BOREFLOW SIMULATION AND ITS APPLICATION TO GEOTHERMAL WELL ANALYSIS AND RESERVOIR ASSESSMENT

```
Danilo C. Catigtig*
UNU Geothermal Training Programme
National Energy Authority
Grensasvegur 9, 108 Reykjavik
Iceland
*Permanent address:
Philippine National Oil Company (PNOC)
Energy Development Corporation (EDC)
Geothermal Division
PNOC Energy Companies Building
Merritt Road, Ft. Bonifacio
Makati, Metro Manila
PHILIPPINES
```

Dr. Ingvar Birgir Fridleifsson, Geothermal Project Co-ordinator, UNU Geothermal Training Programme, Reykjavík, Iceland.

Dear Sir.
This report is written by Mr. Danilo C. Catigtig, engineer of the PNOC, Energy Development Corporation, Philippines. It concludes his successful training as a UNU Fellow in Reservoir Engineering.

Prior to his work Mr. Catigtig has successfully completed the special course in which the Geothermal Reservoir Engineering Lecture Notes were used as a textbook (UNU Geothermal Training Programme Report No. 1983-2). We undersigned served as his supervisors on the research project that is described in this report. He also received tuition in reservoir engineering from Mr. Gísli Karel Halldórsson and Mr. Ómar Sigurdsson.

The objective of the work was to train Mr. Catigtig in computer simulation of the pressure and temperature profiles of blowing geothermal wells, and interpreting and using the results in the investigation and harnessing of geothermal reservoirs.

For this work we used data from the South Negros geothermal field in the Philippines, supplied by Mr. Catigtig. This data is not the complete data aquired in reservoir engineering investigations in South Negros. Missing data elements have been supplied by the instructors according to their own estimate, when this has been neccessary in course of the work.

This use of the South Negros data has the educational purpose only, to train the student in understanding and processing reservoir engineering data, as is the objective of the UNU Geothermal Training Programme. The results and conclusions in this report, therefore, may or may not be compatible or incompatible with South Negros reservoir engineering practice, without this having any effect whatsoever on Mr. Catigtig's successful completion of his training and study.

Yours sincerely,

Jónas Elíasson, lic. techn.,
Professor,
University of Iceland.
 Managing Director, VATNASKIL Consulting Engineers Ltd.

ABSTRACT

The simulation of flowing pressure profiles in geothermal wells is dealt with using a computer program. The validity of the program is tested against measured temperature and pressure profiles in the Southern Negros Geothermal Field (SNGF) in the Philippines. Various correlations to calculate the slip, void fraction occupied by the vapor phase, and the two-phase multiplier for the friction factor were tried in this program and are presented in Appendix B. The possible applications that can be derived from the simulation are discussed.

TABLE OF CONTENTS

Page

1 INTRODUCTION
1.1 Scope and objective of work 9

2 THE SOUTHERN NEGROS GEOTHERMAL FIELD
2.1 General background .. 11
2.2 Drilling and production history 19
2.3 Brief status of geothermal development 21

3 PROGRAM APPLICATION
3.1 Introduction .. 24
3.2 Fluid mechanics of the flow 25
3.3 General background of the wells considered 29
3.3.1 0kоу 5 .. 31
3.3.2 0kоу 6 33
3.3.3 0koy 7 ... 33
3.3.4 Sogongon 1 .. 36
3.4 The computer program .. 40
3.4.1 Input parameters .. 40

3.5 Program applications .. 42
3.5.1 Profile duplication and deliverability curves ... 42 3.5.1.1 Okoy 6 KP 29/KT 63 42 3.5.1.2 Okoy 6 deliverability curves 47 3.5.1.3 Okoy 7 KP 14/KT 21 53
3.5.2 Determination of the necessary conditions
for a successful well discharge 57
3.5.3 Effect of elevation on production 60
3.5.4 Optimization of wellbore design from well
deliverability conditions 64
3.5.5 Effect of deposition and blockage to production
and pressure profile $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \omega_{6} 64$
3.5.6 Determination of the depletion rate of the producing well 72
4 CONCLUSIONS AND RECOMMENDATIONS 81
ACKNOWLEDGEMENTS 83
REFERENCES 84
APPENDICES
A. Derivations of the pressure drop equations 88
B. Turbulent pressure drop and flow measurement equations 97
C. Effects of salinity and non-condensible gases to fluid properties 102
D. Program listing and output printouts 107
E. Steam table correlations program and results 120
LIST OF FIGURES
Fig. 1 Geological map of Negros Island showing the location of the SNGF (after Jordan, 1982) 12
Fig. 2 Map showing faults intersecting the SNGF 13
Fig. 3 Resistivity Map of the SNGF (after Jordan, 1982) 14
Fig. 4 Isothermal contours at -400 m , AMSL 15
Fig. 5 Isothermal contours at -800 m , AMSL 16
Fig. 6 Isothermal contours at -1200 m , AMSL 17
Fig. 7 Isothermal contours at -1600 m , AMSL 18
Fig. 8 Plan view of the Southern Negros Geothermal Field 20
Fig. 9 Map showing production/reinjection wells for the Palinpinon I Plant 22
Fig. 10 Configuration of a flowing well(after Kjaran and Eliasson, 1983) 27
Fig. 11 Pressure profile in laminar and turbulent flow zones (after Kjaran and Eliasson, 1983) 27
Fig. 12 Flow patterns in a vertical evaporator tube 30
Fig. 13 Flow regime map of Griffith and Wallis(1961) 30
Fig. 14 Okoy 5 output characteristics 32
Fig. 15 Vertical section of the Palinpinon Field 34

$$
2
$$

and
(4)

4

$$
\operatorname{ard}
$$

Fig. 16 Okoy 6 output characteristics 35
Fig. 17 Okoy 7 output characteristics 37
Fig. 18 Sogongon 1 output characteristics 38
Fig. 19 Palinpinon I and II plant sites 39
Fig. 20 Okoy 6 measured and calculated flowing profiles 43
Fig. 21 Pressure Control Point(PCP) versus depth plot 46
Fig. 22 Okoy 6 Deliverability curves 49
Fig. 23 Okoy 6 Pressure profiles at different mass flow rates 51
Fig. 24 Plot of (Pa-Pwf)/W versus W of Okoy 6 52
Fig. 25 Okoy 7 measured and calculated flowing profiles 54
Fig. 26 Okoy 5 temperature and pressure profiles during discharge attempts 59
Fig. 27 Sogongon discharge simulation (by steam injection) 61
Fig. 28 Okoy 6 deliverability curves at different elevations. 62
Fig. 29 Okoy 6 deliverability curves at different flow string diameters 65
Fig. 30 Sogongon 1 measured and calculated flowing profiles. 67
Fig. 31 Caliper log of Svartsengi 4 well 69
Fig. 32 Svartsengi calculated flowing pressure profiles 70
Fig. 33 Svartsengi 4 deliverability curves 71
Fig. 34 Okoy 6 deliverability curve at minimum WHP 74
Fig. 35 The exponential integral (Ei) graph (Matthews and Russel, 1967) 75
Fig. 36 Svartsengi field unit response function 80
Fig. A1 Components of fluid flow in a pipe 92
Fig. A2 Flashing level in the well 92
Fig. A3 Phase separation during flow 92
Fig. B1 Fluid discharge to the atmosphere 99
Fig. B2 Water flow measurements configuration 99

LIST OF TABLES

Table 1 Okoy 6 measured and calculated data 45
Table 2 Okoy 6 delivery data at $\mathrm{Pa}=132.0$ bara 47
Table 3 Okoy 6 delivery data at different Pa 48
Table 4 Okoy 6 flowing pressures at different flow rates 48
Table 5 okoy 7 drawdown pressures 53
Table 6 okoy 7 measured and calculated data 56
Table 7 Okoy 6 output at different elevations 63
Table 8 Okoy 6 output at different casing string diameters. 63
Table 9 Sogongon 1 calculated and measured pressure data 68
Table 10 Svartsengi 4 output data 68
Table 11 Nasuji-Sogongon area depletion rate 79

1.1 Scope and objective of work

The Philippines is one of the many countries in the world located on a plate boundary, and for this reason it is endowed with enormous geothermal resources. The country is at present very much dependent on oil for its energy needs of which a significant portion is being used for power generation. The steady increase in oil prices prompted the Philippine government to explore alternative sources of energy. Presently, the government has embarked on an accelerated development program to harness geothermal energy as an indigenous power source. The development program calls for an estimated installed capacity of 1774 MW electricity at the end of 1985 , which by that time is estimated to be about 12% of the total energy needs (Elizagaque and Tolentino, 1982). In line with this, the government has contracted foreign experts in geothermal technology for assistance in the exploration, development, and utilization of the geothermal resources. Selected Filipinos are also sent abroad for training in this field of technology. To mention a few, some of these countries are New Zealand, Iceland, and Japan.

The author in particular was awarded a UNU Fellowship and a place in the 1983 UNU Geothermal Training Programme held in the National Energy Authority in Reykjavik, Iceland. He attended a specialized training course in Reservoir Engineering.

The training programme as a whole included introductory lectures in various disciplines of geothermal technology such as; drilling, surface and borehole geophysics, surface and borehole geology, surface and borehole geochemistry, production and utilization, and reservoir engineering, for approximately six weeks. The next six weeks were spent on specialized lectures in borehole geophysics and reservoir engineering. Before commencing the specialized training in reservoir engineering, a one week excursion and seminar on
the various geothermal fields of Iceland was held. The specialized studies started in the second half of the 6 -month training course. The author also obtained a brief training in the use of the computer installed in the NEA.

The computer program used in this paper was initially written by G.K. Halldorsson of Vatnaskil Ltd., a geothermal consulting firm in Iceland, and modified by the author. The modifications made into the program involved the use of steam table correlations, and taking into consideration the effects of more than one feed zone and the fluid salinity and non-condensible gases. The specialized training was mostly centered on the simulation of flowing temperature and pressure profiles in geothermal wells and the interpretation of the results relative to the geothermal field considered.

2 THE SOUTHERN NEGROS GEOTHERMAL FIELD

2.1 General background

The Southern Negros Geothermal Field (SNGF) is located on the southern part of the Negros Island (Fig. 1). The field is specifically located in a valley formed between two dormant andesitic volcanoes, namely the Cuernos de Negros to the south, and Mount Balinsasayao to the north (Bagamasbad, 1979). The whole field is dissected by a series of $N W-N N W$ trending right lateral faults, NE trending left lateral faults, and a system of step faults striking WNW, NW and NE (Fig. 2).

The $S N G F$ consists of two promising geothermal areas, the Palinpinon field located on the eastern side of the valley, and the Baslay-Dauin field situated at the southern slope of the Cuernos volcano. The two fields are characterized by various surface thermal manifestations such as hot springs, fumaroles, and altered ground. The most intense surface manifestations are located in the Palinpinon area and that area is presently at an advanced stage of development, whereas the Baslay Dauin field is yet at an early stage of exploration drilling.

Geophysical surveys conducted in the area, with electrode spacings of $A B / 2$ of 250 and 500 m (Bagamasbad, 1979), identified four significant anomalies (5, 10, 20, and 50 ohm-m), all converging towards the Cuernos volcano (Fig. 3). Isothermal contours drawn for the Palinpinon field at aquifer depths (Figs. 4,5,6,7), also indicated high temperatures towards the Cuernos volcano. This may indicate that the probable heat source of the SNGF geothermal system is the Cuernos volcano.

Early geochemical investigations and borehole production geochemistry are well summarized by O.T. Jordan (1982). Both the results obtained from geochemistry and flow

FIGURE 1 Map of Negros Island showing general geology and structures (after Jordan,1982)

Fig. 2 Map showing faults intersecting the Southern Negros

1 I- JHD.HSP $9000 \cdot$ DCC

1. $\begin{aligned} & \mathrm{JHD} \cdot \mathrm{HSP} \cdot 9000 \cdot \mathrm{DCC} \\ & 83 \cdot 09 \cdot 1192\end{aligned}$

1-7 $\begin{aligned} & \mathrm{JHD} \cdot \mathrm{HSI} \cdot 9000 \cdot \mathrm{DCC} \\ & 83.09 \cdot 1199\end{aligned}$

testing suggest that the field has two significant aquifers at depth, aptly referred to as the upper and lower production zones.

2.2 Drilling and production history

Exploration drilling started in 1976 and was concentrated within the 20 ohm-m resistivity anomaly trending $E-W$ along the 9 km long main axis of the okoy valley. Two shallow wells (N1 and N2) drilled in the easternmost part of the anomaly showed temperature reversals at depth, with N1, drilled west of $N 2$, indicating a relatively higher temperature, implying that the wells had intersected a flow path that originated upstream. With this basis, N3 was drilled farther west. This well showed a temperature of $238^{\circ} \mathrm{C}$ at 600 m depth, which was higher than those measured at N 1 and N2. The well was flowed and a geofluid of $39.5 \mathrm{~kg} / \mathrm{s}$ was extracted. With this encouraging result, drilling was continued $N E$ and $S W$ of $N 3$ with the objective of defining the extent of the geothermal anomaly. The northeastern wells (Okoy 1 and Okoy 3) showed non-favourable results, whereas, the southwestern wells (0koy 2, 4, and 5) had good but varying results. Okoy 2 was flowed succesfully yielding $25 \mathrm{~kg} / \mathrm{s}$ of geofluid at an inflow temperature of $250^{\circ} \mathrm{C}$ at 950 m . Okoy 4 , though it exhibited a high temperature of $299^{\circ} \mathrm{C}$ at 1980 m , showed low permeability and was flowed for only approximately 24 hours. Okoy 5 is a step-out well in the 50 ohm-m anomaly. After great problems in discharging it, it was successfully flowed by steam injection on the 14 th attempt (Catigtig, 1981a). The attempts to flow this well took approximately 6 months after completion of drilling, from December 1978 to May 1979. During this period, the lone drill rig in the area was shipped to the Tongonan geothermal field in Leyte. However, with the successful discharge of Okoy 5 the rig was brought back to the Palinpinon field and drilling was continued SW (Okoy 6) and NE (Okoy 7) of Okoy 5 (Fig. 8). Okoy 7 was successfully flowed by air-compression and Okoy 6 by steam injection. These discharges were carried out in

the middle of May 1980. Since then exploration and production drilling has been carried out and a 112.5 MWe installed capacity was committed for 1983 in the 0koy 7 area (Puhagan). An additional 110 MWe was also envisioned in the western part (Okoy 6 area; Nasuji and Sogongon) in the foreseeable future.

Okoy 2, Okoy 5, Okoy 6, and Okoy 7 decided the full scale development of the field. Pertinent data of these wells are as follows;

MAXIMUM

Well	Elevation	Depth	Temp/Depth	Flow
OK 5	932.2	$(\mathrm{~m})$	1975.2	$\left({ }^{\circ} \mathrm{C} / \mathrm{m}\right)$

2.3 Brief status of geothermal development

The impressive thermal manifestations and encouraging geological, geophysical, and geochemical results, prompted the development of the Palinpinon field ahead of the Baslay-Dauin field. As of July 1983 a total of 45 wells had been drilled. Since October 1980, three wells have been used to supply two pilot units with 1.5 MWe capacity each. These wells are Okoy 5, Okoy 7, and PN 13D, the last of which is directionally drilled. A 112.5 MWe plant is expected to be operational in the Palinpinon I area by 1983, and another 110 MWe plant for the Palinpinon II area in the near future. Fig. 9 shows the location of the wells for the Palinpinon I plant.

The Palinpinon field has been divided into three geographical areas. Farthest to the east is the Puhagan area, where the Palinpinon I plant and production/reinjection

```
1-JHO-HSD}-9000-DC
    83.09.1079-IS
```

FIG. 9 PRODUCTION / REINJECTION WELLS FR PALINPINON I PLANT

well pads are located, and to the southwest are the Nasuji and Sogongon areas, where the Palinpinon II plant and production/reinjection well pads are to be located.

Due to the steep topography that characterizes the geothermal field, directional drilling has been adopted to reach prospective target areas from pads located near the power station. This method increases drilling cost considerably, but in turn will reduce the costs to be incurred in road construction and site preparation, and installation of fluid collection and transmission systems.

3.1 Introduction

One of the most important parameters used in geothermal reservoir assessment is the downhole pressure data. This can either be measured at static and/or flowing conditions. However, flowing measurements are not always simple, as more often than not, geothermal wells are characterized by high fluid velocities making it impractical to lower a pressure recorder into the well, else it will be thrown out. In common practice, SNGF experience, flowing downhole measurements are conducted with the well discharging at not more than $28 \mathrm{~kg} / \mathrm{s}$, measning, the well has to be throttled to maintain a flowrate throughout the test. Thus, flowing downhole measurements are limited to these low flowrates.

This limitation makes simulation of flowing pressure profiles at any discharge condition important. And this can only be done by using two-phase flow models available in the literature (e.g., Hagedorn and Brown, 1965). Some of these models are discussed by Halldorsson (1978).

The ability to predict flowing well pressures and temperatures is of utmost importance in applications such as mentioned below:

1. To establish deliverability curves for a certain well.
2. Determination of the necessary conditions in starting up a well.
3. Determination of the effects of elevation on production.
4. Determination of the effects of casing string diameters on production.
5. Determination of the effects of chemical deposits and/or blockage to production.
6. Determination of the depletion rate of a producing well and aquifer.

These applications are discussed in this paper.

3.2 Fluid mechanics of the flow

Most of the known geothermal fields in the world have a liquid dominated reservoir and produce under-saturated water at the wellface at its early stages of exploitation (Gould, 1974). For the fluid to flow from a producing aquifer to the wellbore, a sufficient pressure differential must exist between them. For a sifficiently low turbulent pressure drop,

$$
\begin{equation*}
W=(P . I .) x(P a-P W f) \tag{1}
\end{equation*}
$$

where; $W=$ mass flowrate at wellface, $\mathrm{kg} / \mathrm{s} ; \mathrm{P} . \mathrm{I} .=\mathrm{produc}-$ tivity index, $k g / s-M P a ; P a=$ aquifer pressure, MPa; Pwf $=$ well pressure, MPa.

From its initial state (undisturbed condition), well pressure is equal to the aquifer pressure at the feed zone. Grant (1981) suggests that this pressure can be measured at the pivot point (pressure Control Point $=P C P$) of the static pressure profiles during warm-up. However, in wells with a strong downflow, the pressure measured at the PCP may differ from the true aquifer pressure when the well is discharging if the main producing zone is the lower zone, which in most cases is hotter than the downflowing fluid. If the well has only one feed zone then the PCP is most likely to occur adjacent to the feed zone itself, and for multi-zone wells the location of the PCP will be a weighted average between the zones. When production starts, aquifer pressure drops as a result of the fluid extraction. Most of this pressure reduction will be due to turbulence (Fig. 10).

$$
\begin{equation*}
\left(P_{a}-P_{w f}\right)=C w^{2} \tag{2}
\end{equation*}
$$

where $\mathrm{C}=$ turbulence factor, $\mathrm{MPa} /(\mathrm{kg} / \mathrm{s})^{2}$

The turbulence factor, C, can be obtained from the slope of (Pa - Pwf)/W vs. W linear graph (Jacob and Rorabaugh, 1946) for a step drawdown test. However, for self flowing wells with high fluid velocities, Pwf can't be measured at all flowrates. In this paper, a turbulence factor was assumed to calculate for Pwf. If the initial reservoir pressure, Pi, is known, the well can be divided into laminar and turbulent zones (Fig. 11). The total pressure drop from the reservoir to the wellface can be presented as;

$$
\begin{equation*}
\left.P_{i}-P_{W f}\right)=(d P)_{1}+(d P)_{t}+(d P)_{s} \tag{3}
\end{equation*}
$$

where $(d P)_{1}=$ laminar pressure drop, $(d P)_{t}=$ turbulent pressure drop, $(d P)_{s}=$ pressure drop due to skin.

These pressure drops are treated in appendix B.

These pressure drops in the formation, if significantly large compared to the saturation pressure of the inflow temperature, will cause the fluid to flash in the formation itself and hence produce a two-phase column throughout the entire length of the well.

If during the flowing process, the fluid state is still single phase at well entry, a reduction in flowing well pressure occurs until such a time that the fluid eventually flashes developing into a steam-water mixture and experiences temperature and enthalpy drops. The situation will be similar if the fluid flashes in the formation and enters the well as a two-phase mixture (Sanyal and Juprasert, 1977).

Based on an assumption of a steady, homogeneous, onedimensional fluid flow in a pipe, and using the conservation of mass, momentum, and energy, the following equation is formulated (see appendix A):

$$
\begin{equation*}
-(d P / d z)=\rho g+(f / 2 D) \rho V 2+\rho V(d V / d z) \tag{4}
\end{equation*}
$$

I - JHO-HSD -9000-DCC
['] 83.09, 1088-DCC

FIG. II Pressura configuration in laminar and furbulent zones

From the equation, it can be seen that the total pressure gradient is made up of three individual gradients: potential, friction, and acceleration.

In the single phase section of the flow, the fluid density is substantially constant except for changes in flow area, hence the acceleration term has a negligible effect. Most of the pressure drops then will be caused by potential gradient and friction. At the two-phase section the three gradients should be considered. During the flowing process, the fluid experiences flow regime changes in an upward direction, viz; bubbly, slug, churn, and annular.

BUBBLE FLOW. At the flashing point, vapour bubbles will start to form at nucleation sites within the liquid and at the liquid boundary. These bubbles have substantially the same size at nucleation, but grow at different rates as a consequence of coalescence and/or continuous vaporization arising from continuing pressure reduction. The vapour is the dispersed phase and the liquid the continuous phase.

SLUG FLOW. As pressure reduction continues, large bubbles forme with cross-section that may approximate the crosssection of the pipe itself but are separated at regular intervals by lenghts occupied mainly by liquid.

CHURN FLOW. Further generation of vapour causes reduction in average fluid density and a corresponding increase in fluid velocity occurs. The slug structure becomes unstable and collapses with consequential oscillatory motion. The size, disposition, and movements of the dispersed vapour elements are much less regular than with bubble or slug flow.

ANNULAR FLOW. At this stage of the flowing process, the vapour phase occupies a much larger area than the liquid phase. The vapour then coalesces and forms a continuous phase within the flow leaving the liquid flowing in a form of a thin film occupying the annular space between the vapour phase and the flow pipe. The vapour phase may or may
not contain dispersed liquid and the liquid phase may or may not contain residual vapour bubbles. Fig. 12 shows the flow regime patterns, and Fig. 13 shows the flow regime map. The churn flow is the transition regime from slug to annular. In Fig. 13, mist and annular flow is treated as annular, and slug and froth as slug flow in this paper.

For steam-water production wells these flow regimes can coexist in the same pipe. Also, unless the liquid is completely entrained in the steam phase, slip is always occuring between the phases as a result of the differences of their average linear velocities. Evaluation of the fluid properties at the two-phase section depends on the choice of the correlation for the slip, void fraction occupied by the vapour phase, and the two-phase friction correction factor. These correlations are well summarized by Haldorsson (1978).

The Armand and Teacher (1959) correlation to calculate the void fraction, and the Chisholm (1972) correlation to calculate the two-phase multiplier were found to give the best fit. The flow regime map of Griffith and Wallis (1961) was used to determine the flow regimes.

