTURE BY ACOUSTIC TECHNIQUES 

Abstract 

Most geothermal systems are embedded in fracture-dominated 

igneous rock. Boreholes produce predominantly from fractures. 

The evaluation of well testing results in such reservoirs 

will have to be based on the dynamics of borehole-fracture 

systems. Acoustic pressure signals propagating down a liquid 

filled borehole are modified by open fractures that are 

transsected by the hole. The monitoring of the signals at 

various positions in the hole provides a method of detecting 

and locating fractures. In the case of a horizontal fracture 

that opens into the hole over the whole circumference, the 

smallest fracture width that can be resolved by acoustics 

techniques is about 0.4 millimeters. 
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Introduction 

Well-testing is an important method of reservoir exploration. 

Various types of such tests furnish information on the conductive and 

capacitive properties of reservoir formations and can under favorable 

conditions provide some information on overall reservoir dimensions. 

The practical and theoretical aspects of well-testing have been 

highly developed by the petroleum industry (see e . g. Earlougher, 

1977) where the emphasis has been on the testing of reservoir 

formations that are composed of clastic sediments where Darcy type of 

fluid flow prevails. The techniques have also found wide application 

in the water resources industry. Since geothermal - reservoirs are 

very frequently embedded in fractured igneous formations, the 

interest there focuses on a somewhat different field setting 

requiring a modification- of the underlying theory. The borehole 

intersecting one or more fractures in a practically impermeable 

formation is the relevant field model in the case of many geothermal 

reservoirs. 

In the present paper: we consider the dynamics of a homogeneous 

liquid contained in a borehole-fracture syste m consisting of one 

vertical hole intersecting a single fracture at depth. The liquid 

reaches to the top of the hole. The theory is limited to a small 
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amplitude excitation such that the acoustic approximation applies to 

the motion of the liquid. We assume that the system is being excited 

by controlled or natural force fields and that the liquid pressure 

response can be monitored at any level in the borehole. Forcing 

frequencies in the range 0 .01-1. 0 Hz that excite the basic acoustic 

modes of this system are of particular interest. 

The setting described above is relevant to two types of field 

cases of practical interest. The first case relates to the use of 

liquid pressure signals in borehole-fracture systems to extract 

information on fracture location and dimension. This is frequently 

an important task in fractured reservoir exploration. The second 

case involves the application of borehole-fracture systems as 

seismometers. Liquid pressure signals can now be monitored with a 

high degree of precision such that the pressure is quite sensitive to 

excitation of an elastodynamical nature. 

Fracture Mechanics 

Before entering into the main subject, it is of interest to 

devote some space to the mechanics of fluid flow in fractures. 

Consider a plane fracture with impervious walls of uniform width h 

that contains a homogeneous liquid of kinematic viscosity u. Let p 

be the liquid pressure and dp/dx be the pressure gradient along the 

x-axis that lies in the fracture plane. Assuming small velocities 

such that laminar conditions prevail, the fracture will then carry a 

mass flow q in the direction of the x - axis of (see e.g., Lamb, 1932) 
x 

(1) 
3 

q - -(h /12v)dp/dx x 
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Hence, the -fracture has a vertically integrated conductivity or 

transmissivity of h
3
/l2 and thus a permeability of h 2/l2. 

Since natural liquids are slightly compressible, the fracture is 

a potential oscillator. The simplest situation involves the case of 

an inviscid, slightly compressible liquid in a fracture with rigid 

walls. Let the motion of the liquid be unidirectional along the 

x - axis . The fracture is then capable of organ-pipe type oscillations 

that in the acoustic approximation are governed by a simple 

one-dimensional wave equation in the liquid pressure p. 

(2) p8 p - (1/c)8 p - K tt xx 

where p is the density and c the compressibility of the liquid and K 

is a forcing term. In realistic situations with elastic walls, the 

above equation may have to be generalized to include additional terms 

that take the wall elasticity into account. The equation is then 

considerably more complex. 

At this juncture, it is of interest to estimate the relative 

importance of the liquid compressibility and the wall elasticity. 

