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two phase flow multiplier 

exponent of Euler's constant 

2 
thermal diffusivity {m Is] 

thermal conductivity (Watt/m · C] 

effective heat conduction coefficient 

dispersion heat conduction coefficient 

horizontal coordinate {m] 

horizontal coordinate {m] 

2 
r 

similarity variable = 4Kt 
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~ dynamic viscosity [Pa sl 

~t flowing dynamic viscosity IPa 5] 

v kinematic viscosity [m
2
/s] 

V
t flowing kinemati c v i scosity {m

2
/s] 

w angular velocity {s - I] 

P density {kg/m3] 

Po reference density {kg/m
3

] 

Pt 
3 flowing dens! ty [kg/m } 

0 total vertical stress IPa] 

0 horizontal x stress [Pa} 

0 horizontal 
y 

stress IPa] 

0 vertical stress , effective z stress IPa] 

Subscripts 

c carbon dioxide 

f fracture 

1 liquid 

m mixture 

r rock 

s steam 

v vapour 

w water 
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1 INTRODUCTION 

All of us have many times heard about technological disciplines that are 

"more an art than a science". Most reservoir engineers working in geo

thermal sciences would surely agree that their field is more an art than 

a science. But what kind of art is reservoir engineering? Basically it 

is the art of striking water from rock, and coming to think of it we must 

admit that this is an art that nobody has been really good at since Moses. 

So the reservoir engineer is really an artist, that is trying to behave 

like a scientist in a job where you really need a prophet. 

Some people prefer to think that reservoir engineering is a new field 

that is still in the maturing process. This is not the case. The 

physical process of fluid seepage through porous media is adequately 

described by partial differential equations of the parabolic type, the 

equation of heat conduction to be more precise, and the methods of analyti 

cal treatment have been known since Fourier. The theory was adapted to 

cold water reservoirs by Theis (1935) and Jacob (1946), later to oil 

reservoirs, and now to geothermal fluid reservoirs. Tens and hundreds 

of fine engineers and scientists have devoted themselves to reservoir 

engineering. If this field was to be judged by the amount of skilled 

efforts that has been put into it, the science should by now be so 

advanced, that predicting the yield from a geothermal well should be 

no more trouble than predicting the bending strength of a steel rod. 

But alas, there is more to it than that. There is the element of good 

luck. We never know for sure if the well we are drilling will turn out 

to be a good or a bad well. We can at the most predict the odds, for 

and against. 

The first papers and articles written on geothermal reservoir engineering 

were concerned with predicting the energy content of the reservoir. This 

is natural, the first objective is to know the size of the resource. 

Lately people have turned more towards the capacity of the wells. How 

great is it now, how will it dwindle? Will our wells have sufficient 

capacity in the next year? In two years? In five years? In ten years? 

$0, instead of making the great prophecies of the resource energy that 

would come flowing up, by just drilling a few wells, the reservoir engin-
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eer must take on the role of the watchman. He must be on the cons tant 

lookout for everything that can indicate a change 1n the state of the 

reservoir, constantly observing and comparing the results with his 

previous knowledge. In this way he will steadily i mprove his capability 

of extrapolating his results into the future, unti l nothing in the be

havior of the reservoir is of any surprise to him, and he can make 

fairly accurate predictions of the reservoir yield into the future. 

The heart of this process is a carefully planned and skilfully executed 

observation program that starts as a geophysical exploration and con

tinues as a reservoir research program and ends as a production super

vision. Along the way the reservoir engineer must manage a steadily 

growing data file, and implement new methods to extract all relevant 

info~ation from it. 

This report is devoted to the latter part. It adapts the line of ap

proach, that if you are able to calculate the decline of the reser voir 

pressure then you are able to predict the rundown of the wells. This 

is of course just one corner of the science, but in this one corner 

there are many things. 

This report was written to meet the need for a textbook and a reference 

manual for the Geothermal Training Programme of the United Nations 

University (UNO) in Reykjavik, as well as a handbook for those working 

in the field of reservoir engineering. UNU Fellows who only attend the 

introductory tectures in reservoir engineering should get themselves 

acquainted with the material in sections 2, 3.5, 4.3 and 4.4. Those of 

the UNO Fellows specializing in reservoir engineering should cover 

sections 1, 2, 3.1, 3.2, 3.3, 3.4, 3.5 and 3.16 as well as sections 4 

and 5. The rest of the report serves the purpose of a handbook. 

The report contains fully worked exercises taken from actual reservoir 

engineering experience to illustrate the theory. The SI (Syst~me Inter

nationale) unit system is used with a few exceptions, where the English 

technical system is used. This is done to make the reader familiar with 

this set of units, whi~h is still used in the English reservoir engin

eering literature. 
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2 RESERVOIR PROPERTIES 

In this section we discuss and define the rock and fluid properties 

which are of most interest to the reservoir engineer. The main topic s 

discussed are, rock properties, fluid properties and state, aquifer 

properties , and reservoir characteristics. 

2.1 Rock properties 

Rock properties of interest to the reservoir engineer are general prop

erties defining the flow resistance and fluid storage capacity of the 

rock mass. To obtain this information one has mainly to rely on geologi

cal and geophysical evidence brought about by field investigations. 

These properties are mainly function of the distribution of fractures and 

pores within the rock mass, which is very inhomogeneous in this respect, 

there are usually great variations from point to point (micro scale vari

ation) so information obtained by testing of small samples in the labora

tory is usually of limited value. 

The rock properties of greatest interest are the following: Coefficient 

of permeability, K, intrinsic permeability, k, porosity, ~, and compressi

bility, a. 

Coefficient of permeability, K, is defined according to Darcy's law: 

v K~ 
L 

(2.1) 

where the symbols are defined in Fig. 2.1, and V is the mean velocity 

with respect to the total flow area, that is: 

V = ~ A 

where Q is the flow rate, and A the total flow area. 
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Fig. 2.1 Explanation of terms in eq. 2.1 

K has the dimension of velocity. It depends on the viscosity and den

sity of the fluid and geometrical properties of the rock. As we see in 

the following the viscosity is very temperature dependent, the coef

ficient of permeability is therefore also very temperature dependent . 

Another definition of permeability which i s independent of fluid proper

ties is the intrinsic permeability, k. 

k = L K pg 

~: dynamic viscosity of the fluid 

~: density of the fluid 

g: acceleration of gravity 

k has the dimension of area, frequently expressed in DARCY 

(2.2) 

k varies within wide limits. Engelund (1953) gives for homogeneous sand: 
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(2.3) 

d
lO

: 10' sieve diameter in mm , that is the diameter of sieve net through 

which goes 10% of t he materia l in sieve analysis 

<p porosity 

c is a constant for indi vi dual formations, but varies by a factor of up 

to 5 between different formations. 

In rock formations the permeability is more or less due to cracks and 

fissures. Local k values show great variation. The reservoir as a whol e 

has a gross average permeability which is mor e than all other factors re

sponsi ble for the thermodynamical characteristics of the reservoir and 

its production capacity . 