In this report roughness of $1.37 \mathrm{E}-4 \mathrm{~m}, 4.57 \mathrm{E}-5 \mathrm{~m}$, and $3.047 \mathrm{E}-4 \mathrm{~m}$ were used for the liner, production casing, and for depositions respectively. These absolute factors correspond to asphalted cast iron, commercial steel, and concrete in the order presented above.

3. 3 General background of the wells considered

To test the validity and predictive capability of the computer program used in this paper, representative downhole flowing temperature and pressure data obtained from wells drilled in specific areas of the Palinpinon geothermal field were used. These wells are; Okoy 5 (Balasbalas), Okoy 6 (Nasuji), Okoy 7 (Puhagan), and SG 1 (Sogongon). The Nasuji, Balasbalas, and Sogongon areas

FIG. 12 FLOW PATTERNS DURING UPWARD FLOW

FIG. 13a FLOW REGIME MAP OF GRIFFITH \& WALLIS (196I)
belong to the Palinpinon II development scheme, and Puhagan belongs to the Palinpinon I development where, a 112.5 MWe plant is being installed. The program was calibrated against the above mentioned measured data.

3.3.1 Okoy 5

Okoy 5 was drilled in the period 20 Oct. to 3 Dec. 1978 as a step-out well outside the 20 ohm-m resistivity anomaly along the main axis of the Okoy valley. It penetrated through the volcanic Southern Negros Formation (SNF) of late Miocene to Pliocene age, and into the okoy Sedimentary Formation (OSF). The total drilled depth is 1975 m . Temperature logs conducted on the well indicated loss zones at 1100-1200 m, 1450-1500 m, and at 1700 m . During production, the main feed zone was found to be at 1450-1500 mat a temperature of $264^{\circ} \mathrm{C}$. Flow tests showed that the well exhibited an unstable cyclic behaviour at high wellhead pressures due to interaction between the aquifers, but a stable discharge was obtained at low wellhead pressures. A relatively high enthalpy of $1900 \mathrm{~J} / \mathrm{g}$ average was measured. Flowing pressure profiles indicated that boiling occurs in the aquifer during discharge, although at static conditions the well contains single-phase fluid and has a zero shut-in wellhead pressure. This pre-flashing of the fluid in the formation caused it to become two-phase at the wellface. Geochemical analysis of the discharge fluid confirmed the existence of the three feed zones and the boiling of the fluid in the aquifer during discharge. Okoy 5 was the first well to be discharged by steam injection in the Palinpinon field, after 13 unsuccessful discharge attempts using various stimulation techniques, including the injection of compressed air. The well has a power potential of 8.5 MWe at 0.72 MPag separation pressure and $2.82 \mathrm{~kg} / \mathrm{s}-\mathrm{MWe}$ steam rate. The well has been used to supply steam to a 1.5 MWe non-condensing turbine since October 1980, as a part of the 3 MWe pilot plant inatalled in Southern Negros, with the other unit being connected to okoy 7. The output characteristics are shown in Fig. 14.
FI

OKOY 5 OUTPUT CHARACTERISTICS

品
(OXPM) ${ }_{\text {人dาVHLIN3 }}$

1 I- JHD-HSP-900-DCC

3.3.2 Okoy 6

Okoy 6 was drilled during the period 26 Sept. 1979 to 21 Jan. 1980. This was the first deep well drilled in the Nasuji area, located southwest of Okoy 5. The well penetrated through the $S N F$ and about 1000 m into the underlying quartz diorite intrusion. The OSF was not encountered (see, Fig. 15). The well was drilled to a total depth of 2771 m . From temperature logs conducted during the completion test the loss zones were determined to be at $1340-1500 \mathrm{~m}$ and at $2200-2700 \mathrm{~m}$. The upper zone is in the metamorphic zone between the SNF and the diorite intrusion, whereas the lower zone is well within the intrusion itself. At static conditions prior to discharge, a downflow existed between the aquifers. The well was successfully flowed by steam injection technique on the 5 th attempt. The stimulation techniques conducted included compressed air injection. Injection tests conducted on the well indicated injectivity index in the range of 63 to over a $100 \mathrm{l} / \mathrm{s}-\mathrm{MPa}$, which is higher than measured in 0koy 5 (15 $1 / s-M P a)$ and Okoy 7 (59 l/s-MPa). Discharge tests showed that fluid production is mainly derived from a single phase aquifer within the diorite body. At low wellhead pressures, the upper aquifer at $223^{\circ} \mathrm{C}$ contributes some two-phase inflow as was also confirmed from geochemical studies (Pornuevo et. al., 1981 or Palmasson, 1982). The output characteristics are shown in Fig. 16. The well was rated at 10.1 MWe on the same basis as that of Okoy 5.

$3.3 .3 \quad 0 \mathrm{koy} 7$

Okoy 7 was drilled from 26 Jan. to 5 Apr . 1980 to a depth of 2883 m . This was the first deep well drilled in the Puhagan area (Palinpinon I), located NE of Okoy 5. The well penetrated through the $S N F$ and $O S F$ and terminated at the metamorphic basement rock (Fig. 15). Loss zones were determined from temperature logs at $1500-1700 \mathrm{~m}$, and

Fig. 15 Vertical section of the Palinpinon Field

```
1 -JHD-HSI -9000-DCC 83.09. 1080-slá
```

FIG I6 OKOY 6 WELL OUTPUT CHARACTERISTICS

2600-2882 m. At shut-in conditions prior to discharge, a downflow occured between these aquifers. Discharge testing conducted on the well indicated a single-phase inflow at $318^{\circ} \mathrm{C}$ from the lower zone with a slight contribution of two-phase fluid from the upper zone at $262^{\circ} \mathrm{C}$ at $10 w$ wellhead pressures. Pressure transient tests conducted on the well yielded a permeability-thickness product of 2.1-3.8 d-m and an injectivity index of $59 \mathrm{l} / \mathrm{s}-\mathrm{mPa}$, suggesting that the well is a good producer. This was confirmed by discharge tests where a maximum flow of $88 \mathrm{~kg} / \mathrm{s}$ (total) at 1.0 MPa WHP was measured. The well was rated at 10.6 MWe. The output characteristics are shown in Fig. 17. Okoy 7 has been connected to a 1.5 MWe pilot non-condensing turbine since October of 1980 as previously mentioned.

3.3.4 Sogongon 1 (SG 1)

Sogongon 1 was drilled from 29 March to 6 July 1981 to a depth of 2763 m . This was the first deep well drilled in the Sogongon area (Palinpinon II, see Fig. 19), NW of Okoy 6. It penetrated through the $S N F$ and into the contact metamorphic zone at a depth of 1090 m. The diorite intrusion was reached at about 1350 m continuing to well bottom. Temperature logs conducted during completion tests indicated loss zones at $1550-1650 \mathrm{~m}, ~ 2200-2300 \mathrm{~m}$, and 2550-2650 m. All of these zones are well within the diorite intrusion. The inflow temperature during discharge was measured $276^{\circ} \mathrm{C}$ at the lowest zone, which was deduced to be the main production zone. A downflow from the uppermost aquifer to the lowest aquifer occured at shut-in static conditions. The well is fed from a single-phase fluid as evidenced by the relatively constant enthalpy of the discharge at varying wellhead pressures. Fig. 18 showed the output characteristics of the well. The power potential was estimated at 5.5 MWe based on the same assumption used for Okoy 5 .

1 - JHD-HSP-9000-DCC

FIG. I7 OKOY 7 WELL OUTPUT CHARACTERISTICS

Fig. 19. Palinpinon I and II location sites.

3.4.1 Input parameters

The program listings and output printouts are presented in Appendix D. This program uses the correlation presented by Armand and Teacher (1959), for the void fraction occupied by the vapor phase, and that of Chisholm (1972) for the two-phase multiplier. Effects of salinity and noncondensible gases (see Appendix C) to fluid temperature and pressure, and the presence of multiple feed zones were considered in the calculations. For fluid properties, correlations were made from the steam tables of Keenan et. al., (1978) and are presented in Appendix C. For percentage errors in the correlations, the reader is referred to Appendix E.

The input parameters required for the program are as follows;

Za = depth of main aquifer measured from the wellhead, m.
$\mathrm{ZT}=$ reference depth, 0.0 if referred to the wellhead, m.
Za2 = upper production zone measured from the wellhead, m.
$\mathrm{N} \quad=$ number of pipe strings (i.e., liner, production casing, lenght of pipe with deposits,etc.).
$D(N)=$ diameter of pipe strings according to N, cm.
$Z(N)=$ lenght of pipe strings according to N, m.
FLAMDA(N) = absolute roughness factor according to N, m.
TC1 = inflow temperature, ${ }^{\circ} \mathrm{C}$, at the lower zone.
TC2 = inflow temperature, ${ }^{\circ} \mathrm{C}$, at the upper zone.
FLOW1 = mass flowrate from the lower zone, kg/s.
FLOW2 = mass flowrate from the upper zone, kg/s.
$\mathrm{Pa} \quad=$ aquifer pressure, bara.
DZ3 = lenght of section in the calculation for the single-phase section, m.
CCO2,CNACL = correction for non-condensible gases and salinity respectively, ppm.
CTURB $=$ turbulence factor, bar/(kg/s)

The calculation procedure is as follows: 1) Pwf is calculated according to equation (2). 2) With a starting value of DZ1, $d P$ is calculated using Pwf, then the fluid properties are evaluated. 3) The steam quality (x), void fraction (k, and the two-phase friction factor are calculated using the fluid properties. 4) The potential, acceleration, and friction gradients are then evaluated, see Appendix A. 5) The new value of $d P$ is the sum of the three gradients in step 4. 6) The iterative calculation continues until the difference in the $d P$ in the iteration is less than 0.0025 bars, else calculation goes back to step 1. 7) The next pipe section is then evaluated with PWf $=$ Pwf - $d P$, then steps 1 through 6 are repeated. Calculation stops when the wellhead is reached.

If the flowing well pressure (Pwf) at the producing zone is known then the turbulence factor will be zero as input. If the flowing fluid has low non-condensible gases and salinity concentrations the correction parameter will be 0.0 as input.

For the effects of elevation, the aquifer depth will be increased by (new elevation - present elevation), and for wells with two phase inflows, the flowpipe can be extended down, and assuming a single phase inflow at the new depth until the actual inflow temperature and the depth can be duplicated. This is done so as to get the steam quality, void fraction occupied by the vapor phase, and the twophase multiplier, of the fluid right at well entry. For the output parameters, see Appendix D.

3.5 Program applications

3.5.1 Profile duplication and deliverability curves

3.5.1.1 OKoy $6 \mathrm{KP} 29 / \mathrm{KT} 63$

The flowing pressure profile (KP 29, Fig. 20) showed that the upper zone (1340-1500 m) well pressure was built up above the static pressure (KP 23, Fig. 20) indicating no flow from this zone, which suggests that the bulk of the discharge came from a single-phase fluid from the lower aquifer (2200-2700 m) at a temperature of $289^{\circ} \mathrm{C}$. This corresponds to a liquid enthalpy of $1284 \mathrm{~J} / \mathrm{g}$. The discharge enthalpy as calculated from James (1962) lip pressure method was $1280 \mathrm{~J} / \mathrm{g}$, which agrees well with the saturated enthalpy at $289^{\circ} \mathrm{C}$ indicating that the inflow was singlephase. The calculation done in this paper using the model, indicated a discharge enthalpy of $1266 \mathrm{~J} / \mathrm{g}$ suggesting some energy loss during the flowing process. These losses can be due to kinetic energy and/or potential energy loss. Grant, et. al.(1982) presented the following tolerances in the James method:

Method Careful control Normal

Lip pressure method	$h+20 \mathrm{~J} / \mathrm{g}$	$\mathrm{h}+50 \mathrm{~J} / \mathrm{g}$
	$\mathrm{W}+4 \%$	$\mathrm{~W}+8 \%$
Separator method	$\mathrm{h}+10 \mathrm{~J} / \mathrm{g}$	$\mathrm{h}+30 \mathrm{~J} / \mathrm{g}$
	$\mathrm{W}+2 \%$	$\mathrm{~W}+4 \%$

In this calculation, salinity and non-condensible gases were not considered. The calculated flowing pressure profile (Fig. 20) agrees well with KP 29 suggesting that the fluid has low salinity and low concentrations of non-condensible gases. The difficulty in the profile duplication arises when some measurement errors occur. For instance, the measured wellhead pressure (WHP) using a dial pressure gauge (SNGF practice) does not agree with the measured pressure at the wellhead using the Kuster gauge (KP). This phenomenon will be discussed in the case of

Okoy 7. Checking which of these measurements is erroneous can be done by comparing the saturation temperature corresponding to the measured pressure. The saturation conditions can be used as a check since in a two-phase (steam-water) flow the temperature versus pressure relationship should obey saturation conditions, that is, if as mentioned above, the fluid has low gases and/or salinity concentrations. If otherwise, then corrections should be made on the effect of these impurities. These are presented in Appendix C. The saturation temperature at the wellhead can then be compared to the calculated temperature (using the model described in this paper). This is illustrated in Table 1.

The flowing enthalpy was here calculated considering energy loss due to kinetic effects. The heat loss to the formation was not included as it was found to be very small compared to WH (mass multiplied by enthalpy). At high flow rates, this loss will become even smaller, whereas the kinetic energy loss increases due to a corresponding increase in fluid velocity. If the calculated enthalpy (using this model) is right then the mass flow can be recalculated as;

$$
\begin{equation*}
W=\frac{2257(W W)}{2676-H} \tag{5}
\end{equation*}
$$

where; $W w=$ water flow, kg / s and $H=$ calculated enthalpy, $k J / k g$. As a first approximation, the aquifer pressure can be estimated from a plot of pivot point pressure (PCP) versus depth (Fig. 21). However, in wells with strong downflows during the warm-up period, the pressure at the $P C P$ is heavily affected by this, especially if the downflowing fluid is of relatively low temperature compared to the other zone (lower zone). For Okoy 6, the downflow has a temperature of approximately $223^{\circ} \mathrm{C}$ compared to $289^{\circ} \mathrm{C}$ at the lower zone. The effect of this can be seen in the static pressure gradient (KP 23, Fig. 20). The gradient corresponds to a temperature of $223^{\circ} \mathrm{C}$, or a fluid density

TABLE 1 1 Okoy 6 measured and calculated data

```
Measured WHP = 25.0 bara (Ts = 224 C), Measured Discharge
Enthalpy = 1280.0 J/g, Calculated at Pa = 132.0 bara,
C = 0.001
```

MEASURED
DEPTH (m) P(bara) TEMP(C)

0.0	25.3	231.0
100.0	26.9	233.0
200.0	28.4	236.0
300.0	30.1	239.0
400.0	31.8	242.0
500.0	33.6	245.0
600.0	35.6	249.0
700.0	37.5	251.0
800.0	39.4	254.0
900.0	41.3	257.0
1000.0	43.5	260.0
1100.0	45.6	263.0
1200.0	48.1	266.0

1265.0
1300.0
1400.0
1500.0
1600.0
1700.0
1793.0
1800.0
2000.0
2200.0
2400.0
2600.0

P(bara) TEMP(C)
$\begin{array}{ll}25.3 & 231.0 \\ 26.9 & 233.0 \\ 28.4 & 236.0 \\ 30.1 & 239.0\end{array}$
$31.8 \quad 242.0$
$33.6 \quad 245.0$
$35.6 \quad 249.0$
$37.5 \quad 251.0$
$39.4 \quad 254.0$
$43.5 \quad 260.0$
$45.6 \quad 263.0$
$\begin{array}{cc}\text { - } & - \\ 51.0 & 269.0\end{array}$
$55.3 \quad 274.0$
$60.3 \quad 279.0$
64.1284 .0

-	-
-	-
71.4	287.0
87.3	288.0
102.2	289.0
117.0	289.0
131.8	289.0

CALCULATED
P(bara) TEMP (C) H(J/g)
$25.4 \quad 225.0 \quad 1265.6$
$26.9 \quad 227.9 \quad 1266.6$
$28.4 \quad 231.0 \quad 1267.6$
$30.0 \quad 234.0 \quad 1268.6$
$31.7 \quad 237.0 \quad 1269.5$
$33.4 \quad 240.0 \quad 1270.5$
$35.2 \quad 243.0 \quad 1271.5$
$37.1 \quad 246.0 \quad 1272.5$
$39.2 \quad 249.1 \quad 1273.5$
$\begin{array}{llll}41.3 & 252.2 & 1274.4\end{array}$
$\begin{array}{lll}43.5 & 255.5 & 1275.4\end{array}$
$45.9 \quad 258.8 \quad 1276.4$
$48.7 \quad 262.2 \quad 1277.4$
$50.4 \quad 264.5 \quad 1278.0$
$\begin{array}{lll}51.4 & 265.8 & 1278.4\end{array}$
$54.7 \quad 269.6 \quad 1279.3$
$\begin{array}{llll}58.3 & 273.7 & 1280.3\end{array}$
$62.5 \quad 278.3 \quad 1281.3$
$67.4 \quad 283.4 \quad 1282.3$
$73.3 \quad 289.0 \quad 1283.8$
$73.8 \quad 289.0 \quad 1284.0$
$88.3 \quad 289.0 \quad 1284.0$
$102.8 \quad 289.0 \quad 1284.0$
$117.3 \quad 289.0 \quad 1284.0$
$131.8 \quad 289.0 \quad 1284.0$

NOTE

- no data available

FIG. $2 l$ VERTICAL DEPTH ys. Pressure Control Point PRESSURE OF THE SNGF WELLS

of $836.5 \mathrm{~kg} / \mathrm{m} 3$. Hence, in this paper trials were made to estimate the aquifer pressure if the main inflow during production is $289^{\circ} \mathrm{C}$. It was found out that an aquifer pressure of 132.0 bara gave the best fit. The calculated static profile at $289^{\circ} \mathrm{C}$ is shown in Fig. 20. This further confirmed that the well has intersected a high permeability zone at 2600 m as shown by the small pressure drawdown (compare static profile at $289^{\circ} \mathrm{C}$ and KP 29, Fig. 20). Injection tests conducted during well completion gave an injectivity index of 63 to over a 100 1/s-MPa.

3.5.1.2 Okoy 6 delivery curves

Since the measured pressure profile of Okoy 6 was ably duplicated it is most fitting to use the data from this well to further calibrate the predictive capability of the computer program. The measured and calculated data are shown in Tables 2 and 3.

TABLE 2 Okoy 6 measured and calculated output data

Calculation was based on $\mathrm{Pa}=132.0$ bara, $\mathrm{C}=0.001$ and inflow temperature, $T C=289^{\circ} \mathrm{C}$.

FLOW(kg/s)	MEASURED WHP(bara)	CALCULATED WHP(bara)
14.2	25.0	25.4
26.7	24.9	24.5
51.1	19.9	20.8
60.8	17.9	18.1
71.2	13.9	13.3
75.0	-	10.5
80.0	10.9	choked

TABLE 3 Okoy 6 calculated output data at different aquifer pressures.

Calculation was based on $T C=289^{\circ} \mathrm{C}, \mathrm{C}=0.001$

Pa $=125.0$		
FLOW (kg/s)	WHP(bara)	Pa $=142.0$ WHP (bara)
14.2	23.9	127.6
26.7	23.0	26.7
51.1	18.8	23.5
60.8	15.6	21.6
71.2	9.3	17.5
75.0	choked	15.6
86.0	-	choked

TABLE 4 Okoy 6 flowing well pressures at different flow rates.

Calculation was based on $\mathrm{Pa}=132.0$ bara, turbulence factor, $C=0.001, T C=289^{\circ} \mathrm{C}$.

FLOW(kg/s) Pwf(bara) (Pa-Pwf)/W

14.2	131.8	0.01408
26.7	131.3	0.02622
51.1	129.3	0.05284
60.8	128.3	0.06086
71.2	126.9	0.07163

Fig. 22 showed that an aquifer pressure of 132.0 bara gave the best fit. The simulation was done in an attempt to duplicate the wellhead pressure by calibrating with the aquifer pressure and the turbulence factor. The turbulence factor can then be checked by plotting (Pa - Pwf)/W versus W (Jacob and Rorabaugh's (1946) method for step drawdown test).

The flowing pressure profiles at different flow rates are shown in Fig. 23. Fig. 24 shows a plot of (Pa-Pwf)/W versus W.

From Fig. 22, it can be seen that choked flow can be attained at $75 \mathrm{~kg} / \mathrm{s}$ at $\mathrm{Pa}=132.0$ bara. Generally, choked condition is directly proportional to aquifer pressure. Choked flow is the state at which fluid velocity approaches sonic velocity, in which case the mass flow does not increase when the wellhead pressure is lowered further. Also, from Fig. 22, the maximum discharge pressure can be estimated by extrapolating the curve down to W almost equal to zero. At this stage, liquid and/or vapour velocity is so low that the fluid is not lifted past the wellhead, hence the flow collapses.

If the percentage error in the massflow measurement for the James (1962) approximation will be applied (8%), then the maximum allowable flow for Okoy 6 will be $73.6 \mathrm{~kg} / \mathrm{s}$, or say $75.0 \mathrm{~kg} / \mathrm{s}$. From the simulation done, it was proven that at $75.0 \mathrm{~kg} / \mathrm{s}$ of flow the well started to attain choked condition. From Table 2 and Fig. 22, the measured flow at full bore discharge ($80 \mathrm{~kg} / \mathrm{s}$) deviates from the curve. This can be explained by either of the following: a) additional two-phase inflow from the upper zone at high flow rates (see section 3.3.2), or b) error in measurements as explained above. By ably predicting the delivery curve (if the model is accurate enough), the following aspects of well flow can be determined; choked condition, turbulence pressure drop, maximum discharge pressure, and productivity index, among others. The turbulence pressure drop is discussed in Appendix B. The productivity index can be calculated according to equation (1).

Fig. 23 Okoy 6 Pressure profiles at different mass flow rates

3.5.1.3 OKoy $7 \mathrm{KP} \quad 14 / \mathrm{KT} 21$

Okoy 7 is a well having two significant production zone at 1500-1700 m, and 2600-2882 m. At shut-in conditions, a downflow exists between these aquifers. During heat-up, the static pressure profiles converged at approximately midway between the two zones indicating that these zones have more or less similar permeabilities. At the point of convergence (PCP), formation pressure was deduced to be approximately equal to the pressure measured at this depth. From Fig. 21, the formation pressures in both zones are extrapolated from the straight line drawn for the PCP's of the wells in the Palinpinon field. The injectivity index calculated for this well during cold water injection was $59 \mathrm{l} / \mathrm{s}-\mathrm{MPa}$. The flowing pressure profile (KP 14, Fig. 25) indicates that both zones were drawn down below the formation pressures at both depths, suggesting that both zones are feeding.