For this purpose, we consider a liquid-filled circular fracture of 

uniform width h and radius R with walls that are composed of a 

homogeneous, isotropic Hookean material. According to Sneddon and 

Lowengrub (1969) the elastance e of the fracture under uniform 

internal pressure p is 

(3) e = dV/dp 
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where V is the incremental fracture volume and ~ is the rigidity of 

the wall material. Since the fracture volume is ~R2h, the total 

2 compressibility of the. liquid is c~R h. Hence, the elasticity of the 

walls dominates the liquid compressibility when 

(4) 
3 2 

2R /~ » c~R h 

that is 

(5) R/h » c~~/2 

Since in the case of water the compressibility is about 5x10- 10 Pa- l 

10 and the rigidity of common igneous rock is of the order of 2xlO Pa, 

we arrive at the condition 

(6) R/h » 15 

Since the width of open fractures in natural igneous formations is 

-3 
generally of the order of 10 m or less, it is quite clear that 

under most field conditions . the compressibility of the liquid can be 

neglected. The second term on the left of equation (2) will thus 

have to be replaced by an appropriate term accounting for the 

formation elasticity. Relevant equations for this purpose have been 

developed by Bodvarsson (1985). 

Without doubt real fractures deviate considerably from the ideal 

model of uniform width, simple geometry and homogeneous formation. 

Moreover, it is quite likely that opposite fracture walls are in 

contact at the tips of major asperities such that the walls are 
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supported in these locations. For thi~ reason, natural fractures are 

likely to be compartmentalized, that is, act as a series or system of 

interconnected open fracture spaces. Some elementary properties of 

ladder type of such fracture systems have been discussed by 

Bodvarsson (1982). Assuming that such detai~s of fracture 

geometry and structure are known, it would be theoretically feasible 

to derive, at least, an approximate term, or series of terms, to be 

inserted in equation (2) to account for the wall elasticity. In the 

field, the problem setting is, however, such that practically nothing 

is known about the fractures intersected by boreholes. In fact, we 

are particularly interested in using observational borehole liquid 

pressure data to infer fracture parameters of interest. In such 

situations, the appropriate procedure is to construct a formal 

solution to the basic acoustic equation for the fracture that depends 

on the minimum number of unknown parameters. These quantities are 

then to be derived from the observational data. To obtain a 

sufficiently general type of solution the following procedure can be 

applied. 

Because of the small width of fractures, we can without loss of 

generality assume that the local liquid pressure is constant over the 

width. The capacitive effects of the elastic walls can then be 

expressed in terms of a linear operator acting on the pressure. The 

operator acts in two dimensions, that is, the position coordinates in 

the fracture plane. Adjoining proper boundary conditions, we can 

because of the acoustic approximation assume that the operator is 

self - adjoint. In the case of a closed fracture of finite extent with 

a uniform internal pressure, the operator L is simply a scalar factor 

that depends only on the position in the fracture plane. Non-uniform 
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pressure leads to a considerably more complex differential operator 

in two spatial dimension. The operator is of fractional order 

(Bodvarsson, 1985). 

The situation can be drastically simplified in the case of 

compartmentalized fracture spaces. Consider the case where there are 

n compartments. Limiting our analysis to relative low frequencies 

where only the fundamental acoustic mode of each compartment is 

excited, the above operator L can be approximated by a n x n matrix 

operator that acts on the system pressure vector. The liquid 

pressure can be taken to be uniform in the individual compartments 

and the set of n compartment pressures form the system pressure 

n-vector. The acoustic equation then reduces to a matrix equation. 

Since there are quite obvious reasons for assuming that most natural 

fracture spaces are compartmentalized, this approximation is of 

particular practical interest. It represents a type of lumping of 

the fracture system. 

Flow resistance due to liquid viscosity has not been included 

in the above discussion. To maintain sufficient generality, this 

type of attenuation will have to be considered in the basic equation. 

In the acoustic approximation, the appropriate procedure is to 

generalize the equations by including a laminar type term batp where 

b is a friction coefficient that is assumed to be constant over the 

fracture. 