Field Permeability in mill i darcy Reference 

Hor izontal Vertical 

Broadlands, N.Z. 
average 1 Donaldsson (1970) 

Broadlands, central 
1 km2 100 Donaldsson (1970) 

Lardare 110, Italy 10 10 Donaldsson (1970) 

Olkaria, Kenya 19 13 Sveco and Virk i r (1976) 

Wairakei, N.Z. 100 10 Wooding (1963) 

Svartsengi, Iceland 200 100 Kjaran et al. ( 1980) 

Table 2.1 Permeability of various reservoirs 

The figures in Table 2.1 are estimates of over all values by various re

searchers. Overall permeabi l i ty coeffici ents may be estimated by natural 

heat output studies, see section 4 , and pumping test analysis, see sec

tion 3. There are two different wel l testing methods. Interference 

tests, which give the permeability between a n observation well and a 

flowing well and are thus good estimates of overall permeability val ues . 

The other method is local well testi ng, which includes injection tests, 

step drawdown tests (wel l comple t ion tests) and pressure build- up tests. 

Permeability values determined wi th such te s ts may be affected by skin 
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effects, which are local alterations in the flow field i n the immediate 

vicinity of the well. These alterations may be due to natural fractures 

or to disturbances of the rock during drilling, or concentrated inflow 

into the well where turbulence is developed and Darcy's law is no longer 

valid . Th~se tests are also complicated by wellbore storage effects as 

will be discussed in detail in section 3. 

Porosity, $, is actually the void fraction of the rock mass, i.e.: 

total pore volume 
total volume 

All the pores are filled with fluid (liquid or gas), but some of the 

pores are closed, and some fluid is bounded to the rock minerals. so 

when water is flowing within the reservoir, only a part of the water 

in storage is actually in motion. If we define: 

= ~ • fluid free to move (volume) 
$e fluid in storage (volume) 

then $e may be referred to as the effective porosity . This is usually 

much smaller than the real porosity, especially when all the reservoir 

is liquid saturated. 

Porosity can be estimated from various logging methods like resistivity, 

neutron-neutron, gamma-gamma, and sonic , and on core samples. 

Estimations of effective porosity are more difficult. It is obvious that 

it is the effective porosity rather than the total porosity that defines 

the volume of fluid available for harnessing. 

Compressibility, a . The coefficient of bulk compressibility is defined 

as fractional changes in bulk volume per unit change in effective stress. 

The stress tensor in a porous medium is three dimensional given by a , 
x 

a • cr . Because only the vertical deformations are of interest we re
y z 

strict ourselves to the vertical stress i n the following: 

a = - ~~) v dO 
z 

(2.4) 
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The total vertical stress, cr, at any point in a confined reservoir may as 

a rule be treated as a constant equal to total weight of overburden. 

Total vertical stress is composed of effective stress (grid stress in 

the rock mass) and fluid pressure. 

(2.5) 

which defines 0 , as p is usually equal to the hydrostatic fluid pressure. 
z 

The compressibi lity, a , is constant as long as the rock responds to changes 

in stresses as an elastic medium, and in that stage the compression and 

stress changes are revers i ble. For larger changes in stress the com

pression becomes plastic and irreversible. Plastic deformations are much 

larger than elastic deformations and can reduce the effective porosity ir

reversibly so the permeability may be permanently decreased. 

2 .2 Fluid properties and state 

The fluid properties which will be discussed in the following are , density , 

p, viscosity, ~ , v, and enthalpy, h. 

Fluid density , p , defined as the mass of unit volume of the fluid, gener

ally depends on pressure and temperature: 

p .. p (p,T) (2.6) 

In reservoir engineering the fluid we are in general dealing with is 

compressed water, saturated steam and superheated steam, also of great 

interest due to the change in behaviour of the reservoir fluid is the 

case of reservoir fluid with d i ssolved gases and free gases. For com

pressed water the density can be taken as independent of pressure, except 

when calculating fluid storage, so we have p = p (T). Expanding, we get: 

p + (T-T ) dp 
o dTT""T 

o 

+ •••• • (2.7) 
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Retaining the two first terms we get the equation of state: 

(2.8) 

where Po ~ P(T
O
)' B 

expansion. 

= - dp /p
o 

i s the volume coeffi cient of thermal 
dT 

T_T 
o 

For saturated steam/pressure and temperature are dependent variable s and 

the density can then be taken as a function of either of the two. The 

equation of state is given in steam tables. 

For superheated steam the density is both a function of pressure and 

temperature. The equation of state i s given i n steam tables and can be 

wri tten as : 

p =..L 
ZRT 

where Z is the gas devi ation factor and R is the gas constant. 

(2.9) 

Fluid viscosity, ~, V: Distinction must be made between dynamic vis

cosity , ~, and kinematic viscosity, V. We have: 

v = }J. (2.10) 
P 

The dynamic viscosity is given in Fig. 2.2. 

1 centipoise (cp) Ns 
"2 
m 

The fiqure shows that the viscosity depends heavi ly on the temperature, 

but variation with fluid pressure is less important. From eq. 2. 10 we 

see that the kinematic viscosity is dependent on the density which is a 

function of both temperature and pressure. 
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Fig. 2.2 Dynamic viscosity for water, and steam in centipoise (cp) 

Fluid enthalpy, h. is a thermodynamical property of great interest to 

the reservoir engineer. In a compressed water reservoir the total fluid 

enthalpy is given by the water enthalpy, which is a function of tem

perature and pressure given by: 

h • h (T,p) 
w 

where hw is the water enthalpy. 

(2 . 11) 

In the case of saturated steam reservoir temperature and pressure are no 

longer independent variables and we have: 

p _ p (T) 
s 

(2.12) 

In that case the pressure and temperature cannot be used as two indepen

dent variables to describe the state of the reservoir. Instead we could 

choose e.g. pressure and water saturation, Sw' which is defined as the 

volume fraction of water in pores. At a point in the reservoir where x 

is the mass fraction of steam in pores we can calculate the total en

thalpy: 

h • xh + (1 - x) h 
s w 

(2.13) 
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In a superheated steam reservoir, temperature and pressure can again be 

used to describe the state of the reservoir. The enthalpy is given by: 

h h (T,p) 
s 

Table 2.2 gives one set of independent variables in each case . 

(2.14) 

Fluid state Independent variables 

Compressed water 

Saturated steam 

Superheated steam 

T,p 

p,Sw 

T,p 

Table 2.2 Independent variables to calculate reservoir state 

From the reservoir engineering point of view the fluid chemistry is a 

fluid property. Of main interest are the dissolved solids and noncan

densable (dissolved and free) gases. The dissolved solids and gases 

interact with the rock. These reactions are functions of pressure, 

temperature, and time. The silica thermometer and other chemical ther

mometers are examples of the practical use of the water-rock interaction. 

When all fluid properties are known within a reservoir the complete state 

of the reservoir is defined. AboVe we said that knowledge of two para

meters can define the state. To understand this, and the meaning of it 

for reservoir engineering we take two idealized (unrealistic) examples. 

Visualize two reservoirs filled with ideal fluid, composed partly of 

ideal frictionless liquid, and ideal frictionless vapour. The two reser

voirs are two extremes, one is static (no fluid flow) the other dynamic 

(fluid constantly flowing). Both are isolated. 

In the static reservoir the temperature distribution will be uniform, the 

temperature is the same everywhere, say equal to T. The pressure will be 

hydrostatic. The vapour phase will be separated from the liquid phase 

and we get a picture of the state of the reservoir as shown in Fig. 2.3. 
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Caprock (insulating) 
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82 .1.0027. 