TABLE 5 Okoy 7 drawdown pressures at the production zones

During measurement of $K P 14$, WHP $=46.5$ bara, and the total flow was, W t $=13.2 \mathrm{~kg} / \mathrm{s}$

PRODUCTION
ZONE (m) Pa(bara) Pwf(bara) dP(bar)
$\begin{array}{llll}(1), 2600 & 168.0 & 163.9 & 4.1 \\ (2), 1700 & 101.0 & 100.6 & 0.4\end{array}$

At the lower zone (1), the flowing well pressure can be expressed as;

$$
\begin{align*}
\text { PWf1 } & =\mathrm{Pf} 1-\mathrm{W} 1 / \mathrm{I} 1, \text { then } \tag{6}\\
\mathrm{Wt} & =\mathrm{W} 1+\mathrm{W} 2 \tag{7}\\
\mathrm{~W} 1 & =(\mathrm{dP}) 1 \times \mathrm{I} 1 \tag{8}\\
\mathrm{~W} 2 & =(\mathrm{dP}) 2 \times \mathrm{I} 2 \tag{9}
\end{align*}
$$

where; $I=$ injectivity index, $1 / s-M P a$

From the location of the PCP, it can be assumed that $I 1=I 2$.

Then, (10) $W 1=W 2(d P 1 / d P 2)$ From which, $W 1=12.0 \mathrm{~kg} / \mathrm{s}$, and $W 2=1.2 \mathrm{~kg} / \mathrm{s}$. These values are used in the simulation and the results are shown in Table 6.

As can be seen from the Table 6, the saturation temperature corresponding to the wellhead pressure agrees well with the measured and calculated temperatures at the wellhead, implying that possibly the measured pressure profile has some discrepancies. However, this can also be due to fluid salinity and presence of non-condensible gases. At the wellhead, the measured pressure (KP) was off by 3.8 bara compared to the WHP, and 6.2 bara compared to the calculated pressure.

At 1800-1600 m, from Table 6, a sudden drop in temperature (measured) occured indicating the influence of the $260^{\circ} \mathrm{C}$ fluid from the upper zone. Applying the maximum error (see section 3.5 .1), of $50 \mathrm{~J} / \mathrm{g}$ for the James lip pressure method, then the maximum discharge enthalpy that can possibly be measured is $1340.0 \mathrm{~J} / \mathrm{g}$. The calculated enthalpy from Table 6 is $1402.2 \mathrm{~J} / \mathrm{g}$ which shows a difference of $62.2 \mathrm{~J} / \mathrm{g}$ implying that significant heat loss has occured to the formation at this flow rate ($13.2 \mathrm{~kg} / \mathrm{s}$). At high flowrates this cooling will be minimal due to the increased fluid velocity. A simulation done at full bore discharge indicated a calculated enthalpy of $1395.3 \mathrm{~J} / \mathrm{g}$ which agrees well with the measured discharge enthalpy ($1400 \mathrm{~J} / \mathrm{g}$).

To check the effects of salinity and non-condensible gases to the pressure profile, calculation was made taking all non-condensible gases as CO_{2} and the chloride concentration for NaCl . The chemical data were taken from Jordan (1982). The presence of dissolved salt lower the saturation pressure at a given temperature. The salt remains in liquid phase, adding to the weight of liquid but does not influence the flashing of the water (Grant, et.al. 1982). The effect of CO_{2} causes the solution to flash at higher pressure at a given temperature. These cases are presented

TABLE 6 Okoy 7 measured and calculated flowing temperature and pressure.

Measured WHP $=46.5$ bara $\left(T s=260^{\circ} \mathrm{C}\right)$ Measured discharge enthalpy $=1290 \mathrm{~kJ} / \mathrm{kg}$. Temperature of the inflow at the upper zone $=260^{\circ} \mathrm{C}$, Profile calculated at Pwf $=163.9$ Mixing temperature $=313^{\circ} \mathrm{C} ; \mathrm{CCO2}, \mathrm{CNACL}=0.0$

MEASURED
DEPTH(m) P(bara) TEMP(C)

0.0	42.7	261.0
200.0	46.8	267.0
400.0	50.8	272.0
600.0	55.1	277.0
800.0	60.1	282.0
1000.0	65.9	288.0
1200.0	72.8	294.0
1400.0	82.4	300.0
1600.0	94.0	305.0
1688.0	-	-
1800.0	107.3	314.0
2000.0	121.3	317.0
2200.0	135.7	318.0
2400.0	150.0	319.0
2600.0	163.9	319.0

calculated
P(bara) TEMP (C) H(J/gm)
in Appendix C. The calculations are presented in Appendix D.2, D.3, D.4, and D.5. Fig. 25 shows the simulated profile at full bore discharge and at a WHP of 46.5 bara.

Proper duplication of the measured profile can be helpful in the determination of the true temperature and pressure profile, the determination of the inflows from a multi-zone well, the determination of the effect of heat transfer to the formation at low flow rates, and the effects of impurities to the pressure profile.

3.5.2 Determination of the necessary conditions for a successful well discharge

Initially, discharging of wells in SNGF was done by compressed air stimulation. That is, by injecting compressed air into the well in an attempt to depress the water column to a depth where the temperature is sufficient enough to support a thermodynamic flow of the fluid. However, it was found out that in wells with very deep water levels, this method failed, especially in the Nasuji/Sogongon area of the SNGF. This was because as the fluid started to flash and flow up the well, much of its energy was lost to the cold column from the flashing point to the wellhead (Algopera, 1980).

To minimize this energy loss external heat from outside source, i.e., a boiler or another discharging well, is required to heat up the cold column (Brodie, 1980). This method requires injection of steam or two-phase fluid into the well thereby heating up and depressing the water column to a condition (temperature) sufficient to support a continuous flow. Unloading the injected fluid would stimulate the well to flow provided the total pressure drop it will encounter during the flowing process can be overcome.

The critical condition that should be attained for the well to sustain flow is the minimum temperature of the water column attained during stimulation, Fig. 26, KT 58 and 48. The saturation pressure should be higher than the total pressure reduction due to elevation change, wall friction, and acceleration. In the calculation, the depth of the occurence of the minimum temperature can be determined from temperature surveys conducted during stimulation or can be assumed as will be shown later. The starting Pwf is the saturation pressure corresponding to the critical (minimum) temperature. The mass flow can be calculated as follows;

$$
\begin{align*}
& W t=W i+W W \tag{11}\\
& W W=\frac{Q i}{H 2-H 1} \tag{12}
\end{align*}
$$

where; $W t=$ total mass flow rate, $k g / s$; $W w=$ mass that can be derived from the water column, $k g / s$; $W i=$ mass injected into the well, $k g / s ; Q i=$ heat injected into the well, $\mathrm{kJ} / \mathrm{s} ; \mathrm{H} 2=$ saturated liquid enthalpy of the fluid at minimum temperature, $\mathrm{T} 2, \mathrm{~kJ} / \mathrm{kg} ; \mathrm{H} 1=$ saturated liquid enthalpy corresponding to the temperature of the water prior to stimulation, i.e, at the water level, $k J / k g$.

In actual case, however, the mass derived from the depressed water column may be lower than what can be calculated in equation (12), as a portion of the injected heat is used to heat up the cold column. After some time from the start of stimulation, when the cold column has already been heated, Ww can be approximated using equation (12). The starting depth will be the location of T2. The minimum temperature can be known from either of the following: a) Temperature logging during stimulation. b) Monitoring the WHP during stimulation. This can be done by assuming a temperature drop between the temperature of the injected fluid at the wellhead (Ps at WHP), and the minimum temperature. By simulation, the depth of occurence and the minimum temperature can be calculated, i.e, at a

1 JHD-HSI -9000-DCC 83.09. 1078 -IS

FIG. 26 OKOY 5 TEMPERATURE AND PRESSURE PROFILES DURING DISCHARGE ATTEMPTS

condition where a flowing pressure of slightly greater than atmospheric is attained at the wellhead during the flowing process. The temperature at the wellhead can then be calculated as

$$
\begin{equation*}
\mathrm{T}_{\mathrm{wh}}=\mathrm{T}_{\mathrm{min}}+\mathrm{dT} \tag{13}
\end{equation*}
$$

The wellhead pressure can then be determined as

$$
\begin{equation*}
W H P=P s \text { at } T_{W h} \tag{14}
\end{equation*}
$$

Stimulation can then be stopped if the required stimulation WHP is reached and the well consequently opened up. For SNGF, $d T$ has been found to be $25^{\circ} \mathrm{C}$. Figs. 26 and 27 show the pressure profiles during the discharge attempt for Okoy 5, and the simulated discharge attempt for SG 1 at a minimum temperature of $212^{\circ} \mathrm{C}$ estimated to occur at 1425 m .

At a minimum temperature of $121^{\circ} \mathrm{C}$ occuring at 600 m , Okoy 5 failed to discharge, whereas, at a minimum temperature of $167^{\circ} \mathrm{C}$ occuring at 700 m , a successful discharge was attained (Fig.26).
3.5.3 Effect of elevation on production

For future expansion and assessment of a partially developed field, simulated output curves at different elevations were made for 0koy 6. The object of the simulation is to predict the probable well operating outputs at different elevations. The simulation was based on an assumption that the wells to be drilled at other elevations are to obtain production from the same aquifer intersected by the base well (Okoy 6 in this case), as a first estimate.

From Fig. 28 and Table 7, it can be seen that the well output is inversely proportional to the well elevation. This is due to the additional pressure drop that will occur

Fig. 27 Sogongon discharge simulation (by steam injection)

TABLE 7 Okoy 6 output at different elevations.

```
Calculated at Pa = 132.0 bara, C = 0.001, inflow temp.,
```

$T C=289^{\circ} \mathrm{C}, \mathrm{Za}=2600 \mathrm{~m}+($ Elev. -1100.0$)$

| | WHP $=15.0$ bara | FLOW $(\mathrm{kg} / \mathrm{s})$ |
| :---: | :---: | :---: |\quad| ELEV. (m) | |
| :---: | :---: |
| | |
| 900.0 | 75.0 |
| WHP $($ bara $)$ | |

TABLE 8 Okoy 6 delevirabilities at different flow string diameters.

Calculated at $P a=132.0$ bara, $C=0.001$, Inflow temperature, $\mathrm{TC}=289.0^{\circ} \mathrm{C}, \mathrm{Za}=2600.0 \mathrm{~m}$

| | WHP $=15.0$ bara $\quad W=45.0 \mathrm{~kg} / \mathrm{s}$ | \%INCREASE |
| :---: | :---: | :---: | :---: |
| CASING x LINER Mass FIOW $(\mathrm{kg} / \mathrm{s})$ | WHP(bara) | in FLOW |

$9-5 / 8^{\prime \prime} \times 7{ }^{\prime \prime}$	65.2	21.4^{*}	-
$7-5 / 8^{\prime \prime} \times$ " $^{\prime \prime}$	38.1	8.0	-41.6
$9-5 / 8^{\prime \prime} \times 7^{\prime \prime}$	65.7	21.9	0.8
$13-3 / 8^{\prime \prime} \times 9-5 / 8^{\prime \prime}$	129.0	24.9	97.8
$13-3 / 8^{\prime \prime} \times 7-5 / 8^{\prime \prime}$	95.5	24.1	46.5
$13-3 / 8^{\prime \prime} \times 7{ }^{\prime \prime}$	78.5	23.2	20.4
$13-3 / 8^{\prime \prime} \times$ " " $^{\prime \prime}$	47.5	17.6	-27.1

as a result of the lengthening of the flow pipe. To compensate for this pressure drop the flow string diameters can be enlarged.

3.5.4 Optimization of wellbore design from well deliverability conditions

The WHP versus mass flow rate at different casing/liner sizes for Okoy 6 are plotted in Fig. 29. Generally, it can be seen from the curves that production can be enormously increased by enlarging the flow string diameters. For a given operating well pressure and mass flow the following values are tabulated from Fig. 29.

As can be seen from Table 8, a reduction and/or increase in flow string diameters shows a corresponding decrease andor increase in flow rate. The significance of this simulation is for optimization of wellbore design in a partially developed field. It is clear from the graph that the mass flow increases significantly if the flow string diameter is enlarged. However, for future expansion, careful consideration should be taken in comparing the benefit of increased flow rates against the higher cost of drilling and completion of larger diameter wells. An increase in production rate would also mean a large pressure drawdown at the producing aquifer, hence increasing the rate of depletion.

3.5.5 Effect of deposition to production and data measurements

Fig. 30 shows the calculated and measured pressure profile for SG 1 when a blockage was encountered during measurements. The simulation was done in an attempt to duplicate the measured pressure profile which was only to 1400 m . It was then assumed that a blockage had occured at 1400 m to 1446 m (top of liner) causing a reduction in the diameter from 22.1 cm to 6.35 cm in the 46 m section of the casing. Fig. 30 shows that if there were no blockage, $P_{w f}=126.0$

1 JHD-HSK-9000-DCC
83.08. 0988-IS

bara at the main zone (2600 m), whereas, with blockage, Pwf $=144.0$ bara at that depth. This indicates a difference of 18.0 bara. At 1446 m to 1400 m a sharp reduction occured has occured in pressure as a result of this reduction in diameter.

A proper determination of the reduced diameter is then required to ably predict a near accurate pressure profile. This can be done by either a caliper log or a go-devil survey whichever is applicable.

A pressure survey conducted prior to the occurence of the blockage is tabulated in Table 9.

The effect of calcite deposition on production can be illustrated by well number 4 of the Svartsengi geothermal field in Iceland (SG 4). This well was drilled to a depth of 1024 m . The measured outputs before and after the occurence of the deposition are tabulated in Table 10.

From Table 10 , it can be seen that the output has been reduced significantly as a result of the deposition. Choked flow was attained at $85.0 \mathrm{~kg} / \mathrm{s}$ before the occurence of the deposits, and was attained at a relatively low flow of $52.0 \mathrm{~kg} / \mathrm{s}$ when calcite had deposited into the well. A caliper log was conducted and the deposition was determined to occur at $340-410 \mathrm{~m}$ depth with the highest reduction in flow diameter at approximately 375 m (Fig. 31). To determine the aquifer pressure, simulation was made at different Pa and turbulence factor C, and was calibrated against the measured output curve prior to the deposition (Fig. 32). $\mathrm{Pa}=88.0$ bara and $\mathrm{C}=0.0035$ gave the best fit. Flowing pressure profiles were then calculated for the two cases at a flow of $49.0 \mathrm{~kg} / \mathrm{s}$ using the $P a$ and C values mentioned above.

The results are plotted in Fig. 33. In the simulation, the average length of the deposits used was between $340-360 \mathrm{~m}$, from which an average diameter of 8.3 cm gave the best fit.

1.7	JHD-HSP-9000-DCC
$83.09 .1092-T$	

Fig. $30 \begin{aligned} & \text { Sogongon } 1 \text { measured and calculated flowing } \\ & \text { profiles }\end{aligned}$

TABLE 9 SG1 measured and calculated data.

Calculated at $T C=276^{\circ} \mathrm{C}, \mathrm{W}=20.5 \mathrm{~kg} / \mathrm{s}$, WHP at $\mathrm{KP} 20=18.0$ bara, $W=20.5 \mathrm{~kg} / \mathrm{s}$, WHP at $K P 19=16.7$ bara, $W=20.5 \mathrm{~kg} / \mathrm{s}$, Ts at 18.0 bara $=207.0^{\circ} \mathrm{C}$, Ts at 16.7 bara $=204.0^{\circ} \mathrm{C}$

```
    KP 20/KT 34 KP 19/KT 32 Calculated
DEPTH(m) P(bara) TEMP(C) P(bara) TEMP(C) P(bara) TEMP(C)
```

0.0	17.5	208.0	16.2	212.0	19.0	209.8
200.0	19.5	217.0	18.0	215.0	21.9	217.1
400.0	22.3	225.0	21.0	222.0	25.1	224.1
600.0	25.8	231.0	24.4	230.0	28.4	231.0
800.0	29.4	238.0	28.1	238.0	32.2	237.9
1000.0	33.8	246.0	32.6	245.0	36.5	245.0
1200.0	39.8	255.0	38.6	255.0	41.6	253.0
1400.0	49.1	265.0	49.2	266.0	47.9	261.3
1446.0	-	-	-	-	57.3	272.7
1480.7	-	-	-	-	60.3	276.0
1600.0	-	-	64.7	270.0	69.3	276.0
1800.0	-	-	80.1	271.0	84.2	276.0
2000.0	-	-	95.2	272.0	99.2	276.0
2200.0	-	-	110.2	272.0	114.1	276.0
2400.0	-	-	125.5	275.0	129.1	276.0
2600.0	-	-	140.7	276.0	144.0	276.0
2650.0	-	-	144.6	277.0	-	-

- no data available

From the above data a large temperature and pressure drop has occured at $1400-1446 \mathrm{~m}$.

TABLE 10 SG 4 output measurements before and after the deposition.

Before		After	
WHP(bara)	Flow (kg/s)	WHP(bara)	Flow $(\mathrm{kg} / \mathrm{s})$
19.0	33.0	18.9	28.0
17.1	59.0	16.8	39.0
14.0	75.0	13.5	49.0
13.2	80.0	11.2	52.0
11.7	84.0	9.2	51.0
10.6	85.0	8.9	52.0

$1-]_{83.09 .1091-T}^{J H O-H S D-2300-D C C}$


```
1-7 JHD-HSP-2300-DCC
83.09.1086-DCC
```


FIG. 33 Svartsengi Well no. 4 Output Characteristics

As shown in Figs. 32 and 33, the reduction in flow diameter caused a drop of 5.3 bara and 16.3 C from 360 m to the wellhead.

This section illustrates that the effects of blockage and calcite depositions on droduction is significant enough to be considered in the assessment and management of a geothermal field. The effect of deposition on production can be monitored by keeping a close watch on the WHP of the well. At a given $P a$ and C values, a plot of WHP versus deposits diameter can be made at any flow rate from calculations to be made using the computer program used in this paper.

3.5.6 Determination of the depletion rate of a producing aquifer

The general equation for the pressure decline in the reservoir is

$$
\begin{equation*}
(P i-P(r, t))=\frac{W \mu}{2 \pi \rho k h}\left(P_{D}(r D, t D)+s\right) \tag{15}
\end{equation*}
$$

where; $P i=$ initial reservoir pressure, $P(r, t)=$ pressure of the aquifer as a function of $r(r a d i u s)$, and $t(t i m e), D=$ subscript for dimensionless quantities, and $s=s k i n$ factor (let $s=0.0$ for the discussions to follow).

$$
\begin{align*}
& r_{D}=r / r_{W} \tag{16}\\
& t_{D}=\frac{k t}{\phi \mu c_{t} r_{W}} 2 \tag{17}
\end{align*}
$$

Using the exponential integral (Ei) solution for an infinite reservoir case, the dimensionless pressure can be approximated as

$$
\begin{align*}
& P_{D}=0.5[-E i(-u)] \tag{18}\\
& u=\frac{r_{D}^{2}}{4 t_{D}} \tag{19}
\end{align*}
$$

Defining the storativity and transmissivity parameters as follows,

$$
\begin{align*}
& S=\phi c_{t} h \tag{20}\\
& T=k h / \mu, \tag{21}
\end{align*}
$$

and combining equations (16) and (17), equation (19) will become

$$
\begin{aligned}
& u=\frac{r^{2} S}{4 T t} \quad \text { and eq. (15) can be rewritten as, } \\
& d P=\frac{W}{2 \pi \rho T}\left(P_{D}\right)=P i-P(r, t)
\end{aligned}
$$

The -Ei(-u) function can be estimated from Fig. 35 ($u=x$) or for $u<0.01$, can be calculated using the logarithmic approximation (Matthews and Russell, 1967).

$$
\begin{equation*}
-E i(-u)=-2.303 \log u-0.5772 \tag{24}
\end{equation*}
$$

For a producing well the depletion rate at any given plant conditions can be estimated as will be shown for okoy 6 . Fig. 34 shows a plot of the massflow versus WHP at different aquifer pressures for Okoy 6. From the plot, a line was drawn for constant flowrate of $60 \mathrm{~kg} / \mathrm{s}$. Taking 8.2 bara as the minimum WHP required to allow two-phase fluid from this well to flow to the separator (separation pressure, say 7.2 bars, allowing 1.0 bar for pressure loss in the transmission line), the minimum aquifer pressure required is 107.0 bara at a flow of $60 \mathrm{~kg} / \mathrm{s}$. The depletion rate can roughly be estimated, with a plant life of 25 years, as,

Fig. 35 Exponential Integral (Ei) graph (after, Matthews \& Russel, 1967)

```
depletion rate = (132.0 - 107.0)/25 = 1.0 bar/year
```

The actual depletion rate will, however, depend on the geometry of the reservoir where the well is located and the nature of the boundaries surrounding it. The actual depletion rate may be lower than what was calculated ($\mathrm{dP}=$ 1.0 bar/year). The above depletion rate can, however, be used as a maximum limit at which the well has to be produced. In a reservoir which is being tapped by a number of wells, interference may cause the drawdown to accelerate. Hence, the interference should be kept to a minimum and this depends on the spacing of their production zones. Roughly, this can be estimated from the drainage radius, r. As can be seen from Fig. 11, the pressure propagates slowly as the drainage radius is increased. Hence, the drainage radius can be estimated at which the propagation of $P(r, t)$ is relatively small. This will be illustrated for the Nasuji-Sogongon area considering an infinite system with a circular geometry.

For the Nasuji-Sogongon area, a 110 MWe plant has been planned for the near future. Given the turbine inlet pressure and the turbine steam rate the amount of steam and/or geofluid required for this installation can be estimated. For the Southern Negros project, for example, the wells are rated at a turbine inlet pressure of 7.2 bara and a steam rate of $2.82 \mathrm{~kg} / \mathrm{s}-\mathrm{MWe}$.

The Nasuji-Sogongon field has a liquid dominated reservoir of approximately $283^{\circ} \mathrm{C}$ reservoir temperature (based on Okoy 6 and SG 1). The amount of steam and geofluid required for the 110 MWe can be estimated as;

$$
\begin{align*}
& \mathrm{Ws}=110 \times 2.82=310.2 \mathrm{~kg} / \mathrm{s} \text { of steam } \tag{25}\\
& W=W \mathrm{~W} \frac{\mathrm{H}_{\mathrm{V}}-\mathrm{H}_{\mathrm{f}}}{\mathrm{H}-\mathrm{H}_{\mathrm{f}}}
\end{align*}
$$

At 7.2 bara, $H v=2766.3 \mathrm{~kJ} / \mathrm{kg}, \mathrm{Hf}=701.8 \mathrm{~kJ} / \mathrm{kg}$, and at $283^{\circ} \mathrm{C}, H=1252 \mathrm{~kJ} / \mathrm{kg}$. Then,

$$
W=310.2 \frac{2766.1-701.8}{1252.0-701.8}
$$

$=1164.0 \mathrm{~kg} / \mathrm{s}$ of total mass.

For a well production of $60 \mathrm{~kg} / \mathrm{s}$, this requires 20 wells, or roughly 5.5 MWe per well.

Well tests carried out on the wells drilled in the area showed an average transmissivity of, $T=3.8 \mathrm{E}-8 \mathrm{~m} / \mathrm{Pa} . \mathrm{s}$ (Torrejos, 1983). Cores cut from SG1 and Okoy 6 at the producing horizon (diorite intrusion) showed an average porosity of 0.04 (Bromly, 1981). Assuming an aquifer thickness of 100 m and a total rock and fluid compressibility of $3.1 \mathrm{E}-9$ per Pascal, the storativity is calculated to be $1.24 \mathrm{E}-8 \mathrm{~m} / \mathrm{Pa}$.