The fundamental acoustic equation of the fracture system is then 

of the form 

(7) pap + ba p + Lp - K 
tt t 
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where K is again an impressed forcing term. In the general case, L 

is a self-adjoint differential operator, while in the lumped type of 

approximation defined above, it is an n x n symmetric matrix 

operator. 

A general method of solving equations of this type is to derive 

the eigenfuctions ~. and the eigenvalues A. of L and express the 
J J 

solution to (7) in 'a series of the eigenfunctions. Since this is a 

standard basic solution method, we will refrain from discussing any 

detail of the procedure. The method is well described in the text by 

Duff and Naylor (1966). 

In the present context, we are mainly interested in the driving 

point impulse response of the entrance to the fracture. For later 

purposes it is convenient to express this function in the form of its 

Laplace-transform with respect to time where s is the transform 

variable. The ' transform is the driving point admittance type system 

function A(s) that represents the input flow induced by a o-type 

pressure impulse at the entrance. Using the terminology above, the 

result is 

(8) A(s) 
2 

~ a.s/(ps + bs + A.) 
j J J 

where the factors a. are real numbers and j is the modal summation 
J 

index. The series represents a sum over the normal modes of the 

fracture. The lowest order term is the Helmholtz mode (Elmore and 

Heald, 1969) where the fracture oscillates as a simp~e elastic cavity 

with an oscillating liquid mass at the entrance. In the case of the 

lumped approximation defined above, the series in equation (8) has a 

finite number of terms that is equal tq the number of compartments. 

Equation (8) represents the desired result where the solution to 
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equation (7) is expressed in terms of a series of the parameters a . 
J 

and A •• 
J 

The derivation of the phy~~cal parametes in equation (8) from 

observation data is an inverse problem that usually is highly 

~nderdeterminate. At the present state-of-the-art, the interest will 

therefore focus on the simplest situations where only the Helmholtz 

mode is taken into consideration. In the remainder of this paper we 

will therefore concentrate on this case. 

The Helmholtz mode of a circular fracture 

To look into the dynamics of the Helmholtz mode in a simple 

setting, we consider the circular fracture of finite extent that is 

sketched in Figure 1. The fracture has a radius R, is of uniform 

width h and opens into a borehole of radius r at the center. In the 
o 

Helmholtz mode of this model the liquid mass in the fracture 

oscillates radial1y and the elasticity of the walls provides the 

restoring force. To estimate the frequency of this mode in 

situations where damping due to flow friction can be disregarded, we 

apply the energy method. 

Let the angular frequency be wand the amplitude of the liquid 

displacement at the entrance to the fracture be unity. The amplitude 

of the liquid velocity at the entrance is then w. At a radial 

position r > r , the velocity is wr /r and the amplitude of the total 
o 0 

kinetic energy of the liquid in a ringlike section of thickness dr is 

then 

(9) 
2 2 2 

(p/2)(wr / r ) 2~rhdr - ~pw r hdr/r 
o 0 
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Integrating over the whole fracture, the amplitude of the total 

liquid kinetic energy is 

(10) E ~ 
k 

2 2fR 
~pw hro (dr/r) 

r 
o 

2 2 
~pw hr In(R/r) 

o 0 

The amplitude of the total elastic energy is obtained from the 

amplitude of the total liquid volume displacement at the entrance 

that is V ~ 2~r h. Let the amplitude of the liquid pressure caused 
o 

by this volume increment be p such that ep ~ V where e is the total 

elastance of the fracture. The amplitude of the total elastic energy 

is then (1/2e)V2 . Inserting the expression for the elastance given 

by equation (3), we find the amplitude of the total elastic energy 

(11) E 
e 

3 2 
(~/4R )(2~r h) 

o 

An approximate expression for the Helmholtz mode angular 

frequency Wo is obtained by equating Ek with Ee resulting in 

(12) 
2 3 

w - ~~h/pR In(R/r ) 
o 0 

and hence the approximate angular frequency 

(13) w 
o 

3 1/2 
[~~h/pR In(R/r )] o 

This expression indicates that the radius of the fracture is the 

dominant parameter . To consider a plausible example, let the liquid 

be water such that p - 103 kg/m
3 

and, moreover, h - 10-
3 

m, ro ~ 0.1 

m and R - 10 m. These figures lead to a frequency w /2~ ~ 0.6 Hz. A 
o 
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fracture of larger extent such that R - 20 m would have a frequency 

of 1.2 Hz and a large fracture of R 100 m has a frequency of 0.02 

Hz . 