Fig. 2.3 State of an ideal static reservoir 

We measure the temperature and pressure at the top of the reservoir just 

beneath the caprock. We find that T > T (p) (boiling point at the measur
s 

ed pressure). From thermodynamical tables we find the density of "steam, 

calculate the pressure downwards by the hydrostatic pressure relation. 

9.e. __ pg 
dz -

At a certain depth we find: 

(2.15) 

T = T (p) (2.16) 
s 

from there and down we have liquid and steeper rise in pressure. The en

thalpy is easily calculated. For ideal fluids it is a function of tem

perature alone. 

In the dynamic reservoir the fluid is flowing. Ideal fluids flow with 

constant enthalpy so the enthalpy is constant everywhere. The flow is 

frictionless, so the pressure distribution is still hydrostatic. Let us 

assume that the temperature and enthalpy is known just beneath the cap-
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rock. From thermodynamical tables we get the specific enthalpies corre

sponding to the measured temperature and the saturation pressure (boil

ing point pressure). Now we can calculate the vapour mass f raction x and 

the density and use the hydrostatic relation to find the pressure gradi

ent. The pressure gradient is used to calculate the pressure a little 

bit deeper. Find new temperature corresponding to the calculated pressure 

and repeat the whole thing . In this way we integrate the pressure profile 

numerically down until we come to the depth where x = O. Below it there 

is only liquid and constant temperature. 

Coprack (insula! ing) 
y y y v y y y y y y y y y 

" f-::-1 / 
h T \ 

~ E __ --- -- --- \ 
\ 

\ 
\ 
\ 

\ 
A ). 7: 7:~ , A A A A A A A A A 

82.1.0028 

Fig. 2.4 State of an ideal dynamic reservoir 

In both cases we have seen that one measurement of two properties de

fines the complete state of the reservoir. This is because the static 

reservoir is isothermal and the dynamic reservoir is isenthalpic in the 

thermodynamical sense of definition. Real reservoirs are neither iso

thermal nor isenthalpic, but the isothermal and isenthalpic approximations 

may be used to calculate the state of certain regions within them. These 

small examples also demonstrate the main purpose of reservoir engi neer

ing: To calculate the state of the reservoir from minimum of information, 

in order to find the most feasible method to expl oit the energy. 
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Fluid compressibility, S, i s de f i ned as changes i n fluid volume per uni t 

change in fluid pressure , and can be written as: 

6 __ I 

V 

I 

(dV) 

dp h = 

taking v :: - we get: 
D 

6 = I (dD) 

constant 

P dp h = constant 

2.3 Aquifer properties 

(2.17) 

(2 . 18) 

Aquifer properties are of course defined when rock and flui d properties 

are separatel y defined. But i n the l iterature several parameter s are 

defined which are combi ned quantities. Those of them discussed in the 

following are the storage coefficient. S, transmissivity, T, barometri c 

efficiency, BE , tidal effi ciency. TE, re l ative steam and water permea

bilities, k , k , thermal conductivity, A, speci fic heat, e, dif f usivity, 
s w 

K, and disperSions coefficient, Ad' 

Storage coefficient, S, is defined as the vo l ume of water released by 

unit volume of reservoir for unit drop in pressure head. The storage 

coefficient is very different for single phase and two phase reservoirs. 

The storage coefficient f o r single phase fluids is defined i n section 

3.2 and for two phase flui ds in section 3.16. In order to give an ex

ample the single phase storage coefficient of an elastic aquifer is de

fined as : 

, 
s _ pg (a + ~6) (2.19) 

where P is the density of the single phase flui d. 

In horizontal flow studies , a storage coefficient that depends on the 

aquifer thickness is used for aquifers with hydrostatic pressure: 

(2.20) 
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where h is the aquifer thickness. It represents the volume of water re

leased from storage per unit area. It is therefore a dimensionless quan-

tity per m drop in pressure head. 

Transmissivity, T, is usually denoted by T and is defined as: 

T = K • h (2.21) 

Barometric efficiency, BE. Changes in reservoir storage due to pumping 

and recharge are reflected by corresponding changes in the water table. 

Factors other than pumping, such as barometric pressure changes , and ocean 

tides alsc influence water levels. An appreciation for the water level 

fluctuations induced by these factors is required, otherwise observed 

changes in water level may be erroneously interpreted. 

The elevation of the piezometric surface in confined aquifers is indi

cated by the water level in piezometers. Let us study the change in the 

piezometric level associated with a change in barometric pressure. Con

sider the situation in Fig. 2.5 and suppose that the barometric pressure 

p increases by dp. The increase of atmospheric pressure is transmitted 
a a 

directly to the water surface in the piezometer, tending to displace 

water from the piezometer into the aquifer. On the other hand, the in

creased atmospheric pressure also increases the load on the confined 

aquifer which tends to displace water from the aquifer into the piezo

meter. Part of the increased load is born by the aquifer skeleton, how

ever, and the net result of the increase in barometric pressure is to 

decrease h. The absolute value of the ratio of dh to dp /pg is the 
p p a 

barometric efficjency, BE, given by: 

(2.22) 

The barometric efficiency of a confined aquifer depends upon the com

pressibility of the aquifer and its contained water. 
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Fig . 2.5 Stress bal ance in the aqui fer 

Taking s tress balance we get: 

0z + P = overburden pre ssure + Pa 

and 

p = pgh+p 
P a 

The total derivatives of eqs . 2 . 23 and 2.24 are: 

dp = dp - dO 
a z 

dp = pgdh + dp 
P a 

Equations 2.25 and 2.26 are combined t o yield: 

dh do Idp 
-;-.1t.P_ = ___ ~z_ 
1 
-dp pg a 1 + dO" Idp 

z 

Eq$. 2.4 and 2.17 give respectively: 
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(2.23) 

(2.24) 

(2 . 25) 

(2. 26 ) 

(2.27 ) 
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(2.28) 

(2.29) 

where Vb and V
f 

ar~ the bulk volume and fluid volume respectively. 

we have dV
b 

= dV
f 

and V
f 

= ~Vb we obtain by combining eqs. 2.28 and 

As 

2.29, 

dO 
z 

dp ; ex 

and by inserting into eq. 2.27 we obtain: 

" +64> 

and from the definition of b~rometric efficiency we have: 

' dh I 
BE = I P = ---:,,=-

'dpa/pq + ~~ 

(2.30) 

(2.31) 

(2.32) 

By using the definition of the storage coefficient, eq . 2.19, the baro

metric efficiency can be written as: 

BE = £¥ 
s 

(2.33) 

If the barometric efficiency of an aquifer is known, eq. 2 . 33 can be 

used to estimate the storage coefficient. 

(2.34) 
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Fig. 2.6 Water level changes, well H-S, Svartsengi (Eliasson et 
a1. 1977) 

Fig. 2.6 shows observed water level f l uctuations in a 1500 m deep we ll, 

240'C hot in the Svartsengi geothermal field in Iceland. When water level 

fluctuations due to barometric pressure changes are subtracted from the 

observed drawdown values, the true drawdown due to production is obtained. 

To do this, the BE value has to be used. Fig. 2.7 shows how it is found 

by analysing a short period where drawdown due to production is small 

compared to barometric water level changes. 