The parameter u can be evaluated using equation (22) as a function of radius and time, S and T being known.

```
u=(0.081579)r2/t, let t = 25 yrs=7.884E8 secs.
```

Considering the Nasuji-Sogongon area as a single well with circular drainage and producing at $1164 \mathrm{~kg} / \mathrm{s}$, the depletion rate can be calculated as shown in Table 11.

From the Table 11, the highest drawdown will occur when $r=50 \mathrm{~m}$. The average depletion rate per year can be estimated as

$$
\mathrm{dP}=\frac{477.44}{(25)}=19.1 \mathrm{bar},
$$

and for $r=500 \mathrm{~m}$,

$$
d P=\frac{326.86}{(25)}=13.08 \mathrm{bar},
$$

The calculations show that the depletion rate seems too high and unrealistic. This maybe due to the low values of S and T used. For the Svartsengi geothermal field in Iceland, the S and T values were found to be $1.483 \mathrm{E}-6 \mathrm{~m} / \mathrm{Pa}$ and $1.483 \mathrm{E}-6 \mathrm{~m} 3 / \mathrm{Pa} . \mathrm{s}$, respectively (Kjaran, 1980). Using these values for the above calculations, for $r=50$ and 500 m , and $\mathrm{t}=25$ years,

$$
\begin{aligned}
& u=\frac{0.25(50)(50)(1.483 \mathrm{E}-6)}{(1.483 \mathrm{E}-6)(7.884 \mathrm{E} 8)}=7.927 \mathrm{E}-7 \\
& \begin{aligned}
-E i(-u) & =-2.303 \log (7.927 \mathrm{E}-7)-0.5772 \\
& =13.473
\end{aligned}
\end{aligned}
$$

$P_{D}=6.736$

$$
d P=\frac{1164(6.736)}{2(3.1416)(745)(1 \mathrm{E} 5)(1.483 \mathrm{E}-6)}
$$

$=11.29$ bars for 25 years
and $d P=7.43$ bars for $r=500 \mathrm{~m}$, also at $\mathrm{t}=25 \mathrm{yrs}$, which are much lower than those tabulated in Table 11.

All calculations done were based on an infinite reservoir case. For bounded reservoirs, the depletion rate is expected to be higher, hence boundary effects should be taken with much caution into the calculations. For the Svartsengi field for instance, Fig. 36 (Regalado, 1981), it was shown that the actual depletion rate was much higher than what was calculated using the Theis method. It is illustrated here that the flowing pressure profile and the depletion rate of the producing well can be predicted using the two-phase flow model. However, for the whole reservoir, accurate predictions can only be made with a thorough study
of the pressure history of the field as well as the nature of its boundaries, and this of course will much depend on the accuracy of the measurements made, from which the reservoir parameters such as S and T are estimated.

For accurate calculations of the depletion rate and the well spacing, pressure transient tests should be carried out with utmost care so as to get a good estimate of S and T. Hence the electrical power potential of the field can be estimated from the production data and the pressure history.

TABLE 11 Nasuji-Sogongon area depletion rate.

Calculated at $t=25 \mathrm{yrs}, \mathrm{T}=3.8 \mathrm{E}-8, \mathrm{~S}=1.24 \mathrm{E}-8$, $\mathrm{W}=1164 \mathrm{~kg} / \mathrm{s}$.

$r(m)$	u	$-E i(-u)$	$P D$	$d P($ bara $)$
50.0	$2.587 \mathrm{E}-7$	14.59	7.296	477.44
100.0	$1.035 \mathrm{E}-6$	13.21	6.605	432.22
200.0	$4.139 \mathrm{E}-6$	11.82	5.910	386.74
300.0	$9.313 \mathrm{E}-6$	11.01	5.506	360.30
400.0	$1.656 \mathrm{E}-5$	10.43	5.215	341.26
500.0	$2.587 \mathrm{E}-5$	9.99	4.995	326.86

Fig. 36 Svartsengi geothermal field unit response function (after Regalado, 1981)

Two-phase flow models can be used as a tool in geothermal well analysis and the geothermal reservoir as a whole. Using the model presented here, information can still be obtained where actual measurements failed. It is recommended that the usage of two-phase flow models be made an integral part in geothermal well evaluation and data interpretation.

From the profile duplications made in the previous sections of this report, the best fit is obtained by using the correlations presented by Armand and Teacher (1959) for the void fraction occupied by the vapour phase, and that of Chisholm(1972) for the two-phase multiplier, hence these correlations are used in all the calculations presented.

For a partially developed field, it is found that by using the model presented here, an estimate can be made of the following aspects pertaining to the well and the reservoir:

1) Profile duplication. Proper duplication of the measured pressure and temperature profiles can be helpful for example in the determination of the true temperature and pressure profiles, in the determination of the inflows for a multizone well, in qualifying the effects of heat transfer to the formation at low flow rates, and detecting the effects of impurities to pressure and temperature profiles at flowing conditions.
2) Deliverability curves. By ably predicting the deliverability curve, the following aspects of well flow can be determined: choked condition, turbulence pressure drop, maximum discharge pressure, and productivity index, to mention a few.
3) Well start-up. The method of well start-up presented here is the steam or two-phase fluid injection. It is found out that the probability of a successful well
discharge using the above mentioned method depends on the minimum temperature of the water column attained during the stimulation process.
4) Well elevation. Using the two-phase model it is illustrated that for a partially developed field, output of the wells to be drilled at other elevations can be estimated.
5) Wellbore design. For a field with a proven capacity, extraction of the geothermal fluid frow the reservoir to the surface largely depends on the wellbore design. The simulations suggest that production can be increased significantly by enlarging the diameter of the wells. However, care should be taken in comparing the benefits of increased production against the higher cost of drilling larger diameter wells, and the rate of depletion of the producing well.
6) Chemical deposition. Chemical deposits within the well will reduce the effective flow diameter, hence the flow rate will decrease. By simulation, the reduction in flow rate and the size of the deposition can be estimated, hence a decision can be made as to the size of deposits that can be tolerated to accumulate, and the time that well cleaning is required.
7) Depletion rate. Using the model, the depletion rate of a producing well can be estimated. Hence given an expected plant life, a decision can be made as to how much flow is needed for a well to last within the entire life of the plant. For the reservoir, a thorough investigation is required on the pressure history of the field, and pressure transient tests should be carried out with utmost care so as to get a good estimate of the reservoir parameters (S and T), hence a reliable prediction of the depletion rate.

As enumerated above, boreflow simulation can aid significantly in decision making on various aspects of reservoir and plant management.

ACKNOWLEDGEMENTS

The author is greatly indebted to the following whose help made the completion of this paper possible: The personnel and staff of Orkustofnun and the United Nations University - in the use of the computer and other facilities, and valuable communications related to this paper with some of the staff. The staff of Vatnaskil Ltd., consulting engineers, especially Jonas Eliasson, and Snorri Pall Kjaran, who acted as my supervisors for this work, and Gisli Karel Haldorsson who allowed me to use his original computer program and modify it. Personnel and staff of PNOC-EDC - who provided me with the required data.

I also wish to extend my gratitude to Dr. Ingvar Birgir Fridleifsson, the director of the UNU Geothermal Training Programme, and the management of PNOC-EDC Geothermal Division who made my training under the UNU Fellowship possible, hence the writing of this report.

Special acknowledgements are also due to Dr. Ingvar Birgir Fridleifsson, Snorri Pall Kjaran, and Jonas Eliasson for critical reading of this report.

And lastly thanks are due to Sigurjon Asbjornsson for his assistance in all the neccessary arrangements, making our stay in Iceland fruitful.

REFERENCES

Algopera, W.N. (1980): Discharging of Wells by Steam Injection at SNGF. Diploma thesis, Geothermal Institute, Auckland, New Zealand.

Armand, A.A., G.G. Teacher(1959): Investigation of the Resistance During the Movement of Steam-water Mixtures in a Heated Boiler Pipe at High Pressures. Atomic Energy Research Establishment, Hartwell, Berkshire.

Bagamasbad, N.G. (1979): Geology of Well Okoy 5 in SNGF. UNU Geothermal Training Programme, Reykjavik, Iceland Report 1979-2, 50 pp .

Brodie, A.J. (1980): Personal Communications.

Brodie, A.J., et. al. (1981): Well Discharge Stimulation Techniques in Hot-water Dominated Fields. KRTA, 583.

Bromley, C.J. (1981): Core Density Measurements - Southern Negros Wells. Unpublished report, 1-2.

Catacutan, A.V. (1982): Okoy Field Field Pressures. PNOC-EDC Internal Report, 8.

Catigtig, D.C. (1982): Boreflow Simulation Using HP 41 CV . PNOC-EDC Internal Report, 90 pp.

Catigtig, D.C. (1981a): Okoy 5 Well Analysis Report. PNOC-EDC Internal Report, 12-13.

Catigtig, D.C. (1981b): Okoy 7 Well Analysis Report. PNOC-EDC Internal Report, 10-12.

Chisholm, D. (1972): Pressure Gradients due to Friction during the Flow of Evaporating Two-phase Mixtures in Smooth Tubes and Channels. Int. Jou. Heat and Mass Transfer, vol. 16, 347-358.

DiPippo, R. (1980): Geothermal Energy as a Source of Electricity. U.S. Dept. of Energy, 175-176, 189-191, 201-202.

Elizagaque, R.F. and B.S. Tolentino (1982): Geothermal Development in the Philippines. Geothermal Resources Council Bulletin, 5-7.

Grant, M.A., I.G. Donaldson, and P.F. Bixley. (1982): Geothermal Reservoir Engineering, Academic Press, 129, 319-324.

Grant, M.A. (1981): Some Notes on the Wells and Reservoir of the Okoy Field, DSIR, 6 pp .

Griffith, P. and G.B. Wallis (1961): Two-phase Slug Flow. Jou. Heat Transfer, Trans., AIME, 307-320.

Gould, T.L. (1974): Vertical two-phase Steam-water flow in Geothermal Wells. SPE-AIME, Intercomp, 5 pp .

Haldorsson, G.K. (1978): Pressure Drop in Geothermal Blowing Wells Rekjavik, Iceland, chap. 5, app. II and III.

Jacob, C.E. (1946): Radial flow in a Leaky Artesian Aquifer. Transaction American Geophysical Union, vol. 27, 198-205.

James, Russel (1962): Steam Water Critical Flow Through Pipes. Inst. of Mech. Engr's. Proc., vol. 176 , no. 26,741 .

Jordan, 0.T. (1982): Implications of Solution Mineral Equilibria on the Exploitation of the Southern Negros Geothermal Field. UNU Geothermal Training Programme, Reykjavik, Iceland, Report 1982-7, 67 pp.

Kjaran, S.P. and J.E. Eliasson. (1983): Personal Communications.

Kjaran, S.P. and J.E. Eliasson. (1983): Geothermal Reservoir Engineering Lecture Notes. UNU Geothermal Training Programme, Reykjavik, Iceland, Report 1983-2 238 pp.

Keenan, and Keyes, et.al. (1978): Steam Tables. 153 pp.

Martinelli, R.C. and D.B. Nelson (1948): Prediction of Pressure Drop During Forced Circulation Boiling of Water. ASME Trans., 70, 695-702.

Matthews, C.S. and D.G. Russel. (1967): Pressure Build-up and Flow Test in Wells. SPE-AIME, 163.

Michaelides, E.E. (1981): Thermodynamic Properties of Geothermal Fluids. GRC 5, 361-364.

Michels, D.E. (1981): CO2 and Carbonate Chemistry Applied to Geothermal Engineering. Rep LBL-11509(GREMP-15), Lawrence Berkely Laboratory, Berkely, California.

Palmason, G. (1982): Philippines. UN Report No. 24, 17-22.

Pornuevo, J.B., O.T. Jordan, and D.C. Catigtig (1981): Okoy 6 Comprehensive Report. PNOC-EDC Internal Report, 8-10.

Regalado, J.R.(1981): A study of the Response to Exploitation of the Svartsengi Geothermal Field, SW Iceland. UNU Geothermal Training Programme, Reykjavik, Iceland Report 1981-7, 111 pp .

Sanyal, S.K. and S. Juprasert (1977): Numerical Simulator for Flow in Geothermal Wellbores. Geothermal Resources Council, vol. 1, 159.

Sigurdsson, Omar (1983): Personal Communications.

Sutton, F.M. (1976): Pressure-temperature Curve for a Twophase Mixture of Water and Carbon Dioxide. N.Z.J. Sci. 19, 297-301.

Torrejos, A.T. (1983): Updated Measurements and Data Interpretations of SNGF. PNOC-EDC Internal Report, 1-2.

Torrejos, A.T. (1983): Updated Okoy Field temperature Contours. PNOC-EDC Internal Report, 18-21.

A. 1 Homogeneous model

For notations, refer to Fig. A. 1

This derivation was based on an assumption of a steady homogeneous one-dimensional fluid flow in a pipe, and using the conservation equations for mass, energy, and momentum.

The mass continuity equation is

$$
(A 1.1) \quad W=\rho V A
$$

The energy equation is

$$
\text { (A1.2) } d E=W d H+W d(V 2 / 2)+W g d z-d Q
$$

In most cases, Q is very much smaller compared to WH; i.e., the well operation is substantially adiabatic. At this stage, for an adiabatic process, $Q=0$. For a self-flowing well, there is no energy input, hence $E=0$. The energy equation will then reduce to

$$
\begin{array}{ll}
(A 1 \cdot 3) & 0=W d H+W d(V 2 / 2)+W g d z \\
(A 1.4) & 0=d H+d(V 2 / 2)+g d z
\end{array}
$$

Integrating eq. (A1.4) at any two points in the well in an upward direction, the following equation can be derived

$$
\begin{array}{ll}
(A 1.5) & H_{2}=H_{1}-0.5\left(v_{2}^{2}-v_{1}^{2}\right)-g\left(z_{2}-z_{1}\right) \\
(A 1.6) & H_{1}=x_{1}\left(H_{v}\right)+\left(1-x_{1}\right) H_{f 1} \\
(A 1.7) & H_{2}=x_{2}\left(H_{v 2}\right)+\left(1-x_{2}\right) H_{f} 2
\end{array}
$$

$$
(A 1.8) \quad x_{2}=\frac{H_{1}-0.5\left(V_{2}^{2}-V_{1}^{2}\right)-g\left(Z_{2}-Z_{1}\right)-H_{f 2}}{H_{v 2}-H_{f 2}}
$$

where $\mathrm{x}=$ mass fraction of steam; $\mathrm{H}=$ enthalpy, $\mathrm{kJ} / \mathrm{kg} ; \mathrm{V}=$ fluid velocity, m/s; $W=$ mass flow, $\mathrm{kg} / \mathrm{s} ; ~=~ d e n s i t y, ~ k g / m ;$ $\mathrm{v}, \mathrm{f}=$ subscripts for steam and liquid, respectively; and g $=$ acceleration due to gravity, $9.81 \mathrm{~m} / \mathrm{s}$.

The momentum equation is

$$
\begin{aligned}
& (A 1.9) \quad P=\rho V d V+d F / A+\rho g d z+P+d P \\
& (A 1.10) \quad-d P=\rho V d V+d F / A+\rho g d z
\end{aligned}
$$

where dF/A is the frictional pressure drop defined by Darcy-Weisbach as;

```
(A1.11) (dP)fric = dF/A = pfV2 dz/2D
(A1.12) f}=f(Re
(A1.13) }\quad\textrm{Re}=\rhoVD/
```

From the modified Colebrook's equation,
$(A 1.14) \quad f=\left\{\left[-2 \log \left(\varepsilon / D+(7 / R e)^{0.9}\right)\right]^{2}\right\}^{-1}$
where $\varepsilon=$ the absolute roughness factor of the flow pipe.

The acceleration pressure drop is
(A1.15) (dP)acc $=\rho V d V$

If the mass flux will be defined as $G=W / A$ and using eq. (A1.1),
(A1.16) $\quad V=G / \rho$

Then, eq. (A1.15) can be expressed as
(A1.17) (dP)acc $=G d V$

The potential pressure drop is
(A1.18) (dP)pot $=\rho g d z$

Then the total pressure drop is
(A1.19) $-(d P) t=(d P) f r i c+(d P) a c c+(d P) p o t$
A. 2 Single-phase region

In the single phase section of the well, the fluid density is substantially constant and this corresponds to the saturated liquid density at the inflow temperature. Then $\mathrm{V} 1=\mathrm{V} 2,(\mathrm{dP}) \mathrm{acc}=0$.
(A1.20) $-(d P) t=(d P) f r i c+(d P) p o t$
$=(\rho f V 2 d z) / 2 D+\rho g d z$ $\mathrm{dz}=$ incremental pipe lenght, m.
(A1.21)

$$
H_{2}=H_{1}=H_{f 1}=H_{f} 2
$$

where H is the saturated liquid enthalpy corresponding to the inflow temperature.

A. 3 Determining the flash level

Refer to Fig. A.2. From eq. (A1.20),

$$
-(d P) t=(d P) f r i c+(d P) \text { pot. }
$$

Throughout the lenght (Va - Z^{*}),

$$
\begin{gathered}
(A 1.22)-(d P) t=(P w f-P s), \text { then } \\
(A 1.23) \quad(P W f-P s)=\frac{\rho f V 2\left(Z a-Z^{*}\right)}{2 D}+\rho g\left(Z a-Z^{*}\right) \\
(A 1.24) \quad Z^{*}=Z a-\frac{(P w f-P s)}{\rho g+\frac{\rho f V 2}{2 D}} \\
Z^{*}=Z a-\frac{(P w f-P s)}{\rho g+\frac{G 2 f}{2 \rho D}}
\end{gathered}
$$

If the aquifer pressure is known, Pa

$$
(\mathrm{A} 1.25) \quad \mathrm{Pa}=\mathrm{P}_{\mathrm{wf}}+\mathrm{CW} 2
$$

where CW2 is the pressure drop due to turbulence.

Then, eq. (A1.24) will become,
(A1.26) $Z^{*}=Z a-\frac{\left(P a-C W^{2}-P s\right)}{\rho g+\frac{G 2 f}{2 \rho D}}$

FIG. A.I COMPONENTS OF FLUID FLOW IN A PIPE

FIG. A. 2 FLASHING LEVEL IN THE WELL

A. 4 Two-phase region

As the flowing process continues, flowing well pressure continuosly drops until it will reach the saturation pressure corresponding to the inflow temperature, at which stage the fluid will then start to flash. In this section of the well, the fluid undergoes flow regime changes, i.e., bubble, slug, churn, and annular in an upward direction. These regimes are discussed in Section 3.1 .

In any of these flow regimes, the liquid and the vapour phases flow separately and travel at different velocities. The vapour phase travels faster than the liquid phase resulting into a slippage between the phases. Hence, corrections should be made on the homogeneous pressure drop equation, eq. (A1.20). These are the slip, void fraction occupied by the vapor phase and the liquid phase, and the two-phase friction factor. The void fraction occupied by the vapour phase is defined as;

$$
(\mathrm{A} 1.27) \quad \alpha=\mathrm{A}_{\mathrm{V}} / \mathrm{A}
$$

where Av is the cross-sectional area occupied by the vapor phase, and A is the cross-sectional area of the flow pipe.

The void fraction occupied by the liquid phase is defined as

$$
(A 1.28) \quad(1-\alpha)=A_{f} / A,
$$

where Af is the cross-sectional area occupied by the liquid phase.

The slip factor or the velocity ratio is defined as

$$
(A 1.29) \quad K=\frac{V_{V}}{V_{f}}
$$

where V_{V} and V_{f} are the vapour and the liquid phases velocities respectively.

From the continuity equation, eq. (A1.1),

$$
(A 1.30) \quad V_{V}=\frac{x W}{\rho_{V} A_{V}}
$$

where x is the mass fraction of the vapor in the flow.

$$
=G \frac{x}{\alpha \rho_{v}}
$$

(A1.31) $\quad V f=\frac{(1-x) W}{\rho_{f} A_{f}} \quad=G \frac{(1-x)}{(1-\alpha) \rho_{f}}$, then
(A1.32) $\quad K=\frac{x \rho_{f}(1-\alpha)}{(1-x) \alpha \rho_{V}}$
in the two-phase section, the individual pressure drops can then be written as
(A1.33) (dP)pot $=\left[\alpha \rho_{V}+(1-\alpha) \rho f\right] g d z$
(A1.34) (dP)acc $=G d V$

$$
\begin{aligned}
& =G 2 d\left[\frac{x^{2}}{\rho_{V}}+\frac{(1-x)^{2}}{(1-\alpha) \rho f}\right] \\
(A 1.35) \quad(d P) \text { fric } & =\frac{f V 2\left[\alpha \rho_{V}+(1-\alpha) \rho f\right]}{2 D} d z
\end{aligned}
$$

The friction factor is evaluated using eqs. (A1.12), (A1.13), and (A1.14) using the two-phase correction factor discussed below.

However, this incurs the difficulty in defining the satisfactory definition of a two-phase viscosity, and it is usual to devise an expression which recognizes the mass proportions of both the saturated liquid and saturated vapour (DiPippo, 1980).

Martinelli and Nelson (1948) introduces an empirical relation to calculate the friction pressure gradient;

$$
(A 1.36) \quad \phi^{2} v \text { or } f=\frac{(d P / d z) f t p}{(d P / d z) v \text { or } f}
$$

where; (dP/dz)ftp = the two-phase frictional pressure gradient.
(dP/dz)v or $f=$ the frictional pressure gradient if only vapor or liquid is flowing in a pipe.

$$
(A 1.37)(d P) f^{\prime} C_{t p}=(d P) \text { fricf } \cdot \phi^{2}
$$

In this paper, the correction factor used is for liquid, hence the friction factor is evaluated using the single phase (liquid) properties.

The Armand and Teacher (1959) correlation for α is,
(A1.38)

$$
=\frac{0.833+0.05 \log (P)}{1+\frac{(1-x) \rho v}{x \rho f}}
$$

The Chisholm (1972) correlation for ϕ_{f}^{2} is,

$$
\text { (A1.39) } \begin{aligned}
\phi_{f}^{2} & =1+\left(C x^{-1}\right)+\left(x^{-2}\right) \\
x & =\frac{(1-x)^{2} \rho_{v}}{x \rho f}
\end{aligned}
$$

$$
C=1+\frac{x v_{v}}{x v_{v}+(1-x) v_{f}}-\alpha
$$

P is in bars, v is the specific volume, and x is the mass fraction of steam.

For further discussion of these correlations, the reader is referred to Haldorsson (1978).

B.1. Flow measurements

James (1962) showed that by means of a lip pressure tapping at the end of a pipe discharging geothermal fluid critically to the atmosphere, a fairly accurate estimate of the mass flow rate can be made provided the stagnation enthalpy of the fluid is known.