Estimates of the Helmholtz mode frequency of fractures of a more 

general shape can be obtained on the basis of a similar procedure 

albeit at the expense of a greater analytical effort. In general, it 

is possible to define an oscillating liquid mass m and a 

corresponding elastance € such that the undamped Helmholtz mode 

frequency can be expressed as a case of a simple undamped harmonic 

oscillator with a simple mass m and elasticity €, that is, 

(14) 

To establish expressions for the parameters entering into (14), 

we turn again to the particular case of the circular fracture where 

equations (10 ) and (11 ) hold. Let f be the area of the entrance to 

the fracture such that in the circular case f - 2~r h. Equation (10) 
o 

indicates that the oscillating mass can be defined 

(15) m pfl 

where 

(16) 1 ~ r In(R/r ) 
o 0 

is a characteristic length that furnishes a measure of the radial 

dimension of the mass. Moreover, since equation (11) is obtained on 

the assumption that the displacement amplitude at the fracture 
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entrance is unity, and the elastic energy of the harmonic oscillator 

with unity amplitude is simply (1/2£), the equation indicates that 

(17) 2 
£ - elf 

Expressions (15) and (17) are applicable to fractures of a more 

general form than the circular model set forth above. 

Having modeled the undamped Helmholtz mode of a fracture in 

terms of an undamped harmonic oscillator, we will now include the 

effects of liquid flow friction. Following the same procedure as 

above, consider again the case of the circular fracture of uniform 

width h. Let P be a position in the fracture plane and da be an area 

element perpendicular to the liquid flow at P. The rate of mass flow 

across da is q. Equation (1) indicates that the frictional force 

acting on the liquid element contained in the volume hda is 

3 12vqda/h. The inertia force acting on the same element is 

(da/h)dq/dt. Hence, in a harmonic oscillatory motion, the ratio of 

the frictional force to the inertia force is 12v/wh2 . It is 

2 
convenient to introduce the factor ~ - 12v/h. Consider now the 

lumped model for the Helmholtz mode of the fracture and let x be the 

displacement on the lumped model. The basic equation of motion for 

the pressure-displacement impulse response of the model is then 

(18) 
222 

(md x/dt )+(m~dx/dt)+(f /e)x - K(t) 

where K(t) is an impressed force. Assuming equilibrium at time t = 0 

and applying the Laplace transformation to (18) results in 
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(19) 2A {3 A (f2 A A ms X + m sx + /e) x - K 

where x and K are the transform of x and K. Hence, 

(20) 
A 2 2 

x = K/(ms +m{3s+(f le»~ 
A 2 2 
K/m(s +(3s+w ) 

. 0 

where w is the angular frequency of the oscillator. The 
o 

pressure mass flow admittance of the Helmholtz mode is obtained by 

selecting K(t) = o(t) and hence K = 1. 

(21) 
2 2 

A = pfsx ~ fs/i(s +(3s+w ) 
o 

This is the form of the lowest order term in the series for the 

admittance type system function given by (8). 