Finally it should be noted from equation 2.31 that water levels h de
p 

crease when the barometric pressure increases and the water levels in-

crease when the barometric pressure decreases. 
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Fig. 2.7 Barometric pressure vs. piezometric level 

Tidal efficiency, C: The water level in wells and piezometers responds 

to external loads other than atmospheric pressure. Because the change 

in load due to fluctuating tides are applied only to the aquifer and not 

to the water surface in the piezometer, the water level response is oppo

site that observed for changes in barometric pressure. In other words, 

the increased load produces a rise in water levels. The response of 

water levels to slowly changing external loads can be analysed in a 

manner similar to that for barometric loading. For example , consider a 

confined aquifer extending beneath the ocean floor or beneath a river or 

estuary in which the water stage , H, changes with the t i de . Provided 

that the entire change in pressure pgdH is transmitted to the confined 

aquifer. 

dh 
---"- = 

dB 

I 

1 + 
da z 
dp 

(2.35) 

20 
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From eq. 2.30 the tidal efficiency, et is: 

(2.36) 

From eqs. 2.32 and 2.36 we see that: 

BE+C.l (2.37) 

Relative permeabilities of steam and water, k , k: When steam and 
S le! 

water are flowing in mixture throuqh rock, studies of well fluid enthalpy 

have indicated different permeabilities for the steam and the water flow 

from those observed in a single phase flow. The ratio between these 

permeabilities and the intrinsic permeability values are called relative 

permeabilities, and are usually listed as functions of water saturation. 

See section 3.16 for discussion of relative permeabilities. 

It is possible to find physical arguments for the relative permeabilities, 

but the numerical values of relative permeabilities are still uncertain. 

Considerable research is being done on this subject throughout the world 

(Kruger and Ramey, 1978). 

Thermal conductivity, A, of a medium is the proportionality factor be

tween the heat flux and the temperature gradi ent. In Table 2.3 some 

values of the thermal conductivity are given for different materials to

gether with other thermal properties. The thermal conductivity of an 

isotropic aquifer can be written as: 

where subscripts 1 and r denote liquid and rock respectively. Here we 

have assumed a parallel conduction model in which heat conduction occurs 

simultaneously but separately through the liquid and rock. Sometimes a 

series conduction model is used: 

(2.39) 
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In anisotropic media A is a second rank tensor (Bear, 1972) and in iso

tropic media a scalar. Thermal conductivity decreases with increasing 

temperature. but the variation is small and without importance within 

our temperature range. 

An average value of A for Icelandic rocks is believed to be 1.7 watt/oC m 

(Palmason and Saernundsson 1979). 

Specific heat, c, for both liquid and rock in aquifers varies insignifi

cantly with temperature. For a single phase water reservoir the heat 

capacity pc is commonly written: 

pc (2.40) 

Some values of the specific heat for volcanic rocks are given in Table 

2.3. 

Material Density Specific heat Conductivity Diffusivity 
kg/m3 J/kg·C Watt/moe m2Js 

Basalt 2800 890 1 .7 6.8_10- 7 

Dolerit 3800 1.6 

Gabbro 2800 2.0 

Granit 2600 820 3.0 14~1.10-7 

Table 2.3 Thermal properties of some volcanic rocks (adapted from 
Kappelmeyer and Haenel 1974) 

2 Thermal diffusivity, K = A/pc, with dimension m /s accounts for the trans-

port of energy by conduction due to the exchange of kinetic energy between 

the molecules. Molecular diffusion is independent of fluid velocities and 

is usually considered constant in saturated porous media. Some values are 

given in Table 2.3. 

Dispersion in porous media is the mechanism of spreading of a solute due 

to the random flow and resulting macroscopic mixing in the pores. Orig

i nally the coefficient of dispersion was considered to be a scalar, but 

later experiments have shown, that even in isotropic media longitudinal 
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and transversal dispersion are different . Bear (1972) discusses tile 

nature of the coefficient of dispersion wit~ reference to numerous ar 

ticles on the subject and shows that the coefficient of dispersion is a 

second order tensor, which depends on a fourth order tensor, the latter 

being a function of the porous medium alone (the dispersivity tensor). 

The effective heat conduction coefficient can be written as the sum of 

the ordinary heat conduction coefficient and the dispersion coefficient : 

(2.41) 

where Ae and Ad are the effective and dispersion heat conduction coef

ficient respectively. For a geothermal reservoir in its natural state, 

the velocities are very small and the dispersion coefficient, which is 

velocity dependant becomes insignificant and the heat conduction process 

is governed by molecular diffusion . 

2.4 Reservoir characteristics 

Geothermal reservoirs have been classified in many different ways. A 

certain terminalogy and certain phrases are in use in the literature and 

it is useful to know the definition of them. In the following we will 

define some of these phrases which are: Liquid and vapour-dominated 

reservoirs, low temperature and high temperature reservoirs and the 

boili ng curve . 

Liquid-dominated and vapour-dominated reservoirs. Geothermal reservoirs 

are conveniently categorized as either vapour-dominated or liquid-domi 

nated. In each case the name refers to the phase which controls the 

pressure in the reservoir in its undisturbed state. The other phase may 

also be present and partly mobile. Thus, vapour-dominated systems contain 

immobile or slightly mobile liquid and liquid-dominated systems may either 

contain liquid water only, or a steam-water mixture. 

Most reservoirs contain either liquid or a mixture of liquid and vapour. 

Vapour-dominated reservoirs are characterized by having a vertical press

ure gradient equal to the hydrostatic pressure of vapour . Boiling water 

that flows through a rock mass towards a well, is cooled off due to the 



boiling and thereby the water can draw heat from the rock. The wells 

can thus discharge dry steam, (or high enthalpy fluid) although the res

ervoir is not vapour-dominated in the undisturbed state. Important to 

note is, that steam will seek upwards in the reservoir driven by a strong 

buoyancy force due to its large specific volume. 

The same reservoir can have different characteristics at different times 

as the exploitation continues. Let us consider a single phase liquid 

reservoir in its natural undisturbed state. After production has started 

boiling may occur in the reservoir due to pressure drop and we now have 

a two phase liquid-dominated reservoir. When the boiling becomes very 

pronounced we might have steam as the dominant mobile phase. Finally it 

is possible around production wells to have superheated steam and thus a 

single phase fluid again. 

Low temperature and high temperature reservoirs: This is a classifica

tion according to base temperature, originally proposed by B66varsson 

(1961) • 

Low temperature fields have base temperatures lower than lSO·C, and high 

temperature fields have higher base temperatures. This classification 

has special significance in Iceland because most low temperature geo

thermal resources in the country yield water of good quality (low con

tent of dissolved solids). This is not the case elsewhere. E.g. low 

t emperature geothermal brines are exploited in France. 

Boiling curve. This feature is often seen in the literature, in most 

cases it is a pre-calculated curve (Fig. 2.8) but as shown in Fig. 2.8, 

the boiling curve is the boiling point for actual reservoir pressure at 

the corresponding height so in fact it is a real reservoir characteristic. 

In this respect it must be mentioned that well pressure and temperature 

logs do usually not show actual reservoir pressures or temperatures at 

all depths. It is only at those depths where the well is open to the 

reservoir where measured values can be the same as the actual reservoir 

parameters. 
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2.5 Heat transfer in the reser voir 
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b) 

According to the preceding chapter heat is transported by dispersion, 

conduction (or diffusion) and convection. In the fluid, heat is trans

ferred by all three mechanisms , whereas in the solid phase heat is trans 

ferred by conduction. Finally heat is transported between the fluid and 

the solid . Dispersion and conduction have been described in the pre

ceding chapter. 