Over a critical pressure range of 97 to 440 kPa , and a stagnation enthalpy of 535 to $2791 \mathrm{~kJ} / \mathrm{kg}$, the following empirical equation was formulated by James (1962) with a claimed accuracy of _ 3%.

$$
\text { (B.1) } \quad \frac{G^{1.102}}{P 0.96}=22106
$$

where G is the mass flux, $W / A, \mathrm{~kg} / \mathrm{m}^{2} . s ; H$ is the enthalpy, $\mathrm{kJ} / \mathrm{kg}$; P is the critical lip pressure, kPa.

For reference, see Figs B. 1 and B.2.

$$
(B .2) \quad W=\frac{22106 P^{0.96}}{H 1.102} \cdot \frac{(\pi) D^{2}}{4}
$$

where D is the discharge pipe diameter, m.

From Fig. B.1, the mass and heat balance equations are as follows;

$$
(B \cdot 3) \quad W=W_{f}+W_{V}
$$

where; $W_{f}=$ water flow and $W_{V}=$ steam flow, $k g / s$.

$$
(B .4) \quad W H=W_{f} H_{f}+W_{V} H_{V}
$$

From equations (B.3) and (B.4),
(B.5) $W=\frac{W_{f}\left(H_{f}-H_{V}\right)}{H-H_{V}}$

Equating equations (C.2) and (C.5), and rearranging,

$$
\text { (B.6) } \quad \frac{4}{(\pi)} \cdot \frac{W_{f}}{D^{2} P 0.96}=\frac{\left(H_{V}-H\right)}{\left(H_{V}-H_{f}\right)} \cdot \frac{22106}{H^{1} .102}
$$

Defining the James Factor as, JF $=\frac{W_{f}}{D 2 P 0.96}$
and taking the steam and water enthalpies at atmospheric pressure (1.0 ata),

$$
\mathrm{H}_{\mathrm{v}}=2676 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{H}_{\mathrm{f}}=419 \mathrm{~kJ} / \mathrm{kg}
$$

Then equation (B.5) will become,

$$
\text { (C.7) } W=\frac{2257 \mathrm{~W}_{\mathrm{f}}}{2676-\mathrm{H}}
$$

From which Wf can be measured (weir method), using a weir plate at the water collecting device (silencer weir box). For a trapezoidal ceppoletti weir for example, (see fig B.2),

$$
\text { (B.8) } W_{f}=h^{1.5} \cdot L \cdot 0.0562
$$

where h is the water height (mm), and L is the length of weir (m).

Evaluating equation (B.6) and using the definition of the JF, the enthalpy can be solved as

$$
\text { (B.9) } \quad 1.273 \mathrm{JFH} \mathrm{H}^{1.102}+9.79 \mathrm{H}-26210=0
$$

```
I JHD-HSP-9000-DCC
83.09. 1088-DCC
```


FIG. II Pressure configuration in laminar and furbulent zones

Fig. B. 1 Fluid Discharge to the Atmosphere.

Fig. B. 2 Water Flow Measurements Configuration.

B. 2 Pressure drop due to turbulence

Refer to Figs. 10 and 11 in section 3.2.

For the laminar zone, considering a steady state case,

$$
(B .10) \quad P_{e}-P_{S}=\frac{W}{2 \pi \rho T} \cdot \ln \frac{r_{e}}{r_{s}}
$$

where $T=k h /$

For the turbulent zone,

$$
\text { (B.11) } \quad \frac{\partial P}{\partial r}=\mu a V+\mu b V 2
$$

Using the continuity equation,

$$
\text { (B.12) } \quad V=\frac{W}{2 \pi \rho r h}
$$

$$
(B .13) \quad V=\frac{W^{2}}{4 \pi^{2} \rho^{2} h^{2} r^{2}}
$$

Defining $a=1 / k$, equation (B.11) will then become,

$$
\text { (B.14) } \quad \frac{\partial P}{\partial r}=\frac{W}{2 \pi \rho T r}+\frac{\mu b W^{2}}{4 \pi^{2} \rho^{2} h^{2} r^{2}}
$$

Integrating from Pf to $P s$, and r_{w} to r_{s},
(B. 15) $\quad P s-P W f=\frac{W}{2 \pi \rho T} \cdot \ln \frac{r_{s}}{r_{W}}+\frac{\mu W^{2} b}{4 \pi^{2} \rho^{2} h^{2}}\left(\frac{1}{r_{W}}-\frac{1}{r_{s}}\right)$

Adding equations (C.10) and (C.15), and if $r s \gg r w$,

$$
\text { (B. 16) } P e-P w f=\frac{W}{2 \pi \rho T} \cdot \ln \frac{r_{e}}{r_{W}}+\frac{W^{2} \mu b}{4 \pi^{2} \rho^{2} h^{2} r w}
$$

Defining, $B=\frac{1}{2 \pi \rho T} \cdot \ln \frac{r_{e}}{r_{w}}$, and $C=\mu b /\left(4 \pi^{2} \rho^{2} h^{2} r_{W}\right)$

Equation (B.17) will reduce to,

$$
(B .17) P e-P W f=B W+C W^{2}
$$

From which C can be determined from a linear plot of ($\mathrm{Pe}-\mathrm{P}$ ff)/W versus W for eq. (B.17), B is the intercept and C is the slope.

C. 1 Salinity effects (NaCl)

A Geothermal fluid with a significant amount of salts boils at a higher temperature and lower pressure than pure water. The geothermal fluids are solutions of chloride, sulfate, and carbonate salts in water. Not all of these salts however, are present in every geothermal field. NaCl is the most abundant and is commonly present.

The equations presented here, unless specified, are those suggested by Michaelides (1981) which was based on " the equivalent NaCl content". The "equivalent NaCl content" is the content of NaCl in solution that will bring the same effect on the properties as the amount of all salts combined considering that the major constituent of the salts in the geothermal fluid is NaCl. The saturation temperature of a salt solution is higher than the saturation temperature of pure water by an amount, (Michaelides, 1981) of

$$
(C .1) d T=\frac{1.8 R(T+273)}{L} \quad \frac{m}{55.56},{ }^{\circ} \mathrm{C}
$$

where $R=$ universal gas constant, $0.461519 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{K} ; \mathrm{T}=$ saturation temperature of pure water, ${ }^{\circ} \mathrm{C} ; \mathrm{L}=$ latent heat of the solution, $\mathrm{kJ} / \mathrm{kg} ; \mathrm{m}=$ molality of the solution, moles of salt per $k g$ of water.

The enthalpy of the solution is

$$
\text { (C.2) } \quad H_{n}(T, m)=x_{1} H_{1}+x_{2} H_{2}+m \cdot d H, k J / k g
$$

where $x_{1}=$ mass fraction of water, $1000 /(1000+58.44 \mathrm{~m})$

$$
x_{2}=\text { mass fraction of salt, } 58.44 /(1000+58.44 \mathrm{~m})
$$

$$
\mathrm{H}_{1}, \mathrm{H}_{2}=\text { enthalpies of water and salt respectively at } T
$$

$$
\text { (c.3) } \quad d H=\frac{4.184}{(1000+58.44)} \sum_{i=0}^{3} \sum_{j=0}^{2} a_{i j T^{i} m j}, \mathrm{~kJ} / \mathrm{kg}
$$

where; $a_{00}=9633.66, a_{01}=-4080.0, a_{02}=286.49$

$$
a_{10}=166.58, a_{11}=68.577, a_{12}=-4.6856
$$

$$
a_{20}=-.90963, a_{21}=-.36524, a_{22}=0.0249667
$$

$$
a_{31}=1.7965 \mathrm{E}-3, a_{32}=7.1924 \mathrm{E}-4, a_{33}=4.9 \mathrm{E}-5
$$

$$
\begin{aligned}
(\mathrm{C} .4) \quad \mathrm{H}_{1}(\mathrm{~T})= & 0.12453 \mathrm{E}-4 \mathrm{~T}^{3}-0.4517 \mathrm{E}-2 \mathrm{~T}^{2} \\
& +4.81155 \mathrm{~T}-29.578, \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\text { (C.5) } \begin{aligned}
\mathrm{H}_{2}(\mathrm{~T})= & \left(-0.83624 \mathrm{E}-3 \mathrm{~T}^{3}+0.16792 \mathrm{~T}^{2}\right. \\
& -25.9293 \mathrm{~T}) \cdot 0.0716, \mathrm{~kJ} / \mathrm{kg} \mathrm{~T} \text { in }{ }^{\circ} \mathrm{C} .
\end{aligned}
$$

For correlations of viscosity, density, and entropy, the reader is referred to Michaelides (1981).

The vapor pressure at saturation temperature, T is lowered by an amount

$$
(C .6) \quad d P=\frac{1.8 R(T+273)}{v_{V}-v f} \cdot \frac{m}{55.56}, \mathrm{kPa}
$$

The flashing pressure of a salt solution is;

$$
P_{S}^{\prime}=P_{S}(T)-d P
$$

For numerical calculations, correlations are made from Keenan, et. al.(1978), to calculate for properties of pure water.

Equations (C.7) to (C.12) are from Catigtig(1982), unless specified.

$$
(C .7) \quad P(T)=10 Y, \mathrm{MPa} \text {. }
$$

where; $\quad Y=\frac{-4.8628 E-4+X}{2(9.9586 E-6)}$

$$
\begin{aligned}
& x=\sqrt{4.8628 \mathrm{E}-42-4(9.9586 \mathrm{E}-6)(t-2.20781 \mathrm{E}-3)} \\
& t=\frac{1.0}{(T+273)} \quad T \text { in }{ }^{\circ} \mathrm{C} .
\end{aligned}
$$

$$
\text { (C.8) } \begin{aligned}
T(P)= & {[2.20781 E-3-4.8628 E-4 \log P} \\
& \left.-9.9586 E-6(10 g P)^{2}\right]^{-1},{ }^{\circ} K, P \text { in } M P a .
\end{aligned}
$$

$$
\text { (C.9) } \quad v_{V}(T)=\left(1.81 E-8 T^{3}-4.06 E-6 T^{2}+1.05 E-3 T\right.
$$

$$
+0.96) \mathrm{E}-3, \mathrm{~m} 3 / \mathrm{kg}, \mathrm{~T} \text { in } \mathrm{C} .
$$

$$
(\mathrm{C} .10) \quad \mu_{f}(\mathrm{~T})=21.31 \mathrm{E}-6 \times 10^{\mathrm{b}}, \mathrm{~kg} / \mathrm{ms}
$$

where; $\mathrm{b}=(274.13 /(\mathrm{T}+144.27)), \mathrm{T}$ in ${ }^{\circ} \mathrm{C}$, (Sigurdsson, 1983).

$$
\text { (C. 11) } \begin{aligned}
\mu_{V}(T)= & 495.8 \mathrm{E}-15 \mathrm{~T}^{3}-256.3 \mathrm{E}-12 \mathrm{~T}^{2}+76.42 \mathrm{E}-9 \mathrm{~T} \\
& +6.622 \mathrm{E}-6, \mathrm{~kg} / \mathrm{ms}
\end{aligned}
$$

$$
(C .12) \quad O(T)=4.33 E-10 \mathrm{~T} 3-3.55 \mathrm{E}-7 \mathrm{~T}^{2}-13.57 \mathrm{E}-5 \mathrm{~T}
$$

$$
+0.075565, \mathrm{~N} / \mathrm{m}, \quad \mathrm{~T} \text { in }{ }^{\circ} \mathrm{C} .
$$

Equations (C.13) to (C.15) are from A.J. Brodie(1980).

$$
\text { (C.13) } \begin{aligned}
\mathrm{v}_{\mathrm{V}}(\mathrm{~T}, \mathrm{P})= & {\left[54.94(\mathrm{P} / \mathrm{T})^{2}+2.212(\mathrm{P} / \mathrm{T})\right.} \\
& -8.93 \mathrm{E}-6] \mathrm{E}-3, \mathrm{~m} 3 / \mathrm{kg} \\
& \mathrm{P} \text { in MPa, } \mathrm{T} \text { in }{ }^{\circ} \mathrm{K} .
\end{aligned}
$$

$$
\begin{align*}
& \text { (C.14) } \quad H_{f}(T)=44.85 E-9 T^{4}-72.848 \mathrm{E}-6 \mathrm{~T} 3 \\
& +45.601 \mathrm{E}-3 \mathrm{~T} 2-8.726 \mathrm{~T}+241.75 \text {, } \\
& \mathrm{kJ} / \mathrm{kg} \\
& H_{V}(T)=-5.96 E-12 T^{6}+16.969 E-9 T 5 \tag{C.15}\\
& -20.11 \mathrm{E}-6 \mathrm{~T}^{4}+12.6734 \mathrm{E}-3 \mathrm{~T} 3 \\
& -4.4781 \mathrm{~T}^{2}+842.947 \mathrm{~T}-63599.7 \text {, } \\
& \mathrm{kJ} / \mathrm{kg} \text {. } \mathrm{T} \text { in }{ }^{\circ} \mathrm{K} \text {. }
\end{align*}
$$

Results of these correlations are presented in Appendix E for $70<T,{ }^{\circ} \mathrm{C}<330.0$.

C. 2 Effects of non-condensible gases $\left(\mathrm{CO}_{2}\right)$

When the fluid starts to boil, vapour is produced. All the salts present in the geothermal fluids are non-volatile and hence the produced vapour is free of salts. The vapour phase though, contains non-condensible gases such as, CO_{2}, $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{~S}$, and N_{2}.

In this discussion however, all non-condensible gases will be treated as CO_{2} as this is the most abundant gas.

For the liquid phase, Sutton(1976) gives the formula

$$
(C .16) \quad n_{c}=\alpha(T) \operatorname{Pc}(0)
$$

where $\quad n_{c}=$ concentration of CO_{2} in water

$$
\operatorname{Pc}(0)=\text { partial pressure of } \mathrm{CO}_{2} \text { at first boiling }
$$

$(C .17) \quad(T)=\left[5.4-3.5\left(\frac{T}{100}\right)+1.2\left(\frac{T}{100}\right) 2\right] E-9, \mathrm{~Pa}^{-1}$ T in C.

Michels (1981), gives the formula

$$
(C .18) \quad \frac{P_{c}}{P c(0)}=1+\left[\frac{44 v_{v x}}{R(T+273)}\right]
$$

Where $\mathrm{x}=$ mass fraction of steam; $\mathrm{PC}=$ partial pressure of CO_{2} at $\mathrm{T} ; \mathrm{R}=8.314 \mathrm{~kJ} / \mathrm{kgmole} \mathrm{K}$

The pressure at the two-phase region is

```
(C.19) Pwf = Ptp + Pc
    Ptp = partial pressure of the steam-water
    mixture.
```

The pressure of the two-phase (steam-water) mixture only at any point in the well is

$$
\text { (c.20) Ptp }=P W f-P C
$$

APPERDIX D. PROGRAM LISTINGS AND OURPUT PRJMYOURS

```
D.I Progran Listings
C U07SN6
C MATM PROGRAH TO CALL U07SIN5
        COMMON X,V,B,HSTAR,VS,VL,VG,ML,HG,G
        DIRENSION ZZ(10),DD(10),FLAM(10)
        REAL*8 FIRLD,NAME,DATPE
        G=980.67
        WMIME (6,4)
4 FORHAT(' ENMER MAME OF FTELD,HELI NAME,DATE')
        READ (5,5)PIELD
5 FORHIAT(A8)
        READ (5,6) NAME
        FORHAT(A8)
        REN (5,7)DATE
7 FORMAT(A8)
        TYPE 8, FIELD,TMMIE,DATE
    l ' DATE CALC:' ,2%,AB//)
        call assign(l,'pipe.dat')
10 READ(1,701,END=20)ITYPE,DZ1,TYPEZ,ZA,ZT,ZA2
        READ (1,702) No(ZZ(I),DD(I),FLAM(I),I=1,IT)
        READ (1,703) TCL,TC2
        READ (1,704)PAA,FLOWI,FLOW2
        READ(1,705)DZ3,CCO2,CNACL
        READ (1,706) CTURE
        COMmINTUE
        jURBUT=CTUUR**LOOII**2
        PA=PAA-TURBUL
        TYPE 803,PAA,TUREUL,PA
803 FORIATM(' SINGLE-PHASE(WATER) SECTIOIT: %/
    2. ' Pa =',-6PF8.3,' bars'/"' (dP)turb =' "-6PF8.3,' bars'/p
    3 'PWE =',-6pf8.3,' bars'/)
        FOMHAT(F8.3)
        CALL U07SN5(ZA,ZA2,ZT,N,ZZ,DD,FLAM,PA,FLOH1,FLOH2,
    4 PT,ITYPE,TYPEZ,DZ1,DZ3,CCO2,CNACL,TC1,TC2)
        TYPE 801,P?
        READ(1,910,END=20) J.FLAM(J),JI,FLAM(JI),FLOH
        CO mO 15
20 STOP
701 FORMAT(I2,-2P5F8.0)
702 FORIAM(I2.(-2PF8.0,0PF8.2,0PF9.7))
703 FORHAT(OP2F9.2.1PFS.3)
704 FORMAT(-6PP8.0,-3P2F10.2)
801 FORHAT(' ',-6PP10.2)
705 FORNAT(-2PF8.0,0P2F8.1)
910 FORHAS(I2,F8.0,I2,F8.0,-3PF8.0)
    EITD
```

SUBROUTINE U07SN5 (ZA, ZAA2, ZT, IN, ZZ, DD, FLAM, PA, ELOHI, FLONT2,
5 PT,ITYPE,TYPRZ,DZ2,DZ3,CCO2,C1TACL, TC1,TC2)
COmOH X,V,B,HSTAR,VS,VL,VG,HL, HG, G
REAL* 8 FLIKIND, BUBB, SLUG, AIHU
DATA TBLAITK,ISTAR/' ','*'/
DARA BUBB, SLUG, AMMU/' BUBBLY ',' SLUG ',' ANMULAR'/
VSTAR,B AND G ARE OBTATMED FROH COMOM
VSTAR IS THE SPECIFIC VOLUHE OF TIIE WATER AR MHE FLASHIMG
POIMY. IT MAY BE DIRPEREITT FRON THE STEAM TADLE VALUE
ONLY THE HYDROSTATIC TERII IS MCLUDED BELON THE
FLASHING POIIT?
DIMENSION ZZ (1), DD(1), FLAM(1)
THRSE ARRAYS GIVE THE PIPE CHARACTERISTICS AS A FUWCHION
OF DISTRNCE ORDERED FROM THE WELL HEAD DOMTH TO THE
WELI BOMTOM. DISTANCES DOWIVARDS ARE POSITIVE
LOGICAL LTYPE
LIYYPE=(ITYPE.1NE.0)
INITIALIZATIOH
FRIC=0.
PO $=0$ 。
$I I I=I B L A N T R$
DZ1 $=$ DZ2
MIIT? $=0$
$\mathrm{IT}=\mathrm{IN}$
PTC=SQRT: ($4.8628 \mathrm{E}-4 * * 2-4 * 9.9586 \mathrm{E}-6 *(1 . /(T C l+273)$.
$6-2.20781(\mathrm{E}-3)$)
$\mathrm{P}=10 * *((\mathrm{PTC}-4.8528 \mathrm{E}-4) /(2 * 9.9586 \mathrm{E}-6))$
IF (ZA2.EC.0.0) $\mathrm{TS}=\mathrm{TCl}$