The basic dynamic equations for a borehole fracture system 

Consider now a vertical borehole of uniform cross section f 
o 

and depth d that is filled with a homogeneous slightly compressible 
o 

liquid of density p, combressibility c and acoustic velocity Q = 

( ) -1/2 
pc . The wall of the hole is impermeable with the exception of 

a fracture that opens into the hole at a depth d < d bottom . The 
o 

system is sketched in Figure 2. At this juncture, no assumptions are 

made as to the dimensions and permeability characteristics of the 

fracture. We assume, on the other hand, that at the type of 

excitation of interest, the fracture remains a linear type 

pressure-flow system that can be characterized by a causal admittance 

type impulse-response a(t). In other words, let the fracture be in 

equilibrium up to time t = O. At time t ~ 0+ the pressure in front 

of the fracture varies as p(d,t). The resulting liquid flow into the 
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fracture qf(t) is then given by the convQlution integral (Duff and 

Naylor, 1966) 

t 

(22) qf ( t) ~ Ja ( t-T)p(d,T)dT 
o 

The admittance aCt) has to be derived in individual cases. 

To investigate the dynamics of the borehole-fracture system we 

assume that the excitation is of a small amplitude such that the 

response of the system is in the linear acoustic range. Moreover, 

the frequency of the excitation is much smaller than the frequency of 

the lowest transversal mode of the liquid column in the hole. The 

column will then respond by one-dimensional organ-pipe type modes 

only. Since the bulk modulus of igneous rock is 20 to 40 times 

larger than that of water, the wall of the borehole can be considered 

to be rigid . 

Let Z be the vertical coordinate along the hole axis that is 

positive down with the origin at the equilibrium position of the top 

of the liquid column. Letu(z,t) be the liquid displacement in the 

organ-pipe modes of the liquid column . In the acoustic 

approximation, the basic dynamical equation in the displacement for 

the unfractured sections of the borehole is (Elmore and Heald, 1969) 

where b(z,t) is an impressed force density acting on the liquid and c 

is the compressibility of the liquid. In the absence of liquid 

sources, the relation between the displacement and the liquid 
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pressure is 

(24) p - -(1/c)8 'u 
Z 

Two po~ndary conditions and an initial condition have to be 

adjoined to equation (23). For the present purpose it is convenient 

to assume causal conditions, that is, vanishing initial field values 

and solve (23) by applying the Laplace transformation. Let 

u(z,s); p(z,s) and b(z,s) be the fransforms of u(z,t),p(z,t) 

and b(z,t) respectively. Equations (23) and (24) transform to 

(25) 
2 2 A 2A A 

(s /a )u-D u - cb 

and 

(26) p - -(l/c)Du, 

respectively, where D - d/dz. Moreover, let A(s) and qf(s) be the 

transforms of a(t) and qf(t). The convolution (22) then transforms 

to 

A 

(27) qf(s) ~ A(s)Dp(z,s)/z=d 

Pressure signal modulation by the fracture 

To obtain a picture of the modulation of pressure signals by the 

fracture, we consider first the case where the depths d and dare 
o 

ve r y large but the distance of the f r acture above the bottom (do - d) 

is not small as compared to d. Let a pressure signal of finite 
o 

duration propagate down the hole past the fracture. We are 
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interested in the modulation of the signal by the fracture. For this 

purpose, we can assume that the borehole extends to infinity both 

above and below the fracture such that no boundary conditions have to 

be adjoined to (23). Assuming that the impressed force density 

b(z,t) vanishes everywhere, equation (23) is then homogeneous 

throughout the hote except at the fracture. 

In t~e present case, it is convenient to modify the coordipates 

introduced above by placing the origin z o at the fracture. Let 

the amplitude of the downgoing signal be unity and the signal 

reflected by the fracture have the amplitude B. Moreover, let C be 

the amplitude of the signal that has passed by the fracture. The 

solution of the homogeneous form of the transformed equation (25) is 

then 

(28) u
I 

- exp(-sz/a) + Bexp(sz/a), z < 0 

(29) Cexp(-sz/a), z > 0 

Since the liquid pressure has to be continuous at z = 0, we find 

on the basis of equation (26) that 

(30) -1 + B = -C 

Moreover, the conservation of liquid mass at the fracture then 

requires on the basis of (27) that 

(31) z-O 



where because of (30) either u
I 

or u
II 

can be applied on the right. 