Heat transport by convection Is due to the fact that the flowing fluid 

carries its own heat content from one part of the field to another. I f 

the convective motion is due to external means, for instance injection 

of a hot fluid into an aquifer we speak of forced convection. Convective 

flow due to density variations resulting from temperature differences 

within the field is known as free or natura l convection . Natural convec

t ion may occur when the bottom plane of an aquifer is heated, thus cre

ating buoyancy forces that may onset convective motion. 

Let us now take two examples of these heat transfer mechanisms. In Fig. 
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2. 9 curve A shows temperature/depth relations, where heat flow is con

trolled by thermal conduction alone in rocks o f constant conductivity, 

and curve B where heat flow is controlled by convection and conduction . 

Depth 

82 .1.00 33 

Temperature 

I 
I 
~ -- --

Fig . 2.9 Temperature/depth re lation 

Let us for the second example take the movement of a temperature front . 

When water is inj ected into a geothermal reservoir cold water will spread 

away from the well. Fig. 2.10 shows a schematic picture of the tempera

ture front. 

T 

Reservoir } 
temeroture 8 

Temperature} 
of injected I---~~ 
fluid 

- __ ;;,.. Movement of Fluid 

82.01.0034 Distance from reinjection well . 

Fig. 2 .10 Schematic picture of a tempera ture front 
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If we just take convective heat transfer into account, that is the bulk 

movement of the fluid, but neglect both conduction and dispersion effects. 

the profile A in the figure would be the resulting temperature front. 

If conduction and dispersion are taken into account that would result 

in the S shaped profile B in the figure. 

Heat transfer between liquid and rock is commonly described as a linear 

process: 

a 1s a heat transfer coefficient. and Tl and Tr denote the temperature 

of liquid and rock respectively. Including this mechanism in the equa

tions describing the heat transport results in serious complications in 

solving the equations since we get an extra unknown (T ) and the heat 
r 

balance equations for liquid and rock are coupled. For relatively low 

flow velocities the temperature difference between liquid and rock is 

always small and consequently neglected by taking Tl = Tr which corre

sponds to a = 00 . 

In the following we neglect any heat transfer between liquid and rock by 

setting Tl Tr · 

2.6 Conceptual reservoir models 

The construction of a conceptual model of a geothermal reservoir, con

sists of gathering all available hydrogeological information into one 

picture where all the elements are compatible with each other. A con

ceptual model should show: 

1) A hydrogeological section with aquifers and aquicludes separ
ately designated. 

2) Natural discharge and recharge areas. 

3) Direction of flow in aquifers. 

4) Impervious boundaries. 
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Such a model is a great help in planning further investigations, and it 

is a necessary basi s for all reservoir calculations. 

Conceptual models are often speculative in the details, and for that 

reason difficult to work with. Therefore it 1s necessary to use all 

available information to construct them. 

1 
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I , 
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\ ---+ • ----. ..--- I 
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, 
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Fig. 2.11 The Long Valley model (Sorey , 1976) 

Fig. 2.11 shows a conceptual model of the Long 

tem, California U.S. A. (Sorey 1976). It shows 

Valley hydrothermal sys-
2 

a 450 km caldera with a 

multi-layered aqui fer. Recharge is along the caldera boundary, discharge 

is all in the Hot Creek Gorge. The model is used for numerical calcu

lation of the temperature and pressure pattern. From such calculations 

one can e.g. estimate if reservoir pressure drop from exploi tation 

causes increased recharge. 

t , 
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_Fig.2.l2 shows a conceptual model of the Olkaria Geothermal field, 

Kenya (SVeco and Virkir 1976). It shows a vapour-dominated reservoir 

overlying a liquid- dominated zone. Heating is from an unidentified 

heat Source below, steam escapes through a fault zone. Note the compli

cated steam-waterflow picture. 
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Fig . 2.13 The Reykjanes peninsula model (Kjaran et al. 1980) 

Fig . 2.13 shows a conceptual flow model from the Reykjanes peninsula Ice

land (Kjaran et al. 1980). Water percolates through a deep tectonic fault 

and feeds many reservoirs on its way. 
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3 WELL TESTING 

3. 1 Introduction 

well testing is conducted in order to evaluate the condition of the well 

and flow capacity of the well. Parameters of interest include formation 

permeability, compressibility, the presence of barriers and leaky bound

aries, extent of well bore damage, the presence of prominent fractures 

close to the well, the mixing of vertically separated producing zones, 

and so on. Cl osely related to well testing is well stimulation, where 

the well testing methods are' used to evaluate the well improvement. 

Hydraulic well testing c9nsists of producing from or injecting into one 

or more wells at controlled rates and over periods ranging from a few 

hours to a few weeks and monitoring changes in pressure within the pro

ducing well itself or nearby observation wells. It should be noted here 

that the same formulas apply for production and injection wells with 

just the mass flow with reversed sign in the equations. Geothermal well 

testing and analysis is more difficult than more conventional well test

ing techniques of hydrology and petroleum engineering. The flow in geo

thermal reservoirs is generally two-phase flow under non-isothermal con

ditions, and methods of interpretation of data for such situations are 

complicated. A large amount of literature is available on testing iso

thermal single phase systems because of the investigation of petroleum 

engineers and hydrologists over the past five decades . However, there 

is in general lack of experience in testing non-isothermal flow in single 

and two phase reservoirs. Nevertheless, under certain conditions, it is 

possible to use isothermal techniques for non- isothermal situations. As 

mentioned in chapter 2 a single- phase reservoir may either be vapour

dominated or liquid-dominated. The dynamics of a vapour-dominated res

ervoir is similar to that of a gas reservoir and some of the techniques 

from petroleum industry have been applied in such cases. In the case of 

liquid-dominated systems the methods from groundwater well technology 

and petroleum industry have been applied. 

In t his chapter the differential equation for horizontal, isothermal flow 

will be derived. Well testing methods for liquid-dominated reservoirs 

will be described and finally necessary corrections are made for the use 
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in vapour-dominated reservoirs. In all the methods the reservoir will 

be considered homogeneous and isotropic and the flow will be considered 

horizontal, except for partial-penetration of wells, where corrections 

\dll be made to account f or vertical flow components. Both the produc

tion well itself and observation wells will be used for t he well test

i~g methods and in the case of the production well itse l f near well 

characteristics will be described. 

3.2 The differential equation for isothermal, horizontal flow 

The basic differential equation will be derived in radial form thus simu

lating the flow of fluids in the vicinity of a well. Analyti cal sol utions 

of the equation can then be obtained under various boundary and initial 

ccndi.tions for use in the description of well testing and well inflow, 

which have considerable practical application in reservoir engineering. 

The radial cell geometry is shown in Fig. 3. 1 and initially the following 

simplifying assumptions wi ll be made. 

1) The flow is consi dered isothermal . 

2) The reservoir is considered homogeneous and isotropic. 

3) The producing well penetrates the entire formation thickness. 

4) The formation is completely saturated with a single f luid. 

h 

8201. 0038 

2rw 
H 

I' r 

Cylindrical contr ol volume 
I 

bpQ 
pq + """'b'r d r 

-->[/'1--
pQ 

lIt :JI 
dr 

Fig. 3.1 Radial flow of a single phase fluid in the vicinity of a 
producing well 
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Consider the flow through a volume of thickness, dr, situated at a dis

tance, r, from the centre of the radial cell. Then applying the prin

ciple of mass conservation. 