$A T S=(5.4-3.5 *(T C l / 100)+.1.2 *(\mathrm{TCl} / 100) * * 2) * 1 E-$.
$\mathrm{PCO}=\mathrm{CCO} 2 * 1 \mathrm{R}-5 / \mathrm{ATS}$
STP $=$ SORT ($4.8628 \mathrm{E}-4 * * 2-4 * 9.9586 E-6 *$
7 (1./(2s+273.)-2.20781E-3))
$P S=10 * *((-4.8628 E-4+8 T P) /(2 * 2.25865-6)) * 1 E 7$
$\mathrm{VS}=1.815-8 *(\mathrm{TS}) * * 3-4.06 \mathrm{E}-\mathrm{E} *(\mathrm{TS}) * * 2$
$8 \div 1.05 E-3 *(2 S)+.96$
$T C S=((P S * 1 E-7 / \pi S) * * 2 * 54.94 *(D S * 1 \pi-7 / T S) * 2.21 .2-8.93 \pi-5)$
$2 \% *-1$
CII=CMINCI/58500.
HL $=(44.85 E-9 *(T C 1+273) * * 6-72.8485-.6 *(T C 1+273) * * 3$.
$1+45.601 \mathrm{E}-3 *(\mathrm{KCl}+273) * * 2-.8.726 *(\mathrm{MCl}+273)+241.75) *$.
$\mathrm{HC}=\left(-5.96 \mathrm{~F}-12 *\left(\mathrm{TC}+273_{0}\right) * * 6+16.969 \mathrm{E}-9 *\left(\mathrm{TC} 1+273_{\mathrm{o}}\right) * * 5\right.$
$2-20.109 \mathrm{E}-6 *\left(\mathrm{TC} 1+273_{0}\right) * * 4+12.6734 \mathrm{E}-3 *\left(\mathrm{TC} 1+273_{0}\right) * * 3$
$3-4.4781 *(\mathrm{TCl}+273) * * 2+.842.947 *(\mathrm{TCl}+273)-63599.7) * 1 E$. $\mathrm{VL}=1.81 \mathrm{R}-8 * \mathrm{TCl} * * 3-4.06 \mathrm{E}-6 * T \mathrm{Cl} * * 2+1.05 \mathrm{E}-3 * \mathrm{TCl}+.96$
$\mathrm{VG}=((\mathrm{P} /(\mathrm{TCl}+273)) * * 2 * 54.94+.(\mathrm{P} /(\mathrm{TCl}+273)) * 2.212-.8.93 \mathrm{E}-6)$
$4 * *-1$
DPS $=(14.2552 *(T C 1+273.) /(($ VG-VL $) * 15-3) *(C 11 / 55.56)) * 1 E 4$
PSSAR $=P S-D P S+P C O$
$Z S T A R=U 07 \mathrm{VAI}(Z A, Z R 2, P A, Z Z, D D, F L A M, F L O U I, F L O H 2, D Z 3, C Y A C E$,

```
        P=PSNAR
        PP=PSMAR
        IF (PSNAR.GE.PS)P=PS
        P3=ALOGl0(P*IE-7)
        T=(2.20781F-3-4.8628E-4*P3-9.9586E-6*P3**2)**-1-273.
        VSTAR=1.81 R-8*rT**3-4.06E-6*m**2+1.05S-3*m*0.96
        MSTAR=(44.85E-9*(T+273.)**4-72.848E-6*(T+273.0)**3
    6 +45.601E-3*(T+273.)**2-8.726*(T+273.) +241.75)*1E7
        HL=HSN2R
        Q=HSJAR-ZSNAR*G
        VISF=(30.904+12538.2/T+1934503.1/T**2-6.694E7/T**3)*IP-5
        2ACC=0.0025
        TEIPZ=\tilde{AMT}(Z/TYPEZ+1 0)*MYPEZ
        DZ=-(Z-AINM'((Z-1.)/DZI)*DZI)
        IF(Z.GT.ZZ(IT)) TYPE 610,PA,DD(IM)
    10 IF(N.LE.I) GO TO 20
        IF(Z.GM.ZZ (N-1)) GO IO 20
        N=1%-1
        CO mO 10
    20 D=DD (IT)
        RLAMDA= FIAM (IT)
        FLOWA=FLOHT/(D*D*0.78539816)
        FLONA2=FLOWA*FLONA
        Reyn=4*FLOW/(VISF*3.1416*D)
        Pfact=((-2*ALOGlO(FLAMDA/(3.7*D*1E-2)*(7/ROyn)**.9))**2)**-1
        B=0.5*Ffact*FLOHA2/D
        U}=0+C*ZSNA
        EIIIV=0.5*FLOVIA2*VL *VL
        PFI,UY= FL,OWA2*VSMAR
        VBARI=VI,
        VBAR2=VL
        VBAR3=VL
        VBARA=VL,
        VEFF=VL
        F=C/VS
        X=0
        AL,PHA=0.
        IF(.WOR.INYPE) GO TO 30
        TYPE 620, FLON, PA,HSTAP, PSMAR
        TYPE 630
        TYPE 670
        C SRARN THE INREGRATIOM LOOD
        30 IF(1T.IF.J) GO NO 40
        IF(Z.GT.ZZ(N-1)) GO MO &0
        17=N-1
        IGO=1
        GO TO 300
    35 ELOWAO=FLOWA
        PLANDA= FLAM(N)
        D=DD(27)
        P8=NLOG10(P*1P-7)
```

```
            T=(2.20781E-3-4.8628E-4*P8-9.9586E-6*P2**2)**-1-273.
            VISF=(30.904+12538.2/T+1934503.1/T%**2-6.694E7/T**3)*1E-5
            Reyn=4*FIOW/(VISF*3.1416*D)
            Ffact=((-2*ALOGl0(FLAMDA/(3.7*D*1E-2)*(7/Reyn)**.9))**2)**-1
            FLOWA2=FLOWA*FLOITA
            B=0.5*Ffact*FLONA2/D
            DZ=0.
            PFLUXO=PFLUX*FLOWA/FLOWAO
            GO TO 70
            \angleO FLOWAO=FLOWA
            IGO=2
            IF(-DZ.EQ.O.) GO TO 300
            IE(Z.GM.TEMPZ) CO IO &5
            GO TO 300
            \triangle5 PFIUXO=PFLUX
C
    50 D%=-(ロ- (1)
            IF(1T.LE.I) GO NO 65
            IF(Z+DZ.GM.ZZ(1T-1)) GO TO 70
            DZ=-(Z-#Z (IV-1))
            65 IF(Z+DZ.GT.ZT) GO NO 70
            DZ=- (Z-2\?)
C
            CALCULATE ONE INTEGRATION SMEP USING AN EXPLICIT
                    SOLUYION METHIOD
                    70 U= \}+(Z+DZ)*
            DP=F*DZ+FHOM*DZ
            IF(DZ, ER.0) DP=(X**2*VG/ALPHA+
            7 (1-X)**2*VG/(1-ALPHA))*(FLOWAO**2-FLOWA**2)
            NTIUS=0
            DX=X
            ZIAST=%
            DDP=DP
            ISTOP=0
            FOLD=F
                    210 NINT=NINN+1
            PPDP=P+DP
            IF(PPDP.GE.0.3119E6) GO TO 211
            DZl=DZl/2.
            IF( DZl.IN.10.) CO NO 90
            K=XLANSI
            GO TO 50
            211 P& =ALOG10 (PPDP*IE-7)
            TP=(2.20781F-3-4.8628E-4*P4-9.9586E-6*P4**2)**-1
            HL}=(44.85\textrm{E}-9*TP**4-72.848\textrm{E}-6*TP**3+45.601\Gamma-3*TP**
    8-8.726*mP+241.75)*1E7
        HG}=(-5.96\textrm{E}-12*TP**6*16.969\textrm{E}-9*TP**5-20.109R-6*TP**
    9+12.6734E-3*TP**3-4.4781*TP**2+842.947*TP-63599.7)*1E7
        VL=1.81 E-8*(TP-273.)**3-4.06E-6*(TP-273.)**2+1.05E-3*(TP-273.)
    1 +.96
        P5=PPDP*IF-7
        VG=((P5/TP)**2*54.94*(P5/TIP)*2.2J.2-8.93E-6)**-1
```

```
    IE(DP.EO.0.0) GO TO 230
    IF(ISTOP.EQ.I.AID.ABS(DDP/DP).LE.PACC) GO TO 230
    EKIN=0.5*FIOOTA2*VBAR4*VBAR.4
    X=(U-EKIN-HL) /(HG-HL)
    IF(X.GM.0.) GO TO 214
    ALPHA=0.
    VBARI = VL
    VMAR2 = VI,
    VBAR3=VL
    VBAR4=VL
    GO TO 216
214 }\{=(5.4-3.5*(T/100.)+1.2*(T/100.)**2)*1E-
    RATIO=(1+(44*VC*IE-3*X)/(AT*8.314E3*(T+273.)))**-1
    PC = PCO*RATIO
    PPDP=PPDP-PC
    ALPHA}=UO7TP5 (PPDP, ※,VL,VG,FLOWA,D,ALPHA
    Cl=ALPHA
    C2=1.-ALIPHA
    Bl=%/Cl
    B2=(1.-X)/C2
    VBARI=1./(Cl/VG+C2/VL)
    Cl=Cl*Bl
    C2=C2*B2
    VBAR2=C1*VC+C2*VL
    CCl=Cl*Bl
    CC2=C2*B2
    VEAR3=CC1*VG+CC2*VL
    CCl=CCl*Bl
    CC2=CC2*B2
    VBAR4=SORIT (CCI*VG*VG+CC2*VL*VL)
    VEPF =UO7TPA (X,AIPHA, PPDP,VL,VG,FLOWA,D)
    IF (PPDR.GT.PSTAR) POT=0.0
216 POT=C/VEARI
    FRJC=B*VEFF
    F=PO2+FRJC
    PELUX=FLOHA2*VBAR3
    DPHOM=PFLUYO-PFLUX
    DPOLD=DP
    DP}=(\textrm{F}+\textrm{FOLD})*0.5*DZ+DPMOI
    DDPOLD=DDP
    DDP=DP-DPOLI%
    IF(DDP.1TE.O.0) GO TO 217
    ISTOP=1
    CO TO 220
217 IF(NINN/2*2.NE.NINN) GO TO 210
    IF(ABS((DDPOLD-DDP)/P).GT.IB-8) GO MO 218
    COR=3*DDP
    CO MO 219
218 COR=-DDP*DDP/(DDP-DDPOLD)
    DP=DP\divCOR
219 IF(ABS(COR/DIDP).IM.1.) ISSOP=1
    DDPOLD=DDP
```

```
        DDP=COR
    220 GO TO 210
    230 P=P+DP
        PP=PP+DP
        IP(DZ.1TF.0) FHON=DPMON/DZ
        IF(DZ. E\Omega.O) FHOH=FHOH*FIONA/FLONAO
        Z=Z\divDZ
        X=(U-EKIIN-HL) / (HG-HL)
        IF(Z.GT.ZT) GO TO 30
        IHTEGRATION COMPLETED
        90 IF(DZI.GE..1) GO TO 100
        PCRJT=(HSTAR**1.102*FLONA)**1.04167*3.029E-8
        TYPE 660,PCRIT
        GO 5O 110
        100 IGO=3
        GO 50 300
        110 pr=P
        RETURN
        300 IF(.NON.ITYPE) GO TO 360
        VCOVL=VG/VL,
        IF(X.GM.l.) GO MO 306
        XOlMX=X/(1.-X)
        AOLMA=ALPHA/ (1.-ALPHA)
        IF(X.GR.O.) GO IO 302
        S=1 .
        GO TO 304
        S=XOLNX/AOLIAA*VGOVL.
        OX=AOlMA/(AOLNA+VGOVL)
        BETA=YOlIIX/(XOlITX+1 ./VGOVI_)
        GO TO 308
        S=VGOVL
        OX=1 .
        BRMA=1.
        308 COHTINUE
        Rl=VBARI/VBAR2
        R3=VBNR3/VIAAR2
        R4=VEAR4/VDAR2
        REPF=VEFF/VBAR2
        HBAR=X*HG*(1,-%)*EIL
        FP=FLOHAA2/G/D*VBAR2*VBAR2
        IF(BENA.IN.O.15) GO TO 320
        IF(BETA.ITN.0.55) GO TO 310
        IF(BETA.LN.(-0.0085*FR+0.9962)) CO NO 330
        GO TO 340
        310 IF(BEMA.LT.(-FR*.02+1.85)) CO TO 330
        GO mO 340
        320 ELKIND=BUBB
        GO TO 350
    330 FLKIID=SLUG
        GO IO 350
    340 FLININD=ANNU
    350 CONTMIUUS
```

```
            IF(Z.GT.ZA) III=ISTAR
            PG=ALOGlO(P*1E-7)
            T=(2.20781E-3-4.8628E-4*P6-9.9586E-6*PG**2)**-1-273.
            DPPOT=POM*DZ
            DPERIC=FRIC*DZ
            TYDE 650,Z,DP,T,D,X,
            2 DP,DPPOM,DPMOH,DPFRIC,
            3 UBAR, FLON,Ffact,S,ALDNA, FL,KIIID
            IF(Z.I.E.TEHIPZ) TENPZ=TEKMPZ-TYPEZ
    360 GO TO (35,45,110
                                    ),IGO
C
    FORLIAT STATEMENTSS
    610 FORMAT(' WHEN THE AQUIFER PRESSURE IS ',-6PF6.3,
    & "BANS, FLASHING OCCURS OURSIDE THE NELL '/
    5 THE PIPE IS EXPEMDED WITH A DIAMRTER OF',OPEG.3,' cm.')
    620 PORIUAT(//' TNO-PHASE SECTION'/
                        Wt =',-3PF10.2,' kg/s'/' PWF =',
            6 ' VNt =',-3P
            8' H =',-7PF9.1,' J/gm'/' PELASH =',
            9 -6PF7.2,' bars')
    630 FORNAT(' ')
    550 FORMAT(' ',T5,-2PF8.3,-6PF8.3.0PP7.1,OP2F8.3,-6P4F9.4,
    1 -7PF8.1,-3PF6.1,0PF8.4,0P2F7.3,1X,A8)
    660 FORMAT(' JAMES'' CRITICAL PRESSURE=',-5PR7.2,' DARS')
    670 FONIAT(' ',' DEPMH(m) P(bar) TEIP(C)
    2 D(cm) DRNS DPR DPPOR DPACC
    O DPRRIC H(J/g) W(kg/s) Ff
    SSLP VOID TYYPE'/)
        EITD
        FUNCNIONT UO7VAI (ZA,ZA2, PA,ZZ,DD,ELAN,FLON1,FLOW2,DZ3,
    5 CNACL,IN,TCI,TS,PSTAR,VS,VL,VGS,DPS)
        DIMEITSION ZZ(1),DD(1),FLAMM(I)
        IIROL=1.0/VL
        TYPE 1005
1.005 FORIAAT(M5,'DEPTH(m)',Tl9,'P(BAR)',T32,'Vel(f)',TLS,'rfactor
    6 ',T55,'D(cm)',T68,'DPNAM.',T80, 'DPPOM',T91,'DPFRIC',Tl00,
    7 'FLOON(kg/s)',T111,''TEMP(C)',T122,'PELASI'/)
        N=IIT
        P=PA
        Z=ZA
        DZ=Z-AINTM(Z/DZ3)*DZ3
        FLOV=FLON1
1010 IF(N.LE.I) GO TO I020
        IF(Z.GT.ZZ(IN-I)) GO TO 1020
        IT=1T-1
        GO TO 1010
1020 D=DD(N)
        FLAMDA= FLAM(N)
        VISE=(30.204*12538.2/TCI+1934503.1/TCl**2-6.6941E7/MCI**3)
    8*1卫-5
        VVAMTT=FLOWI/HROI/ (D*D*0.78539316)
        Retp=IIROL*VVRTTT*D/VISF
```

```
    Ffact=((-2*alog10(PLAMDA/(3.7*D*1E-2)*(7/Retp)**.9))**2)**-1
    DPPOT=- (HROL*981*DZ)
    DPFRIC=- (Ffact*IROL*VVATTY*2/2/D*DZ)
    DPVATMT=DPPOR+DPPRIC
    9 PSTAR
1040
1050 P=P-DPVAIM%
    9 -3PP10.2,0PF9.1,-6PF12.3)
        DZ=DZ3
        GO TO 1010
    Z=Z+DZ
    DPVATN=ABS (DPVAMN)
    DZSTAR=(P-PSTZR)/DPVATN%DZ
    ZSTAAR=Z-DZSNAN
    U07VAI = %STAS
    RETURN
    END
    FUNCIION UO7TR4(X,ALPHA,P,VL,VG,FLOWA,D)
    X2 = ((I-X)/X)**2*VL/VG
    Xl=SQRI (X2.)
    C=1+X*VG/(X*VG+(1-X)*VL) - ALPHR
    F2=1+C/X] +1/X2
    U07TPA=F2*VL* (I-X)**2
    REPURI!
    EITD
    FUMCIIONT UO7RP5 (D,X,VL,VG,PLOVA,D,ALPHA)
    FR=(FLONA*VL)**2/D/981
    ALPHA1 = (0.833*0.05*ALOOLO(P*1.0E-6))/
    l (I+(I-X)/X*VL/VG)
    BENA=X*VG/(X*VC+(1.-X)*VL)
    ALPHA2 = BEMA-0.71*BRTR*SOPM(1 - -BENA) *
2 FR** (-0.045)*(1.-P/2.212E8)
ALPHA=AI1AZI (ALPHAI,ALPHA2)
U07RP5=ALPHA
REMURK
EITD
```


D. 2 Okoy 7 with CO and $\mathrm{NaCl}=0.0 \mathrm{ppm}$.

NAME OF FIELD: PUHAGAN, PALINPINON I
WELL NAME: OKOY 7
DATE CALC: AUG. 20, 1983
REF SURVEY: KP $14 / \mathrm{KT} 21$, OCT. 13, 1981
SINGLE-PHASE (WATER) SECTION:
$\mathrm{Pa}=163.900$ hars
(dP) turb $=0.000$ bars
$P_{\mathrm{wf}}=163.900$ bars

DEPTH (m)	$P(B A R)$	Vel (f)	Ffactor	D (cm)	DPIVAT.	DPPOT	DPFRIC	FLOW(kg/s) TEMP(C)	PFLASH	
2600.000	163.900	0.884	0.019	15.940	0.000	0.000	0.000	12.00	319.0	103.205
2500.000	157.191	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	103.205
2400.000	150.483	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	103.205
2300.000	143.774	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	103.205
2200.000	137.066	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	103.205
2100.000	130.357	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	103.205
2000.000	123.648	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	103.205
1900.000	116.940	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	103.205
1800.000	110.231	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	103.205
1700.000	103.523	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	103.205

TWO-PHASE SECTION

$W \mathrm{t}=13.20 \mathrm{~kg} / \mathrm{s}$
$P_{w f}=163.90$ bars
$H=1420.73 / \mathrm{gm}$
PFLASH $=103.21$ bars

DEPTH(m)	P(bar)	TEMP(C)	$D(\mathrm{~cm})$	DRNS	DPT	DPPOT	DPACC	DPFRIC	$\mathrm{H}(\mathrm{J} / \mathrm{g})$	W(kg/s)	Ff	SLIP	VOID	TYPE
1695.267	103.205	313.6	15.940	0.000	0.0000	0.0000	0.0000	0.0000	1420.7	13.2	0.0193	1.000	0.000	bubbly
1600.000	97.238	309.2	15.940	0.017	-0.5830	-0.5744	-0.0001	-0.0039	1419.8	13.2	0.0193	1.089	0.175	SLUG
1500.000	91.850	305.0	15.940	0.032	-0.5065	-0.4991	-0.0001	-0.0040	1418.8	13.2	0.0193	1.109	0.300	SLUG
1400.000	87.108	301.1	15.940	0.045	-0.4500	-0.4433	-0.0001	-0.0041	1417.8	13.2	0.0193	1.130	0.392	SLUG
1308.000	83.182	297.8	15.940	0.056	-0.0816	-0.0806	0.0000	-0.0009	1416.9	13.2	0.0193	1.150	0.456	SLUG
1308.000	83.185	297.8	22.100	0.056	0.0027	0.0000	0.0027	0.0000	1416.9	13.2	0.0150	1.150	0.456	SLUG
1300.000	82.863	297.5	22.100	0.057	-0.3217	-0.3200	0.0000	-0.0005	1416.9	13.2	0.0150	1.152	0.461	SLUG
1200.000	79.035	294.2	22.100	0.067	-0.3676	-0.3653	0.0000	-0.0007	1415.9	13.2	0.0150	1.175	0.516	SLUG
1100.000	75.522	291.0	22.100	0.076	-0.3388	-0.3368	0.0000	-0.0007	1414.9	13.2	0.0150	1.200	0.561	SLUG
1000.000	72.271	287.9	22.100	0.085	-0.3146	-0.3127	0.0000	-0.0007	1413.9	13.2	0.0150	1.225	0.598	SLUG
900.000	69.241	285.0	22.100	0.093	-0.2939	-0.2922	0.0000	-0.0008	1412.9	13.2	0.0150	1.253	0.629	SLUG
500.000	66.403	282.2	22.100	0.101	-0.2760	-0.2744	0.0000	-0.0008	1412.0	13.2	0.0150	1.282	0.655	SLUG
700.000	63.730	279.4	22.100	0.108	-0.2604	-0.2588	0.0000	-0.0008	1411.0	13.2	0.0150	1.313	0.678	SLUG
600.000	61.203	276.7	22.100	0.115	-0.2466	-0.2451	0.0000	-0.0009	1410.0	13.2	0.0150	1.347	0.698	SLUG
500.000	55.505	274.1	22.100	0.121	-0.2344	-0.2329	0.0000	-0.0009	1409.0	13.2	0.0150	1.382	0.716	SLUG
400.000	56.522	271.5	22.100	0.127	-0.2234	-0.2220	0.0000	-0.0009	1408.0	13.2	0.0150	1.420	0.732	SLUG
300.000	54.343	269.0	22.100	0.133	-0.2136	-0.2121	0.0000	-0.0010	1407.0	13.2	0.0150	1.460	0.745	SLUG
200.000	52.256	266.5	22.100	0.139	-0.2047	-0.2033	0.0000	-0.0010	1406.1	13.2	0.0150	1.503	0.758	SLUG
100.000	50.254	264.1	22.100	0.145	-0.1967	-0.1952	0.0000	-0.0011	1405.1	13.2	0.0150	1.550	0.769	SLUG
0.000	45.328	261.6	22.100	0.150	-0.1893	-0.1878	0.0000	-0.0011	1404.1	13.2	0.0150	1.599	0.779	SLUG

D. 3 Okoy 7 considering the effects of $\mathrm{CO2}$ and NaCl .

$$
\mathrm{CO2}=11879.0 \mathrm{ppm}, \mathrm{NaCl}=3786.5 \mathrm{ppm} .
$$

NAME OF FIELD: PUHAGAN, PAL.TNPINON II
WELL NAME: OKOY 7
DATE CALC: $9 / 17 / 83$
REF SURVEY: KP 14/KT 21

SINGLE-PHASE (WATER) SECTION:
$\mathrm{Pa}=163.900$ bars
(dP) turb $=0.000$ bars
$P_{w f}=163.900$ bars

DEPTH (m)	P(BAR)	Vel(f)	Ffactor	$\mathrm{D}(\mathrm{cm})$	DPWAT.	DPPOT	DPFRIC	FLOW(kg/s)	TEMP(C)	PFLASH
2600.000	163.900	0.884	0.019	15.940	0.000	0.000	0.000	12.00	319.0	114.770
2500.000	157.191	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	114.770
2400.000	150.483	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	114.770
2300.000	143.774	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	114.770
2200.000	137.066	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	114.770
2100.000	130.357	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	114.770
2000.000	123.648	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	114.770
1900.000	116.940	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	114.770

TWO-PHASE SECTION

$$
\begin{aligned}
\mathrm{Wt} & =13.20 \mathrm{~kg} / \mathrm{s} \\
\mathrm{Pwf}^{\mathrm{f}} & =163.90 \mathrm{bars} \\
H & =1420.7 \mathrm{~J} / \mathrm{gm} \\
\text { PFLASH } & =114.77 \mathrm{bars}
\end{aligned}
$$

DEPTH (m) P(bar) TEMP(C) D(cm) DRNS DPT DPPOT DPACC DPFRIC $H(\mathrm{~J} / \mathrm{g}) \mathrm{W}(\mathrm{kg} / \mathrm{s})$ Ff SLIP VOID TYPE

1867.663	114.770	313.6	15.940	0.000	0.0000	0.0000	0.0000	0.0000	1420.7	13.2	0.0193	1.000	0.000
1800.000	110.435	310.4	15.940	0.012	-0.6095	-0.6005	-0.0001	-0.0039	1420.1	13.2	0.0193	1.088	0.131

D. 4 Okoy 7 with salinity $(\mathrm{K}, \mathrm{Na}, \mathrm{Ca}, \mathrm{Cl})=6405.4 \mathrm{ppm}, \mathrm{CO}=0.0 \mathrm{ppm}$.
name. of field: puhacan, palinpinon il
WELL NAME: OKOY 7
DATE CALC: 9/17/83
REF SURVEY: KP $14 / \mathrm{KT} 21$
SINGLE-PHASE (WATER) SECTION:

$$
\mathrm{Pa}=163.900 \text { bars }
$$

(dP) turb $=0.000$ bars

$$
P_{w} f=163.900 \text { bars }
$$

DEPTH (m)	$P(B A R)$	Vel(f)	Ffactor	D(cm$)$	DPWAT.	DPPOT	DPFRIC	FLOW(kg/s) TEMP(C)	PFLASH	
2600.000	163.900	0.884	0.019	15.940	0.000	0.000	0.000	12.00	319.0	91.597
2500.000	157.191	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	91.597
2400.000	150.483	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	91.597
2300.000	143.774	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	91.597
2200.000	137.066	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	91.597
2100.000	130.357	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	91.597
2000.000	123.648	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	91.597
1900.000	116.940	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	91.597
1800.000	110.231	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	91.597
1700.000	103.523	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	91.597
1600.000	96.814	0.884	0.019	15.940	-6.709	-6.676	-0.032	13.20	313.6	91.597

TWO-PHASE SECTION

$$
\begin{aligned}
W \mathrm{t} & =13.20 \mathrm{~kg} / \mathrm{s} \\
P_{\mathrm{wf}} & =163.90 \mathrm{bars} \\
H & =1370.1 \mathrm{~J} / \mathrm{gm} \\
\text { PFLASH } & =91.60 \mathrm{bars}
\end{aligned}
$$