Inserting the solutions ( 28) and (29 ) results in the condition 

( 32 ) pf s ( l+B-C ) - ( s / ac )AO 
o 

Solving ( 30) and ( 31) for Band C results in 

(33) B ~ A/(~+A) 

(34) C - A/b(~+A) 

where ~ - 2fo/ a is the acoustic pressure-flow admittance of the 

borehole. These equations determine the transform space modulation 

of the pressure signal as it passes by the fracture . 

Dynamics of the borehole-fracture system with the fracture at the 
bottom of the hole 

In continuation of the previous section , we will now turn to the 

dynamcis of a system consisting of a borehole of a finite depth with 

the fracture at the bottom , that is, the case of d = d . Having 
o 

investigated the modulation of pressure signals by a fracture there 

really is not much loss of generality by focusing on this particular 

case, while the algebra is reduced considerably as compared to the 

more general situation where the fracture is at an a r bitrary depth. 

Two types of forcing of this system will be considered . First, 

the generation of pressure signals by the injection of a mass flow 

m(t) at the bottom of the hole. This would i nclude the case of an 

impulsive forcing where m(t) - o(t). Second, a forcing due to a 

vertical acceleration of the system that is uniform over the entire 
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depth. In other words. the case of b(z.t) - bet). This is 

approximately the case where the system is excited by seismic waves 

propagating through the location of the boreho1e . 

The origin of the coordinate system z - 0 is placed at the top 

of the liquid column where we assume a free liquid surface and hence 

a vanishing acoustic pressure. -In accordance with (26). the boundary 

condition in transform space is then 

(35) -(l/c)Du - pgu. z - 0 

At the bottom z - d - d. the boundary condition is based on the 
o 

conservation of liquid mass. that is. the liquid mass flow due to the 

acoustic signal plus the injected mass flow are equal to the mass 

flow entering the fracture. Analog to equations (27) and (31) above. 

the boundary condition in transform space is thus 

(36) pf su + ID 
o 

-(l/c)Au. z - d 

where roes) is the transform of met). 

Since we are mainly interested in the impulse responses, we 

focus on the following two cases 

( 37) met) O(t) • bet) - o. roes) = 1, b(s) = 0 

(38) met) - O. bet) - S(t), roes) - 0, b(s) - 1 

The task is then to solve equation (25) with the conditions (35) 

and (36) for these two cases. Since liquid pressure is more easily 
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observed than the displacement, we are mainly interested in relations 

for the pressure. The basic solution of (25) in transform space is 

(39) u - Cexp(s z/a) + Eexp(-sz/a) 

where C and E are integration parameters to be derived by inserting 

the solution (39) into the boundary conditions (35) and (36). The 

algebra involved is elementary and can be omit ted . Having derived 

the two parameters, we insert them into (39), apply relation (26) and 

obtain the following type of solution for the pressure impulse 

responses 

(40) p(z,s) - FZB 

where F is a forcing factor that in the case of the situation defined 

by (37) is equal to unity, while in situation (38) F - f Is. 
o 

Moreover, Z is the pressure-flow impedance of the system when the 

boreho1e is infinitely deep, then according to equation (33), 

(41) z 1/«t\/2) + A) 

where ~ = 2fo/a as defined in (33) and (34). The factor 1/2 results 

from the fact that the fracture is at the bottom of the hole. Since 

there is no hole below the fracture , the acoustic admittance as 

defined earlier has to be halved. Finally the factor B that is the 

signal propagator for a boreho1e of depth d 1s given by 

(42) B(z,s) _ exp[-s(d-z)/a] - fexp[-s(d+z)/a] 
1+fAexp[-2sd/a] 
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where the factors r and A are transforms of the upper and lower 

reflection operators given by 

(43) r - [l+(g/as)]/[l - (g/as)] 

(44) A ~ [(f /a) -A ]/[( f /a)+A] 
o 0 

The response at the bottom of the hole where z - d is of 

particular interest. From (42) follows 

(45) 
B(~,s) 

1 - rexp(-2sd/a) 
1 + rAexp(-2sd/a) 

Based on standard linear system theory (Duff and Naylor, 1966) 

the above relations solve the problem of general forcing b(t) or 

m(t). Let p(z,t) be the inverse Laplace transform of p(z,s) 

corresponding to the situation (37). In the case of a general causal 

forcing m(t), the solution for the liquid pressure is then given by 

t 

(46) p(z,t) = fp(z,(t -r »m(r)dr 
o 

The same type of relation applies to the situation defined by 

(38) where F - f / s o 
and m(r) in (46) is replaced by b(r). 