Mass flow in - Mass flow out = Rate of change of mass within 
the control volume 

pq - ( pq + ~ dr) = dr 

which simplifies to: 

2TIrdr d ($ph) 
dt 

(3.1) 

By applying Darcy's law, see eq. 2.1, for radial, horizontal flow it is 

possible to substitute for the flow rate, q, in eq. 3.1 since; 

giving: 

d (2TIrhk ~) 
dr lJ P dr = 

or 

1 d (kP r ~) = r or J.l dr 

2TIr d(PhP) 
dt 

l d (Php) 
h dt 

The right hand side of eq. 3 . 2 can be written: 

l d (phP) 
h at = $ dP + P 

dt 
• UJ!!!.L 

h dt 

By using eq. 2.18 we can write: 

(3.2) 

(3.3) 

and by applying eq. 2.4 and just considering vertical deformations and 
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constant total stress we get: 

P I Iilli pCl 2£ 
h at' at 

By defining: 

Cl 
c.(6+~) 

and inserting in eq. 3.2 we get: 

cp$ 2£ = at 

The coefficient defined by: 

S = c$hDg 

(3.4) 

(3. 5) 

(3.6) 

(3.7) 

is according to eqs. 2.19 and 2.20 called the storage coefficient and is 

the weight of fluid released from storage per unit surface area of the 

reservoir per unit change in pressure. The coefficient defined by: 

T • kgp h (3.8) 
~ 

is called the transmissivlty coefficient. See egs. 2.2 and 2.21. 

Eq. 3.6 is the basic differential equation for the isothermal, radial 

flow of any single phase fluid 1n a porous medium. The equation is non

linear because of the implicit pressure dependence of the density, com

pressibility and vi scosity appearing in the coefficients kP/~ and ~cp. 

Because af this it is not possible to find simple analytical solutions 

of the equation without first linearizing it so that the coefficients 

somehow lose their pressure dependence. For that purpose we expand the 

left hand side of eq. 3.6, using the chain rule for differentiation 

gives: 

(3.9) 



-51-

Using eq. 2.1S for the campressibility of the fluid gives: 

~ ap 
~p ar = ar (3.10) 

which when substituted into eq. 3.9 gives: 

~ + ~ "pr pr dr J.l P P4>~ 
C at (3.11) 

In the case of liquid-dominated reservoirs with isothermal flow the term 

1.. (~) = ar ~ 
0, and if 

terms of the order 

I a (r ~r) r dr a 

we assume that the pressure 
2 (dp/dr) can be neglected. 

gradients are small, then 

Eq. 3.11 then reduces to: 

(3.12) 

If this flow equation had been derived using vector notations the result

ing equation would have been: 

6 2J!£ ~ (3.13) 
P - k at 

Eq. 3.12 is the basic equation for well test analysis. Different well 

testing methods are just solutions of the differential equation 3.12 for 

various boundary and initial conditi ons. Equations 3.12 and 3.13 are the 

diffusivity equations in which the coefficient ~k is called the diffusiv-
.~c 

ity constant. These equations are also identical with the heat equations, 

and therefore the solutions to heat conduction problems can be modified 

to be used in well testing". The book "Conduction of Heat in Soli ds", by 

Cars law and Jaeger (1959) gives sol utions of the diffusivity equation for 

a large variety of boundary and initial conditions and is, therefore, a 

helpful reference text in reservoir "engineering. 

It should be emphasized that due to the isothermal, horizontal flow approxi 

mations, the pressure distribution in the verti cal direction is hydrostatic. 

Because we are using pressure as a dependent variable in the differential 

equation, pressure values of the same elevation must be compared at differ

ent times to calculate the pressure decline. 
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In some liquid-dominated reservoirs the watertable is measured instead 

of pressure. Because of the hydrostatic pressure distribution we can de

fine piezometric head thus: 

H = z + ply _ constant, (3 .1 4) 

where z is the elevation and y is defined as y : ~g. Then pressure can 

be calculated from eq. 3.14. For example we have for a pressure drop 

8p along a horizontal streamline: 

~p = Y~H (3 .1 5) 

where 8H is the drawdown of the water table. We have neglected 6p which 

is small in liquids. If we insert the pressure from eq. 3.14 into eq. 

3.12 we get: 

1 d (r dH) r dr dr = 
<!~c dH 

k dt 
(3.16) 

When analysing well testing data, the watertable measurements can there

fore either be changed into pressure according to eqs. 3.14 or 3.15 or we 

can make use of eq. 3.16. The appropriate initial and boundary conditions 

must of course be formulated either in pressure or elevation of the water 

table. Most of the fol lowing equations will be formulated in pressure 

units, but the examples given will both be watertable and pressure measure

ments data. Bearing the above i n mind, the use of either watertable or 

pres~ure data should cause no confusion. 

3.3 Dimensionless variables and qualitative characteristics of the press
ure decline for producing reservoirs 

Dimensionless parameters will be introduced and the differential-equation 

3.12 will be presented in dimensionless form. The characteristic of the 

solution to the differential equation will then be discussed qualitatively. 

The dimensionless time is defined as: 

kt "0 = ......o.="""2 
1Jl-1c r 

w 

(3.17) 



when based on wellbore radius, r • 
w 

or 

when based on total drainage area, A. 
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(3.18) 

The dimensionless radial distance from the producing well is defined as : 

= r/r w 

The dimensionless pressure drop is defined as: 

21Tkhp 
= m.t (Pi - p(r,t)) 

(3.19) 

(3.20) 

Substitution of these variables into the radial diffusivity equation 3.12 

gives: 

(3 . 21) 

This demensionless diffusivity equation can then be solved for the appro

priate initial and boundary conditions. 

The qualitative behaviour of the solution to eq. 3.21 is shown in Fig. 3.2 

for constant dimensionless radius r D" The flow regime A is the infinite 

reservoir period, where the pressure decline at some distance, r D, from 

the producing well is not affected by the boundary conditions and the 

reservoir behaves as it was infinite in the areal extent. 

As will be shown later the P function is linear with the logarithm of 

time after certain time has elapsed. The solution to the diffusivity 

equation in this case is called the Theis solution or the exponential 

integral solution. 

The flow regime B is the transition between the long term pressure decline 

and the initial pressure decline. It is the behaviour of the reservoir 
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Fig. 3.2 Transient flow regimes: 

A - infinite reservoir period 

B - transition period 

C - pseudosteady state 

D - steady state 

when it can no longer be looked upon as infinite. In the case that the 

pressure decline has struck impermeable boundaries at some distance from 

the well, but is still spreading to other sides, B soon becomes a straight 

line in the lin-log plot with a steeper slope than A. 

The flow regime C is called pseudosteady state where pressure decline is 

proportional to time . This means that the pressure decline has struck 

impermeable boundaries all around the producing well and the reservoir is 

be.i.ng depleted at a constant rate. 
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The flow regime D is called steady state. Then the pressure does not 

drop any more and we have constant pressure with time. The pressure 

decline has produced new inflow which is equal to the mass outflow and 

thus producing steady state pressure conditions. 

The solutions to the diffusivity equation are relatively simple for 

cases A, C and D, but for many problems the transition state B gives 

more complex solutions. The fact that the full solution is so complex 

is rather unfortunate since the constant terminal rate solution of the 

radial diffusivity equation can be regarded as the basic equation in 

reservoir analysis. As will be shown later, the pressure response can 

be theoretically described by superposing such solutions. 