DEPTH(m)	P(bar)	TEMP(C)	$D(\mathrm{~cm})$	DRNS	DPT	DPPOT	DPACC	DPFRIC	$\mathrm{H}(\mathrm{J} / \mathrm{g})$	$W(\mathrm{~kg} / \mathrm{s})$	Ff	SLIP	VOID	TYPE
1523.331	91.597	304.7	15.940	0.000	0.0000	0.0000	0.0000	0.0000	1370.1	13.2	0.0193	1.000	0.000	BUBBLY
1500.000	90.017	303.5	15.940	0.005	-0.6680	-0.6566	-0.0001	-0.0038	1369.9	13.2	0.0193	1.080	0.060	BUBBLY
1400.000	84.034	298.5	15.940	0.022	-0.5498	-0.5411	-0.0001	-0.0039	1368.9	13.2	0.0193	1.104	0.247	Slug
1308.000	79.365	294.4	15.940	0.035	-0.0949	-0.0939	0.0000	-0.0008	1368.0	13.2	0.0193	1.127	0.360	SLUG
1308.000	79.367	294.4	22.100	0.035	0.0023	0.0000	0.0023	0.0000	1368.0	13.2	0.0150	1.127	0.360	SLUG
1300.000	78.993	294.1	22.100	0.036	-0.3742	-0.3716	0.0000	-0.0005	1367.9	13.2	0.0150	1.129	0.368	SLUG
1200.000	74.628	290.1	22.100	0.049	-0.4127	-0.4096	0.0000	-0.0006	1366.9	13.2	0.0150	1.155	0.454	Slug
1100.000	70.744	286.5	22.100	0.060	-0.3703	-0.3677	0.0000	-0.000	1365.9	13.	0.0150	1.183	0.518	Slug
1000.000	67.231	283.0	22.100	0.069	-0.3367	-0.3345	0.0000	-0.0007	1365.0	13.2	0.0150	1.213	0.569	SLUG
900.000	64.019	279.7	22.100	0.079	-0.3094	-0.3074	0.0000	-0.0007	1364.0	13.2	0.0150	1.244	0.609	SLUG
800.000	61.054	276.6	22.100	0.087	-0.2866	-0.2848	0.0000	-0.0008	1363.0	13.2	0.0150	1.278	0.642	SLUG
700.000	58.296	273.6	22.100	0.095	-0.2674	-0.2657	0.0000	-0.0008	1362.0	13.2	0.0150	1.314	0.670	SLUG
600.000	55.713	270.6	22.100	0.102	-0.2509	-0.2492	0.0000	-0.0008	1361.0	13.2	0.0150	1.352	0.694	SLUG
500.000	53.286	267.8	22.100	0.109	-0.2365	-0.2350	0.0000	-0.0009	1360.1	13.2	0.0150	1.393	0.714	SLUG
400.000	50.991	265.0	22.100	0.116	-0.2240	-0.2224	0.0000	-0.0009	1359.1	13.2	0.0150	1.438	0.732	Slug
300.000	48.813	262.3	22.100	0.122	-0.2129	-0.2114	0.0000	-0.0010	1358.1	13.2	0.0150	1.485	0.747	SLug
200.000	46.739	259.6	22.100	0.128	-0.2031	-0.2015	0.0000	-0.0010	1357.1	13.2	0.0150	1.536	0.761	SLUG
100.000	44.758	256.9	22.100	0.134	-0.1942	-0.1927	0.0000	-0.0011	1356.1	13.2	0.0150	1.592	0.773	slug
0.000	42.860	254.3	22.100	0.140	-0.1863	-0.1848	0.0000	-0.0011	1355.2	13.2	0.0150	1.652	0.784	SLUG

D. 5 Okoy 7 with $\mathrm{CO2}=11879.0 \mathrm{ppm}$, salinity $(\mathrm{Na}, \mathrm{Cl})=8949.0 \mathrm{ppm}$.

NAME OF FIELD: PUHAGAN, PAL.INPINON II
WELL NAME: OKOY 7
DATE CALC: SEPT. 17, 1983
REF SURVEY: KP 14/KT 21

SINGLE-PHASE (WATER) SECTION:
$\mathrm{Pa}=163.900$ bars
(dP) turb $=0.000$ bars
$P_{w f}=163.900$ bars

DEPTH (m)	P(BAR)	Vel(f)	Ffactor	$D(\mathrm{~cm})$	DPWAT.	DPPOT	DPFRIC	FLOW $(\mathrm{kg} / \mathrm{s})$ TEHP(C)	PFLASH	
2600.000	163.900	0.884	0.019	15.940	0.000	0.000	0.000	12.00	319.0	105.415
2500.000	157.191	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	105.415
2400.000	150.483	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	105.415
2300.000	143.774	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	105.415
2200.000	137.066	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	105.415
2100.000	130.357	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	105.415
2000.000	123.648	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	105.415
1900.000	116.940	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	105.415
1800.000	110.231	0.884	0.019	15.940	-6.709	-6.676	-0.032	12.00	319.0	105.415

TWO-PHASE SECTION
$W \mathrm{t}=13.20 \mathrm{~kg} / \mathrm{s}$
Pwf $=163.90$ bars
$H=1420.7 \mathrm{~J} / \mathrm{gm}$
PFLASH $=105.41$ bars

DEPTH(m)	P(bar)	TEMP(C)	$D(\mathrm{~cm})$	DRNS	DPT	DPPOT	DPACC	DPFRIC	$\mathrm{H}(\mathrm{J} / \mathrm{g})$	W(kg/s)	Ff	SLIP	VOID	TYPE
1728.203	105.415	313.6	15.940	0.000	0.0000	0.0000	0.0000	0.0000	1420.7	13.2	0.0193	1.000	0.000	BUBBLY
1700.000	103.545	312.3	15.940	0.005	-0.6524	-0.6425	-0.0001	-0.0039	1420.5	13.2	0.0193	1.081	0.059	bubbly
1600.000	97.586	307.7	15.940	0.022	-0.5553	-0.5472	-0.0001	-0.0039	1419.5	13.2	0.0193	1.100	0.220	Slug
1500.000	92.429	303.6	15.940	0.036	-0.4866	-0.4794	-0.0001	-0.0041	1418.5	13.2	0.0193	1.120	0.333	SLUG
1400.000	87.859	299.9	15.940	0.049	-0.4349	-0.4283	-0.0001	-0.0042	1417.5	13.2	0.0193	1.141	0.416	SLUG
1308.000	84.056	296.6	15.940	0.059	-0.0791	-0.0782	0.0000	-0.0009	1416.6	13.2	0.0193	1.162	0.476	Slug
1308.000	84.059	296.6	22.100	0.059	0.0027	0.0000	0.0027	0.0000	1416.6	13.2	0.0150	1.161	0.476	SLUG
1300.000	83.747	296.4	22.100	0.060	-0.3121	-0.3104	0.0000	-0.0005	1416.5	13.2	0.0150	1.163	0.480	SLUG
1200.000	80.027	293.1	22.100	0.070	-0.3578	-0.3556	0.0000	-0.0007	1415.6	13.2	0.0150	1.187	0.531	SLUG
1100.000	76.602	289.9	22.100	0.079	-0.3306	-0.3287	0.0000	-0.0007	1414.6	13.2	0.0150	1.212	0.573	SLUG
1000.000	73.425	286.9	22.100	0.088	-0.3077	-0.3058	0.0000	-0.0007	1413.6	13.2	0.0150	1.239	0.608	SLUG
900.000	70.459	284.0	22.100	0.096	-0.2880	-0.2863	0.0000	-0.0008	1412.6	13.2	0.0150	1.267	0.638	SLUG
800.000	67.675	281.2	22.100	0.103	-0.2709	-0.2693	0.0000	-0.0008	1411.6	13.2	0.0150	1.297	0.663	SLUG
700.000	65.050	278.5	22.100	0.110	-0.2559	-0.2543	0.0000	-0.0008	1410.6	13.2	0.0150	1.329	0.685	sLug
600.000	62.566	275.8	22.100	0.117	-0.2426	-0.2411	0.0000	-0.0009	1409.7	13.2	0.0150	1.363	0.704	SLUG
500.000	60.205	273.2	22.100	0.123	-0.2309	-0.2294	0.0000	-0.0009	1408.7	13.2	0.0150	1.399	0.721	SLUG
400.000	57.956	270.7	22.100	0.130	-0.2203	-0.2188	0.0000	-0.0010	1407.7	13.2	0.0150	1.438	0.736	SLUG
300.000	55.806	268.1	22.100	0.136	-0.2108	-0.2093	0.0000	-0.0010	1406.7	13.2	0.0150	1.480	0.749	SLUG
200.000	53.746	265.7	22.100	0.141	-0.2022	-0.2007	0.0000	-0.0011	1405.7	13.2	0.0150	1.524	0.761	SLUG
100.000	51.768	263.2	22.100	0.147	-0.1943	-0.1928	0.0000	-0.0011	1404.8	13.2	0.0150	1.572	0.772	SLUG
0.000	49.865	260.8	22.100	0.152	-0.1872	-0.1857	0.0000	-0.0012	1403.8	13.2	0.0150	1.623	0.782	SLUG

D. 6 Nasuji-Sogongon area as a single well with $\mathrm{rw}=1100 \mathrm{~m}$.

$$
\mathrm{S}=1.483 \mathrm{E}-6 \mathrm{~m} / \mathrm{Pa} ., \quad \mathrm{T}=1.483 \mathrm{E}-6 \mathrm{~m}^{3} / \mathrm{Pa} . \mathrm{s}
$$

NAME OF FIELD: Nasuji-Sogongon, Palinpinon II
WELL NAME: Nasuji-Sogongon
DATE CALC: Sept 17, 1983

SINGLE-PHASE (WATER) SECTION:
$\mathrm{Pa}=120.700$ bars
(dP) turb $=0.000$ bars
$P_{w f}=120.700$ bars

DEPTH(m)	$P(B A R)$	Vel(f)	Ffactor	D (cm)	DPWAT.	DPPOT	DPFRIC	FLOW(kg/s)	TEMP(C)	PFLASH
2600.000	120.700	0.000	0.017	11000.000	0.000	0.000	0.000	1100.00	296.0	76.450
2500.000	113.614	0.000	0.017	11000.000	-7.086	-7.086	0.000	1100.00	296.0	76.450
2400.000	106.529	0.000	0.017	11000.000	-7.086	-7.086	0.000	1100.00	296.0	76.450
2300.000	99.443	0.000	0.017	11000.000	-7.086	-7.086	0.000	1100.00	296.0	76.450
2200.000	92.357	0.000	0.017	11000.000	-7.086	-7.086	0.000	1100.00	296.0	76.450
2100.000	85.272	0.000	0.017	11000.000	-7.086	-7.086	0.000	1100.00	296.0	76.450
2000.000	78.186	0.000	0.017	11000.000	-7.086	-7.086	0.000	1100.00	296.0	76.450

TWO-PHASE SECTION
$W \mathrm{t}=1164.00 \mathrm{~kg} / \mathrm{s}$
Pwf $=120.70$ bars
$H=1299.0 \mathrm{~J} / \mathrm{gm}$
PFLASH $=76.45$ bars

DEPTH(m)	P (bar)	TEMP(C)	$D(\mathrm{~cm})$	DRNS	DPT	DPPOT	DPACC	DPFRIC	$\mathrm{H}(\mathrm{J} / \mathrm{g}) \mathrm{W}(\mathrm{kg} / \mathrm{s})$	Ff	SLIP	VOID	TYPE
1975.493	76.450	291.8	11000.0	0.000	0.0000	0.0000	0.0000	0.0000	1299.01164 .0	0.0166	1.000	0.000	BUBBLY
1900.000	71.610	287.8	11000.0	0.015	-0.5857	-0.5785	0.0000	0.0000	1298.21164 .0	0.0166	1.104	0.211	SLUG
1800.000	66.411	282.2	11000.0	0.030	-0.4746	-0.4703	0.0000	0.0000	1297.31164.0	0.0166	1.138	0.375	SLUG
1700.000	62.077	277.7	11000.0	0.044	-0.4038	-0.4009	0.0000	0.0000	1296.31164 .0	0.0166	1.174	0.478	SLUG
1600.000	58.326	273.6	11000.0	0.055	-0.3540	-0.3519	0.0000	0.0000	1295.31164 .0	0.0166	1.212	0.550	SLUG
1500.000	54.999	269.8	11000.0	0.065	-0.3167	-0.3151	0.0000	0.0000	1294.31164.0	0.0166	1.253	0.603	SLUG
1400.000	51.997	266.2	11000.0	0.074	-0.2875	-0.2862	0.0000	0.0000	1293.31164 .0	0.0166	1.296	0.645	SLUG
1300.000	49.255	262.8	11000.0	0.083	-0.2640	-0.2630	0.0000	0.0000	1292.41164 .0	0.0166	1.343	0.677	SLUG
1265.000	48.348	261.7	11000.0	0.086	-0.1282	-0.1279	0.0000	0.0000	1292.01164 .0	0.0166	1.360	0.687	SLUG
1265.000	48.348	261.7	11000.0	0.086	0.0000	0.0000	0.0000	0.0000	1292.01164 .0	0.0169	1.360	0.687	SLUG
1200.000	46.725	259.5	11000.0	0.091	-0.2446	-0.2438	0.0000	0.0000	1291.41164 .0	0.0169	1.393	0.704	SLUG
1100.000	44.370	256.4	11000.0	0.098	-0.2284	-0.2276	0.0000	0.0000	1290.41164 .0	0.0169	1.448	0.726	SLUG
1000.000	42.165	253.3	11000.0	0.106	-0.2145	-0.2138	0.0000	0.0000	1289.41164 .0	0.0169	1.508	0.745	SLUG
900.000	40.087	250.3	11000.0	0.112	-0.2025	-0.2020	0.0000	0.0000	1288.41164 .0	0.0169	1.572	0.761	SLUG
800.000	38.121	247.3	11000.0	0.119	-0.1921	-0.1916	0.0000	0.0000	1287.41164 .0	0.0169	1.643	0.775	SLUG
700.000	36.251	244.4	11000.0	0.125	-0.1830	-0.1825	0.0000	0.0000	1286.51164 .0	0.0169	1.720	0.787	SLUG
600.000	34.466	241.5	11000.0	0.132	-0.1749	-0.1745	0.0000	0.0000	1285.51164 .0	0.0169	1.804	0.798	SLUG
500.000	32.757	238.6	11000.0	0.138	-0.1677	-0.1674	0.0000	0.0000	1284.51164 .0	0.0169	1.897	0.807	SLUG
400.000	31.116	235.7	11000.0	0.144	-0.1614	-0.1611	0.0000	0.0000	1283.51164 .0	0.0169	2.000	0.815	SLUG
300.000	29.534	232.8	11000.0	0.149	-0.1557	-0.1554	0.0000	0.0000	1282.51164 .0	0.0169	2.113	0.823	SLUG
200.000	28.006	229.9	11000.0	0.155	-0.1506	-0.1503	0.0000	0.0000	1281.61164 .0	0.0169	2.240	0.829	SLUG
100.000	26.526	227.0	11000.0	0.161	-0.1460	-0.1458	0.0000	0.0000	1280.61164 .0	0.0169	2.382	0.835	SLUG
0.000	25.059	224.0	11000.0	0.167	-0.1419	-0.1417	0.0000	0.0000	1279.61164 .0	0.0169	2.540	0.840	SLUG

THE PRINTED PRESSURE DROPS (DPT,DPPOT.DPACC,DPFRIC) ARE FOR $~ \wedge ~ S E C T I O H ~ O F ~ 10 ~ m ~$
nearest to the printed depth.

APPENDIX E. STEAM TABLE CORRELATIONS PROGRMM NMD RESULTS

E. 1 Progran Listings

OPEN(UNTT=1,FILE='RUG.DAT', STATUS=' NEW' ,CARRIAGECONTROL='LIST') WRITE $(6,10)$
10 FORMAT (' ENTER T(deg. C) or P(MPaa)')
11 READ $(5,19) \mathrm{X}$
19 FORMAT(Fl1.7)
IF (X.GT.1.0) GO TO 20
 $\mathrm{P}=$
GO TO 22

- $\quad-(20.1099 \mathrm{E}-6) * \mathrm{TC} * * 4+(12.67339 \mathrm{E}-3) * \mathrm{TC} * * 3$
- $\quad-(4.47807 * T C * * 2)+(842.947 * T C)-63599.7$
$H F=(44.85 \mathrm{E}-9 * T C * * 4-72.848 \mathrm{E}-6 * T C * * 3+45.601 \mathrm{E}-3 * T \mathrm{~T} * * 2$
$-8.726 * T C+241.75)$
$\mathrm{DG}=((\mathrm{P} / \mathrm{TC}) * * 2 * 54.94+(\mathrm{P} / \mathrm{TC}) * 2.212-8.93 \mathrm{E}-6) * 1 \mathrm{E} 3$
$T C=T C-273$.
$\mathrm{VF}=(1.81 \mathrm{E}-8 * \mathrm{TC} * * 3-4.06 \mathrm{E}-6 * \mathrm{TC} * 2+1.05 \mathrm{E}-3 * T \mathrm{C}+0.96) * 1 \mathrm{E}-3$
$\mathrm{DF}=1 . / \mathrm{VF}$
$\mathrm{VG}=1.0 / \mathrm{DG}$
VISF $=(30.904+12538.2 / \mathrm{TC}+1934503.1 / T C * * 2-6.6941 \mathrm{E} 7 / \mathrm{TC} * * 3)$
VISG $=(495.8 \mathrm{E}-15 * T C * * 3-256.3 \mathrm{E}-12 * T C * * 2+76.42 \mathrm{E}-9 * T \mathrm{C}+6.622 \mathrm{E}-6) * 1 \mathrm{E} 6$ SURFT $=(4.33 \mathrm{E}-10 * T C * * 3-3.55 \mathrm{E}-7 * \mathrm{TC} * * 2-13.57 \mathrm{E}-5 * \mathrm{TC}+.075565) * 1 \mathrm{E} 3$ IF (X.LT.1.0) GO TO 41
VRITE (1,'(T5,F5.1,1X,F8.5.3(1X,F6.1),4(1X,F8.4))')
- TC, P, HF,HG,DF,DG,
- VISF,VISG,SURFT
$T C=T C+1.0$
IF (TC.LE.330.) GO TO 21 GO TO 42
$\operatorname{WRITE}\left(1, '(T 5, F 8.5,4(1 \mathrm{X}, \mathrm{F} 6.1), 4(1 \mathrm{X}, \mathrm{F} 8.4))^{\prime}\right) \mathrm{P}, \mathrm{TC}, \mathrm{HF}, \mathrm{HG}, \mathrm{DF}, \mathrm{DG}$,
- VISF,VISG;SURFT

$$
\mathrm{P}=\mathrm{P}+0.05
$$

IF (P.LT.12.78) GO TO 22
 VRITE(1,'($\left.\mathrm{A}, /)^{\prime}\right)^{\prime}$ Hf, HV in $\mathrm{kJ} / \mathrm{kg} ; ~ \rho £_{\mathrm{r}} \rho \mathrm{pv}$ in $\mathrm{kg} / \mathrm{m}^{3}$;

- $\mu \mathrm{f}, \mu \mathrm{V}$ in $\mathrm{kg} / \mathrm{ms} ; \quad \tau$ in N / m '

CLOSE (1)
STOP
50
End
E. 2 PRESSURE AS A FUNCTION OF TEMPERATURE, $P(T)$

		Hf						$\tau(E-3)$
70.0	0.03152	294.7	26	80	0.1948	409.654	0.88	
. 0	0.03290	298	2617	979	0.2031	404.2197	10.9333	297
72.0	0.03433	302.9	2620.3	97	0.2117	398.8665	10.980	64.1159
73.0	0.03581	307.0	2622.8	978.4	0.2206	393.5971	11.0277	63.935
. 0	0.03734	311.1	2625.3	977.7	0.2297	388.4135	11.0745	63.7547
. 0	0.03892	315.2	2627.6	977.0	0.2392	383.3167	11.1210	63.5733
76.0	0.04057	319.3	2630.0	976	0.2489	378.307	11.167	63.3914
77.0	0.04227	323.4	2632.3	975.6	0.2590	373.3869	11.2131	63.209
. 0	0.04403	327.6	2634.5	974.9	0.2694	368.5544	11.2587	63.0261
9.0	0.04585	331.7	2636.7	974.2	0.2802	363.8101	11.3041	62.8426
80.0	0.04774	335.8	2639.0	973.4	0.2912	359.1535	11.349	62.6587
81.0	0.04969	339.9	2641.1	972.7	0.3026	354.5841	11.3939	62.4743
82.0	0.05171	344.1	2643.3	972.0	0.3144	350.1012	11.4384	62.2893
0	0.05379	348.2	26 ± 5.3	971.3	0.3266	345.7038	11.4827	62.1039
84.0	0.05595	352.3	2647.4	970.6	0.3391	341.3909	11.526	61.9180
85.0	0.05818	356.5	2649.5	969.9	0.3520	337.1613	11.570	61.7315
86.0	0.06028	360.6	2651.4	969.2	0.3653	333.0139	11.6139	61.5446
O	0.06285	364.8	2653.4	968.5	0.3789	328.9473	11.6571	61.3572
88.0	0.06531	368.9	2655.4	967.8	0.3930	324.9603	11.7000	61.1694
89.0	0.06784	373.1	2657.3	967.1	0.4075	321.0513	11.742	60.9810
90.0	0.07046	377.3	2659.4	966.4	0.4225	317.2191	11.7852	60.792
91	0.07316	381.4	2661.2	965.7	0.4379	313.4622	11.8274	60.6028
92.	0.07594	385.6	2663.0	964.9	0.4537	309.7790	11.8694	60.4131
93	0.07882	389.8	2664.8	964.2	0.4700	306.1682	11.911	60.2228
94.0	0.08178	394.0	2666.7	963.5	0.4867	302.6283	11.9526	60.0321
	0.08483	398.1	2668.5	962.8	0.5039	299.1577	11.9939	59.8409
96.0	0.08798	402.3	2670.3	962.1	0.5216	295.7552	12.034	59.6492
97.0	0.09123	406.5	2672.1	961.4	0.5398	292.4191	12.075	9.457
98.	0.09458	410.7	2673.8	960.7	0.5585	289.1480	12.11 .63	59.2645
99.0	0.09802	414.9	2675.5	960.0	0.5778	285.9406	12.1567	59.0715
00.0	0.10158	419.1	2677.2	59.2	0.5975	282.7953	12.196	. 8780
101.0	0.10523	423.3	2678.9	958.5	0.6178	279.7109	12.2367	.684
202.0	0.10900	427.5	2680.6	957.8	0.6387	276.6859	12.2764	58.4897
3	0.11287	431.7	2682.3	957.1	0.6601	273.7191	12.3159	58.2949
2.0	0.11687	435.9	2683.9	956.3	. 6820	270.8090	12.355	8.099
05.0	0.12097	440.1	2685.6	955.6	0.7046	267.9544	12.3943	57.9039
106.0	0.12520	444.3	2687.1	954.9	0.7278	265.1541	12.4332	57.7077
107.0	0.12954	448.5	2688.7	954.2	0.7515	262.4066	12.4719	57.5112
08.0	0.13401	452.7	2690.3	,	. 7759	259.7110	12.5104	57.3141
109.0	0.13861	457.0	2691.9	952.7	0.8009	257.0659	12.5488	57.1167
110.0	0.14334	461.2	2693.5	952.0	0.8266	254.4702	12.5869	56.9188
. 0	0.14820	465.4	2695.1	951.2	0.8529	251.9227	12.6248	56.7205
112.0	0.15319	469.6	2696.5	950.5	0.8799	249.4224	12.6626	56.5218
13.0	0.15832	47	2698	949	. 9	46.	12.70	