Discussion 

The detection of the position d and estimates of the admittance 

functions A(s ) or a(t) of fractures are the main fi e lds of 

applications of the above development. From the theoretical point of 

view, at least, both fracture depth and admittance characteristics 
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can be derived by monitoring the modulation of pressure signals as 

they pass by fractures. Equations (33) and (34) provide the 

principal relations ~o be applied for this purpose. Observing the 

shape of a pressure signal above and below a fracture, we can derive 

the Laplac~ transformation of the functions a~d since the borehole 

4dmittance ~ is ~nown, we can apply equation (34) to estimate the 

fracture admittance A. The position of the fracture follows from the 

determination of the location where a modulation takes place. 

Alternatively, the problem can also be approached in the time 

domain with the help of the inverted form of equation (31). For this 

purpose, it is most convenient to express this relation in terms of 

the acoustic velocity v(z,t) and pressure p(z,t). These quantities 

are related by 

(47) 8 v ~ - (1/p)8 p 
t Z 

and the inverted form of (31) is 

t 

(48) pfo[v(d-,t) - v(d+,t)] ~ f a(t-r)p(d,r)dr 
o 

In this formulation, the pressure is the observable and the acoustic 

velocity at a fixed position has to be obtained with the help of (47) 

as a causal integral of the acoustic pressure gradient observed at 

this position. 

In the present context, the question arises as to the 

sensitivity of acoustic techniques in fracture exploration . In other 

words, what are the dimensions of the smallest fractures that can be 

located by such means. In the following, we will consider this 
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question on the basis of the simplest fracture model, that is, the 

plane horizontal fracture of width h that is transected by the 

boreho1e. Relations relevant to this model have already been derived 

in earlier sections of this paper. 

Equatton (34) indicates that the ratio of the admittances A/~ 

aA/2f is the parameter that determines the acoustic sensitivity. 
o 

The admittance of the circular fracture is given by equation (21) 

where 

(49) f - 2~r h, 
o 

2 
~ - 12v/h 

and £ is given by equation (16). 

Clearly, the admittance of a fracture increases with increasing 

volume elastance. Moreover, equation (21) shows that the admittance 

decreases with increasing frequency. Hence, at- a fixed width, the 

maximum admittance is obtained when both elastance and inertia can be 

neglected. Such fractures are purely resistive, and we find on the 

basis of (21) and (49) that the admittance for a circular fracture of 

this type is then 

(SO) A 
r 

3 
2~h /12v1n(R/r ) 

o 

where R is the radius of the outer boundary and the subscript r 

refers to the purely resistive case. This result shows that A is a 
r 

constant and the parameter C as given by equation (34) will also be a 

constant and the ratio Ar/~ is thus a constant, that is, 

(51) 
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To insert realistic physical parameters, we consider a borehole 

of a normal diameter of 0.25 m with f - 0.05 m
2 

filled with water of 
o 

3 -7 2 
50°C with Q - 1.5 x 10 m/s and v - 6 x 10 m Is. The ratio given 

by (51) is , not very sensitive to the radius R. To satisfy the 

requirement of a very large elastance, we can then assume, for 

4 
example, R/r - 10 such that the logarithmic term is almost 10. On 

o 

this basis, we obtain Ar/~ - 1.3 x 109h 3. Assuming for example, 

that the limit to sensitivity is the observation of a 10% reduction 

in amplitude past the fracture, that is C - 0.1 or about Ar!~ ~ 0.1, 

we find that h - 0.4 mm. This would then be the smallest fracture 

width that could be resolved. 
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