Finally it should be noted, that in case of waterlevel observations the 

dimensionless equations remain the same except eq. 3.20, which changes to: 

(3.22) 

or by using T from equation 3.8: 

(3.23) 

3.4 Steady state and semi steady state solutions 

When the pressure decline has produced new inflow, recharge, which is 

equal to the mass outflow, we have steady state conditions. For steady 

state conditions eq. 3.21 reduces to Laplace's equation: 

~PD • 0 (3.24) 

with the appropriate boundary conditions. The steady state solution can 

be determined directly without first solving the timedependent problem. 

A special type of steady state solutions will be presented in section 

3. 10. Let us here take an example of a single well producing in a homo

geneous aquifer with constant pressure boundaries located at the radial 

distance r from the well. Fig. 3.3 shows a schematic picture of the flow 
e 

situation. 
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Fig. 3.3 Radial f low into a well under steady state conditions 

Darcy: 5 law can be expressed as: 

2TTrhkP aD w _ = 
~ or 

and separating the variables and integrating: 

P ~ 
! dp. 2nhkp 

Pwf 

r 
! dr 

r r 
w 

where P
wf 

is the conventional symbol for the bottom hole flowing pressure. 

The integration results in: 

=~ ln 
2TJ'hkP 

r 
r 

w 

(3.25) 

which shows that the pressure i ncreases logarithmically with respect to 

the radius, as shown in Fig. 3.3, the pressure drop being consequently 

much larger close to the well than near the outer boundary. In particular, 

when r = r then: 
e 

~ r 
= ---In ~ 

21ThkP rw 
(3.26) 

The solution is very simple in this case because of the radial symmetry . 
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In case of other geometries Laplace's equation has to be solved with more 

elaborate methods than the above. The solution e.g. for a rectangular 

constant preSsure boundary with the producing well a line source is given 

by, 

ro ro 

= 8 E E 
n n-1 m_l 

n1Ty mTIX 
sin ,.lA sin .fA 

2 
m 

sin ~ sin ~ 
2 + n 

(3.27) 

where A is the rectangular area and (~,n) are the coordinates of the line 

source in a rectangular coordinate system, and (x,y) are the coordinates 

of the observed pressure decline. 

of the rectangular area . 

(x,y) ~ (0,0) is in one of the corners 

Often there is a damaged zone in the vicinity of the wellbore, which re

duces the permeability in the area. The situation is shown in Fig. 3.4, 

in which r represents the radius of this zone. 
s 

w 

'e 

t:. P ski n I ~ I' 
'. " " 
82.01. 0042 . ) , 

Fig: _ 3.4 Radial pressure profile for a damaged well 

If the well were undamaged, the pressure profile for 

shown by the dashed line, whereas due to the reduced 

r<r would be as 
s 

permeability in the 

damaged zone, eq. 3. 26 implies that the pressure drop will be larger than 

normal, or that P
wf 

will be reduced. According to van Everdingen (1953) 

the additional pressure drop close to the well is defined by : 

llPskin (3.28) 
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in which the hPskin is attributed to a skin of reduced permeability aro~md 

the well and S is a dimensionless skin factor, which can be determined 

from well testing methods, see chapter 3.14 for further discussion of the 

skin effect. Eq. 3.26 can now be expressed with the skin factor: 

.~ (In 
2TThkP 

r 
~ + S) 
r 
w 

(3.29) 

The productivity index of a well is defined as the mass f low divided by 

wellbore pressure drop: 

PI = 
w -"----. 

p - p 
e wf 

21Thkp 

~( ln 
re 
- + S) 
r 

w 

(3.30) 

2 
PI is the productivity index of a well, expressed in kg/siN/m • and is a 

measure of the well performance . 

EXERCISE 3.1 

Water of 10'c is pumped into an aquifer of thickness 1000 m and with per

meability 1 darcy. The temperature of the geothermal water is 240·C. 

The radius of the temperature front is 100 m and the effective radius is 

1000 m. The diameter of the wellbore is 0,20 m. See Fig. 3.5. 

T=240oC T: 240°C 

T:IOoC T:IOOC 

---- I'-

P, P.f 
P, 

'. '. " " a 2 .02 . 0039. 

Fig. 3.5 Pressure profile during the pumping of cold water into 
a high temperature geothermal reservoir 
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1) What is the productivity index of the well under the above conditions? 

2) If the cooled section of radius rs is considered as skin effect zone, 

determine the skin factor. 

Solution 

From the data given we have: 

3 =- 999. 7 kg/m 

3 
; 813.7 kg/m 

From eq. 3.26 we get: 

r 
s In -

r 
w 

r 
In ~ 

r 
s 

Adding the two equations we get: 

).I10·C 

).I240·C 

r 

;; L 307 

= 1.3 

r 

• 10- 3 Ns/m2 

10- 4 Ns/m2 

~IO P240 (---- ° 
~240 PlO 

s 
In - + 

r 
ln~ r 

s w 

1) The productivity index is given by eq. 3.30. 

W 21ThkP
240 PI _ 

• 
~IO P240 

r r 
° In s In ....'!) Pe - Pwf ~240 (---- - + 

~240 PlO r r 
w s 

(3.31) 

(3.32 ) 

(3.33) 

(3.34) 

-12 
; __ -,2,-,-o_n"-,o,--,I,,00,,,0,-,o--,,~,;-; 9",8,-,7:-..:°-'CIO"-_.:..°..c8,,,1,,3C, • .!.7 _ _ , 7 ° 10-4 kg/s/N/m2 

1.3 ° 10-4 (~I ..... ,,-3_..!1,"0, 813 . 7 In .!.Q.Q. + In (000) 
4 lOO 

1'. 3 10 999.7 0.1 

; 70 kg/s/bar 
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2) Following eq. 3.29 we write: 

r 
nn ~ + 5) 

r 
w 

Eq. 3.33 can be written as: 

( I n 
r 
~ + 
r 

w 

~IO P240 (----- 11 
~240 PlO 

Comparing we see that S is given by: 

s· = 

::: 49·3 

~IO P240 
(-----
~240 PlO 

r 
s 

11 In 
r 

w 

813.7 _ 11 1 lOO 
n 0.1 

999.7 

r 
s 

In -I 
r 

w 
(3.351 

If eq. 3.35 is used to estimate the permeability of the formation by 

measuring the pressure increase of the well when pumping cold water into 

the aquifer, we would have: 

k = 
r 
~+ 
r 
w 

~I 0 P240 
(-----
~240 PlO 

r 
1) In~) 

rw 
(3.361 

If the cooled section of the aquifer was not taken into account, the 

permeability of the formation would be estimated by eq. 3.26 getting: 

k 

We then have: 

r 
e 

r 
w 

(3.371 
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VIO P240 r 
1) In s 

(-- ---k V240 PlO r 
I 

w 
• = + 

r 
k 

In 
e 

r 
w 

I 
S 

I 49.3 , 6.4 = + --- . + 
r = 

In e 1 1000 
r n o:T" 

w 

Using eq. 3.37 to estimate the permeability under the above conditions 

would yield an estimate of the permeability almost one order of magnitude 

smaller than by using eq. 3.36. This effect is caused mainly by the vis

cosity which decreases ~y a factor of ten from 10 ' c to 240·C. In practice 

one would have to consider the warming up of the cold water due to heat 

exchange between the water and the rock. This is not done here for the 

sake of simplicity. 