TEMP (C)	P (MPaa)
114.0	0.16360
115.0	0.16901
116.0	0.17458
117.0	0.18029
118.0	0.18616
119.0	0.19218
120.0	0.19836
121.0	0.20470
122.0	0.21121
123.0	0.21789
124.0	0.22474
125.0	0.23176
126.0	0.23896
127.0	0.24635
128.0	0.25392
129.0	0.26168
130.0	0.26963
131.0	0.27778
132.0	0.28612
133.0	0.29467
134.0	0.30343
135.0	0.31240
136.0	0.32158
137.0	0.33098
138.0	0.34060
139.0	0.35045
140.0	0.36053
141.0	0.37084
142.0	0.38139
143.0	0.39218
144.0	0.40321
145.0	0.41450
146.0	0.42604
147.0	0.43784
148.0	0.44990
149.0	0.46222
150.0	0.47482
151.0	0.48769
152.0	0.50084
153.0	0.51428
154.0	0.52800
155.0	0.54202
156.0	0.55633
157.0	0.57095
158.0	0.58587
159.0	0.60111
160.0	0.61666
161.0	0.63253
162.0	0.64872
163.0	0.66525
164.0	0.68211
165.0	0.59931

	Hv	p			-6)	$\tau(E-3)$
478.1	2699.6	949.0	0.9360	244.5587	12.7376	56.1231
482.3	2701.1	948.2	0.9650	242.1933	12.7748	55.9232
486.6	2702.6	947.5	0.9948	239.8708	12.8118	55.7228
490.8	2704.1	946.7	1.0254	237.5902	12.8487	55.5220
495	2705.6	946.0	1.0567	235.3506	12.8855	55.3208
499.3	2707.1	945.2	1.0887	233.1510	12.9220	55.1192
503.6	2708.5	944.5	1.1215	230.9905	12.9584	54.9172
507.8	2710.0	943.7	1.1551	228.8682	12.9947	54.7148
512.1	2711.4	942.9	1.1896	226.7833	13.0308	54.5120
516.3	2712.8	942.1	1.2248	224.7348	13.0667	54.3089
520.6	2714.2	941.4	1.2609	222.7220	13.1025	54.1053
524.9	2715.6	940.6	1. 2978	220.7440	13.1382	53.9013
529.1	2717.0	939.8	1.3356	218.8001	13.1737	53.6970
533.4	2718.4	939.0	1.3742	216.8895	13.2091	53.4923
537.7	2719.7	938.2	1.4138	215.0114	13.2443	53.2872
541.9	2721.1	937.4	1.4542	213.1652	13.2794	53.0817
546.2	2722.6	936.6	1.4956	211.3501	13.3144	52.8758
550.5	2723.9	935.8	1.5379	209.5653	13.3493	52.6696
554.8	2725.2	935.0	1.5812	207.8104	13.3840	52.4630
559.1	2726.6	934.2	1.6255	206.0845	13.4186	52.2560
563.3	2727.9	933.4	1.6707	204.3871	13.4531	52.0487
567.6	2729.1	932.6	1.7170	202.7175	13.4875	51.8410
571.9	2730.5	931.8	1.7642	201.0751	13.5218	51.6329
576.2	2731.9	930.9	1.8126	199.4594	13.5559	51.4245
580.5	2733.1	930.1	1.8619	197.8697	13.5900	51.2157
584.8	2734.4	929.3	1.9124	196.3055	13.6239	51.0066
589.1	2735.8	928.4	1.9639	194.7663	13.6578	50.7972
593.4	2737.0	927.6	2.0165	193.2515	13.6916	50.5873
597.7	2738.3	926.7	2.0703	191.7606	13.7252	50.3772
602.0	2739.5	925.9	2.1252	190.2931	13.7588	50.1667
606.3	2740.8	925.0	2.1813	188.8484	13.7923	49.9559
610.6	2742.0	924.2	2.2386	187.4262	13.8257	49.7447
615.0	2743.3	923.3	2.2970	186.0260	13.8590	49.5332
619.3	2744.5	922.4	2.3567	184.6472	13.8923	49.3213
623.6	2745.7	921.5	2.4176	183.2895	13.9254	49.1092
627.9	2747.0	920.7	2.4798	181.9525	13.9585	48.8967
632.2	2748.2	919.8	2.5433	180.6356	13.9916	48.6839
636.6	2749.3	918.9	2.6080	179.3384	14.0245	48.4707
640.9	2750.5	918.0	2.6741	178.0607	14.0574	48.2573
645.2	2751.7	917.1	2.7415	176.8019	14.0903	48.0435
649.6	2752.8	916.2	2.8103	175.5618	14.1231	47.8295
653.9	2754.1	915.2	2.8805	174.3399	14.1558	47.6151
658.3	2755.3	914.3	2.9520	173.1358	14.1885	47.4004
662.6	2756.3	913.4	3.0250	171.9493	14.2211	47.1854
666.9	2757.5	912.5	3.0994	170.7799	14.2537	46.9701
671.3	2758.6	911.5	3.1753	169.6273	14.2862	46.7545
675.7	2759.7	910.6	3.2527	168.4913	14.3187	46.5386
680.0	2760.8	909.6	3.3316	167.3714	14.3512	46.3224
684.4	2762.0	908.7	3.4120	166.2673	14.3836	46.1059
688.7	2763.1	907.7	3.4940	165.1789	14.4160	45.8891
693.1	2764.3	906.7	3.5776	164.1056	14.4484	45.6721
697	2765.3	905.8	3.6628	163.0474	14.4807	45.4547

TEIP (C)	P	Hf	Hv	Pf				-3)
166.0	0.71685							
67.0	0.73474	706.2	2767.2	903.8	3.8380	160.9746	14.5454	45.0192
168.0	0.75299	710.6	2768.2	902.8	3.9281	159.9595	14.5776	44.8010
169.0	0.77160	715.0	2769.4	901.8	4.0200	158.9583	14.6099	44.5826
170.0	0.79057	719.3	2770.3	900.8	4.1135	157.9707	14.6422	44.3638
171.0	0.80991	723.7	2771		4.2088	156.9964	14.6745	
172.0	0.82962	728.1	2772.4	898.8	4.3059	156.0352	14.7067	43.9256
173.0	0.84972	732.5	2773.3	897.8	4.4048	155.0869	14.7390	43.7061
174.0	0.87020	736.9	2774.4	896.8	4.5055	154.1512	14.7712	43.4863
5.	0.89107	741.3	2775.3	895.7	4.6081	153.2279	14.8035	43.2662
176.	0.91233	745.7	2776.1	894.7	4.7125	152.3167	14.8358	43.0459
177.0	0.93399	750.1	2777.1	893.6	4.8188	151.4175	14.8680	42.8254
178.0	0.95607	754.5	2778.0	892.6	4.9271	150.5300	14.9003	42.6046
179	0.97855	758.	2779.1	891	5.0374	149.6540	14.9327	42.383
80	1.00144	763.3	2779.9	890.5	5.1496	148.7893	14.9650	42.1623
181.0	1.02476	767.8	2780.9	889.4	5.2639	147.9358	14.9973	41.9407
182.0	1.04851	772.2	2781.6	888.3	5.3802	147.0931	15.0297	41.7190
83.0	1.07269	776.6	2782.5	887.2	5.4986	146.2612	15.062	41.4969
184.0	1.09730	781.1	2783.5	886.1	5.6191	145.4397	15.0946	41.2747
185.0	1.12236	785.5	2784.4	885.0	5.7417	144.6287	15.1271	41.0522
86.0	1.14788	789.9	2785.0	883.9	5.8665	143.8278	15.1596	40.8295
87.0	1.17384	794.4	2785.9	882.8	5.9935	143.0368	15.1921	40.6066
88	1.2002	798.	2786.7	881	6.1227	142.2557	15.2247	40.383
189.0	1.22715	803.3	2787.4	880.6	6.2541	141.4843	15.2574	40.1600
190.0	1.25451	807.7	2788.2	879.4	6.3879	140.7223	15.2901	39.9365
191.0	1.28235	812.2	2789.0	878.3	6.5240	139.9696	15.322 .8	39.7126
192.0	1.31067	81	2789.7	87	6.6624	139.2261	15.3555	39.188
193.0	1.33949	821.1	2790.5	876.0	6.8032	138. 4916	15.3885	39.26414
194.0	1.36879	825.6	2791.2	874.9	6.9465	137.7660	15.4214	39.0399
195.0	1.39859	830.1	2792.0	873.7	7.0922	137.0490	15.4544	38.8153
196.0	1.42890	834.5	2792.6	872.5	7.2403	136.3407	15.4874	90
197.0	1.45973	839.0	2793.2	871.3	7.3911	135.6407	15.5206	38.3654
198.0	1.49106	843.5	2793.9	870.1	7.5443	134.9490	15.5538	38.1401
199.0	1.52293	848.0	2794.6	869.0	7.7001	134.2655	15.5870	37.9146
200.0	1.55532	852.5	2795.2	867.8	7.8586	133.5900	15.6204	37.6890
201.0	1.58826	857.0	2795.8	866.5	8.0198	132.9223	15.6538	37.4632
202.0	1.62173	861.5	2796.4	865.3	8.1836	132.2624	15.6874	37.2371
	1.65574	866.0	2797.1	864.1	8.3502	131.6101	15.7210	37.010
204.0	1.69032		2797	862.9	8.5195	130.9654	15.7547	36.7845
205.0	1.72545	875.1	2798.2	861.7	8.6917	130.3280	15.7885	36.5580
206.0	1.76115	879.6	2798.7	860.4	8.8667	129.6979	15.8224	36.3312
207.0	1.79742	884.2	2799.1	859.2	9.0446	129.0749	15.8564	36.1043
08.0	1.83428	888.7	2799.7	857.9	9.2254	128.4590	15.8905	55.87
209.0	1.87171	893.2	2800.1	856.6	9.4092	127.8499	15.9247	35.6499
210.0	1.90972	897.8	2800.6	855.4	9.5959	127.2477	15.9590	35.4225
11.0	1.94835	902.4	2801.1	854.1	9.7858	126.6522	15.9934	35.1949
12.0	1.98756	906	2801	852.8	9.9787	126.0634	16.0279	34.9672
213.0	2.02740	911.5	2802.1	851.5	10.1747	125.4810	16.0626	34.7392
214.0	2.06785	916.1	2802.4	850.2	10.3740	124.9050	16.0974	34.5112
0	2.10892	920.6	2802.6	848.9	10.5764	124.3353	16.1323	34.2829
216.0	2.15062	925.2	2803.1	847.6	10.7821	123.7719	16.1673	46
.	2.1929	929.8	28		10	,	16.	33.8260

	P(MPaa)	Hf	HV					$\tau(E-3)$
218	2.23592	93	28	84	11.2034	122.6632	16.2378	33.5974
219.0	2.27955	939.0	2804.2	843.6	11.4192	122.1178	16.2732	33.3685
220.0	2.32382	943.6	2804.4	842.3	11.6383	121.5782	16.3088	33.1396
221.0	2.36875	948.3	2804.7	841.0	11.8609	121.0444	16.3445	32.9105
222.0	2.41436	952.9	2805		12.0871			
223.0	2.46063	957.5	2805	838.2	12.3168	119.9936	16.4163	32.4519
224.0	2.50760	962.2	2805.4	836.9	12.5502	119.4766	16.4525	32.2224
225.0	2.55522	966.8	2805.6	835.5	12.7872	118.9649	16.4888	31.9928
226.0	2.60356	97	280	834.1	13.0279	118.4586	16.5252	31.7630
227.0	2.65260	976.1	2805.8	832.7	13.2725	117.9575	16.5619	31.5331
228.0	2.70233	980.8	2806.1	831.3	13.5207	117.4616	16.5987	31.3031
229.0	2.75278	985.5	2806.3	829.9	13.7729	116.9709	16.6356	31.0730
230.0	2.80395	990.1	2806.3	828.5	14.0290	116.4851	16.6727	30.8428
231.0	2.85585	994.8	2806.3	827.1	14.2891	116.0043	16.7100	30.6125
232.0	2.90846	999.5	2806.4	825.7	14.5531	115.5285	16.7475	30.3820
233.0	2.96185	1004.2	2806.6	824.3	14.8213	115.0574	16.7851	30.1515
234.0	3.01595	1009.0	2806.5	822.8	15.0935	114.5911	16.8230	29.9208
235.0	3.07082	1013.7	2806.5	821.4	15.3700	114.1294	16.8610	29.6901
236.0	3.12645	1018.4	2806.6	820.0	15.6507	113.6724	16.8992	29.4592
237.0	3.18283	1023.1	2806.4	818.5	15.9356	113.2200	16.9375	29.2282
238.0	3.23999	1027.9	2806.5	817.0	16.2249	112.7720	16.9761	28.9972
239.0	3.29793	1032.6	2806.4	815.6	16.5186	112.3284	17.0149	28.7660
240.0	3.35665	1037.4	2806.3	814.1	16.8168	111.8893	17.0539	28.5348
241.0	3.41617	1042.2	2806.2	812.6	17.1194	111.4544	17.0930	28.3035
242.0	3.47649	1047.0	2806.0	811.1	17.4267	111.0237	17.1324	28.0721
243.0	3.53762	1051.7	2805.8	809.6	17.7385	110.5973	17.1720	27.8406
244.0	3.59955	1056.5	2805.8	808.1	18.0550	110.1750	17.2118	27.6090
245.0	3.66231	1061.3	2805.5	806.6	18.3764	109.7567	17.2518	27.3774
246.0	3.72590	1066.2	2805.1	805.1	18.7025	109.3425	17.2920	27.1457
247.0	3.79031	1071.0	2804.7	803.6	19.0335	108.9322	17.3325	26.9139
248.0	3.85558	1075.8	2804.7	802.1	19.3694	108.5258	17.3731	26.6820
249.0	3.92167	1080.7	2804.5	800.5	19.7103	108.1233	17.4140	26.4501
250.0	3.98864	1085.5	2804.0	799.0	20.0563	107.7246	17.4551	26.2181
251.0	4.05647	1090.4	2803.6	797.5	20.4074	107.3297	17.4965	25.9861
252.0	4.12515	1095.3	2803.3	795.9	20.7637	106.9384	17.5381	25.7540
253.0	4.19471	1100.1	2803.1	794.4	21.1252	106.5508	17.5799	25.5218
254.0	4.26516	1105.0	2802.6	792.8	21.4920	106.1669	17.6219	25.2896
255.0	4.33650	1109.9	2802.1	791.2	21.8643	105.7864	17.6642	25.0574
256.0	4.40873	1114.9	2801.6	789.6	22.2420	105.4095	17.7068	24.8251
257.0	4.48187	1119.8	2801.3	788.1	22.6253	105.0361	17.7496	24.5927
. 0	4.55591	1124.7	2800.7	786.5	23.0141	104.6661	17.7926	24.3603
9.0	4.63087	1129.7	2800.1	784.9	23.4086	104.2994	17.8359	24.1279
0.0	4.70674	1134.6	2799.6	783.3	23.8087	103.9361	17.8795	23.8954
i. 0	4.78357	1139.6	2799.1	781.7	24.2148	103.5761	17.9233	23.6629
2.0	4.86132	1144.6	2798.3	780.1	24.6268	103.2193	17.9674	23.4304
253.0	4.94000	1149.6	2797.6	778.5	25.0445	102.8657	18.0118	23.1978
264.0	5.01966	1154.6	2797.0	776.8	25.4685	102.5153	18.0564	22.9652
265.0	5.10025	1159.6	2796.4	775.2	25.8984	102.1681	18.1013	22.7326
266.0	5.18182	1164.6	2795.5	773.6	26.3345	101.8239	18.1465	22.5000
267.0	5.26438	1169.6	2795.0	771.9	26.7771	101.4827	18.1919	22.2673
268.0	5.34790	1174.7	2793.9	770.3	27.2257	101.1446	18.2376	22.0346
69.0	5.43241	1179.8	2793.2	768.6	27.6809	100.8094	18.2837	21.8019

TE11P (C)		Hf	HV	p	ρ	$\mu \mathrm{f}(\mathrm{E}-6)$	$\mu v(E-6)$	$\tau(E-3)$
270.0	5.51789	1184.8	2792.4	767.0	28.1424	100.4772	18.3300	21.5692
271.0	5.60441	1189.9	2791.5	765.3	28.6107	100.1479	18.3766	21.3365
272.0	5.69190	1195.0	2790.7	763.7	29.0854	99.8214	18.4234	21.1038
273.0	5.78045	1200.1	2789.9	762.0	29.5671	99.4978	18.4706	20.8711
274.0	5.86998	1205.3	2788.7	760.3	30.0554	99.1769	18.5181	20.6384
275.0	5.96057	1210.4	2787.8	758.6	30.5507	98.8589	18.5659	20.4057
276.0	6.05216	1215.6	2786.8	757.0	31.0528	98.5435	18.6140	20.1730
277.0	6.14482	1220.7	2785.9	755.3	31.5622	98.2308	18.6624	19.9403
278.0	6.23852	1225.9	2784.6	753.6	32.0786	97.9208	18.7111	19.7076
279.0	6.33331	1231.1	2783.6	751.9	32.6025	97.6134	18.7601	19.4749
280.0	6.42911	1236.3	2782.6	750.2	33.1333	97.3087	18.8095	19.2422
281.0	6.52601	1241.5	2781.5	748.5	33.6717	97.0064	18.8591	19.0096
282.0	6.62397	1246.8	2779.9	746.7	34.2174	96.7067	18.9091	18.7769
283.0	6.72303	1252.0	2778.7	745.0	34.7709	96.4095	18.9594	18.5443
284.0	6.82321	1257.3	2777.6	743.3	35.3323	96.1148	19.0101	18.3118
285.0	6.92442	1262.6	2776.2	741.6	35.9009	95.8226	19.0611	18.0792
286.0	7.02679	1267.9	2774.8	739.8	36.4777	95.5327	19.1124	17.8467
287.0	7.13025	1273.2	2773.5	738.1	37.0624	95.2452	19.1640	17.5142
288.0	7.23484	1278.5	2772.0	736.4	37.6551	94.9601	19.2160	17.3817
289.0	7.34057	1283.8	2770.8	734.6	38.2561	94.6774	19.2684	17.1493
290.0	7.44739	1289.2	2769.2	732.9	38.8650	94.3969	19.3210	16.9169
291.0	7.55542	1294.6	2767.4	731.1	39.4826	94.1187	19.3741	16.6846
292.0	7.66454	1299.9	2766.0	729.4	40.1084	93.8427	19.4275	16.4523
293.0	7.77483	1305.3	2764.6	727.6	40.7427	93.5690	19.4812	16.2201
294.0	7.88627	1310.8	2762.8	725.8	41.3856	93.2975	19.5353	15.9879
295.0	7.99894	1316.2	2761.1	724.1	42.0376	93.0281	19.5898	15.7558
296.0	8.11272	1321.7	2759.5	722.3	42.6980	92.7610	19.6446	15.5237
297.0	8.22768	1327.1	2757.9	720.5	43.3673	92.4959	19.6998	15.2917
298.0	8.34388	1332.6	2755.7	718.7	44.0460	92.2329	19.7553	15.0597
299.0	8.46126	1338.1	2754.0	716.9	44.7336	91.9720	19.8113	14.8278
300.0	8.57983	1343.6	2752.0	715.2	45.4304	91.7132	19.8676	14.5960
301.0	8.69960	1349.2	2750.0	713.4	46.1365	91.4564	19.9243	14.3642
302.0	8.82062	1354.7	2747.8	711.6	46.8522	91.2016	19.9814	14.1326
303.0	8.94284	1360.3	2745.8	709.8	47.5773	90.9488	20.0388	13.9010
304.0	9.06633	1365.9	2744.1	708.0	48.3123	90.6979	20.0967	13.6694
305.0	9.19097	1371.5	2741.8	706.2	49.0565	90.4490	20.1549	13.4380
306.0	9.31694	1377.1	2739.5	704.3	49.8112	90.2020	20.2136	13.2066
307.0	9.44414	1382.8	2737.3	702.5	50.5756	89.9570	20.2726	12.9753
308.0	9.57261	1388.4	2735.1	700.7	51.3503	89.7138	20.3321	12.7441
309.0	9.70232	1394.1	2732.6	698.9	52.1350	89.4724	20.3919	12.5130
310.0	9.83331	1399.8	2730.3	697.1	52.9300	89.2329	20.4521	12.2820
311.0	9.96561	1405.6	2727.7	695.3	53.7357	88.9952	20.5128	12.0511
312.0	10.09915	1411.3	2725.6	693.4	54.5516	88.7593	20.5739	11.8203
313.0	10.23406	1417.1	2723.0	691.6	55.3787	88.5252	20.6354	11.5895
314.0	10.37021	1422.8	2720.2	689.8	56.2163	88.2928	20.6973	11.3589
315.0	10.50768	1428.6	2717.6	687.9	57.0647	88.0622	20.7596	11.1284
316.0	10.64647	1434.5	2714.8	686.1	57.9243	87.8333	20.8223	10.8980
317.0	10.78659	1440.3	2712.2	684.3	58.7950	87.6061	20.8855	10.6677
318.0	10.92796	1446.2	2709.1	682.4	59.6765	87.3807	20.9491	10.4375
319.0	11.07074	1452.1	2706.3	680.6	60.5699	87.1568	21.0132	10.2075
320.0	11.21493	1458.0	2703.1	678.7	61.4753	86.9346	21.0777	9.9775
321.0	11.36039	1463.9	2700.3	676.9	62.3917	86.7141	21.1426	9.7477

C)	P(MPaa)	IIf	HV	pf	$\rho \mathrm{v}$	$\mu \pm(\mathrm{E}-6)$	$\mu \mathrm{V}(\mathrm{E}-6)$	$\tau(E-3)$
322.0	11.50719	1469.8	2697.3	675.0	63.3199	86.4951	21.2079	9.5180
323.0	11.65534	1475.8	2594.2	673.2	64.2598	86.2778	21.2737	9.2885
32.4 .0	11.80492	1481.8	2690.7	671.3	65.2121	86.0621	21.3400	9.0590
325.0	11.95585	1487.8	2687.6	669.5	66.1765	85.8479	21.4067	8.8297
326.0	12.10815	1493.8	2684.2	667.6	67.1530	85.6352	21.4739	8.6005
327.0	12.26189	1499.9	2680.5	665.7	68.1423	85.4241	21.5415	8.3715
328.0	12.41691	1506.0	2677.3	663.9	69.1432	85.2145	21. 6095	8.1426
329.0	12.57348	1512.1	2673.4	662.0	70.1579	85.0064	21.6781	7.9138
330.0	12.73133	1518.2	2669.7	660.1	71.1844	84.7998	21.7471	7.6852

Hf,Hv in $\mathrm{kJ} / \mathrm{kg} ; \quad \rho \mathrm{f}, \rho \mathrm{V}$ in $\mathrm{kg} / \mathrm{m}^{3} ; \quad \mu \mathrm{f} r \mu \mathrm{~V}$ in $\mathrm{kg} / \mathrm{ms} ; \quad \tau$ in N / m