In vapour-dominated reservoirs and in liquid- dominated reservoirs with 

high permeability the velocity becomes sometimes so high, that the flow 

becomes turbulent and Darcy's law is no longer valid. In Fig. 3.6 we see 

that the highest velocities occur in the vicinity of the well where the 

pressure gradients are greatest. 

w 

Turbulent Turbulent 

Pe 

Zone Zone , 
La m i n a r 

"1 

V 
<-

zone Laminor 
zone 

" " 
'wf 

" " " 
r--~' , 

82.02 0041 

Fig. 3.6 Pressure profiles in laminar and turbulent flow zones 
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From eq. 3.26 wc have for the pressure profile in the laminar zone: 

p - p = e 5 2nhkP 

r 
In ~ 

r 
S 

The pressure gradient in the turbulent zone can be expressed as: 

where V is the velocity given by the equation of continuity: 

combining eq. 3.39 and 3.40: 

2£ = WlJa • 
dr 211'Ph 

1 -+ 
r 

1 
"2 
r 

and separating the variables and integrating: 

p 
f sdp. Wua f 

r 
S dr + rs dr 

f 
p wf 2nph r r 

w 

The integration results in: 

WlJa 
= --In 

2TTPh 

r 
..... + 
r 

w 

r 
w 

W2~b 1 1 

2 
r 

(- --) 

4n
2
p

2
h

2 
r r 
w s 

A~ng eq. 3.38 and 3.42 and defining a ; ilk : 

WIJ r 
= ---In ~ + 

2nphk rw 

W2~b 1 1 
(-- - ) 

4l1'2p2h2 r r 
w s 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42 ) 

(3 .43) 

Where the last term is the additional pressure drop due to the turbulent 



zone. If r »r eq. 3.43 reduces to: 
s w 

Pe - Pwf = 
2nphk 

which can be written as: 

w~ 

Pe - P wf = 2rrphk (In 

We define : 

bk 
C = -:c::f',~ 21fPhr 

w 

r 
~+ 
r 

w 

Wbk 

2nphr ) 
w 

and inserting in eq. 3.44 gives: 

W]J 

= ( I n 2TrPhk 

r 
~+ 
r 

w 
CW) 
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(3.44) 

(3.45) 

(3.46) 

CW is the additional pressure drop at the wellbore due to turbulen t flow 

conditions . The turbulent pressure drop will be discussed later in chap

ter 3.11 and 3.14. 

The total pressure drop at the wellbore can now be expressed for steady 

state conditions. 

W]J 

= -- (in 
2rrphk 

r 
~+ 
r 

w 
s + CW) (3.47) 

Estimation methods of the parameters S and C will be discussed later as 

mentioned above. The skin factor S shoul d not be confused with the 

storage coefficient s. 

The semi steady state or pseudosteady state solutions occur when the press

ure decline is proportional to time. This means that the pressure decline 
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curve has struck impermeable boundaries all around the producing well 

and the reservoir is being depleted at a constant rate. Using the storage 

coefficient, eq. 3.7 we have: 

Adpc~hY = - Wdtg 

where A is the drainage area. 

!!£ 
dt 

(3.48) 

If we have a circular drainage area with drainage radius, r we get : 
e 

~; _::!-w~ 
2 

dt cq,hPTTr 
e 

Eq. 3.12 now reduces to: 

1 d 

r dr 
(r ~) 

dr 2 hPk1Tre 

and integrating this equation: 

r ~ + c, 
dr 

where C, is a constant of integration. 

(3.49) 

(3.50) 

At the outer, no flow boundary dp/dr vanishes and hence the constant can 

be evaluated as C, = 2~hP which, when substituted in the last equation , 

gives: 

~ 
dr 

W)J 1 
211'khp (r-

r 
<7) 

e 

Integrating once again: 



=~ (In 
2nkhp 

r 

r 
w 

2 
_r_) 

2r 2 
e 

in which the term 
r 2 

w 
~ is considered negligible. 

e 
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(3.51) 

Eq. 3.51 is a general 

expression for the pressure as a function of the radius. In the particu-

lar case when r _ r then: 
e 

r 
(In e 

2ifkh P r 
w 

1 
-) 
2 

(3.52) 

in which both the skin factor and the turbulent pressure drop could be 

included. See eq. 3.47~ 

w 

Pi 

Pe 

h 

"~ ~: '., 
'. '. 

82.02 . 0043 

Fig. 3.7 Pressure distribution for the solution of the radial 
diffusivity equation under semi-steady state conditions 

Fig. 3.7 shows the pressure situations after the well has been producing 

at a constant rate for some time t. The mass balance equation for the 

drainage volume is given by: 

J Wt (3.53) 
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which can be simplified as : 

r 
e p 2nrc~hpdr = Wt 

r 

Inserting eq. 3.51 for Pr gives: 

r 
e r r (I n 

AS ~r 2«A this equation can be approxi mated by: 
w 

r 
w 

r 2 
err 

r (In;- - 2r'7) dr = Wt 
rw w e 

Integrating eq. 3.54 gives approximate l y: 

W\1c~ 
(p. - P f) Ac~hp - - - A 

1. W 1lk 

Which can be written as: 

= Pi -

r 
(In ~ 

27Tkph r 
w 

I r 
e 

('2 In r 
w 

3 
- 8) = Wt 

2 
r 2r7) dr = Wt 

e 

(3.54) 

(3.55) 

Eq . 3.55 is identical to eq. 3.52 except that it i s expressed in initial 

pressure, Pi' instead of boundary pressure, Pe' Eq. 3.55 can be written 

as: 

= p. _ .-!!l!.... (.!. 1n 4A 
~ 2TrkPh 2 KC r ~ 

Aw 

kt 
+ 21T ACq,ll) (3.56) 

where K is the exponential of Euler's constant, see eq. 3.65 and A is the 
2 

drainage area, equal to TIre and CA is called drainage shape factor. Eq. 

3. 56 was derived for circular geometry resulting in the factor CA = 31.6. 

If eq. 3.50 is solved for any other geometry, then the solution can be 
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expressed as eq. 3.56 with different CA factors. As mentioned before the 

skin effect and the turbulent pressure drop can be included in eq. 3.56 

similar to eq. 3.47. Eq. 3.56 expressed in dimensionless variables is 

given by: 

1 4A 
=2"lnKcr2+2TTtoA 

Aw 
(3.57) 

If we assume that the transition regime in Fig. 3.2 is very short in 

duration, it is possible to determine approximate time at which the change 

from transient to semi-steady state conditions will occur, by equating eq. 

3.57 for the semi-steady state and eq. 3.67 for the infinite reservoir 

case Le.: 

4A 4tO 1 
In (-) _ 

2 K 2 
In 2 + 2. ~A 

KcArw 

which may be expressed as: 

For the circular geometry, CA = 31.6 and eq. 3.58 gives: 

kt - 0 1 
$~cA - • 

Fig. 3.8 gives drainage shape factors CA ' together with this tDA time 

limit for different geometries. For all of the geometrical f i gures in 

Fig. 3.8 the approximation of short transition time is very good. Care 

must be taken for other geometrical configuration, where the transition 

regime is very large, making the approximation by eq. 3. 58 invalid. 

Necessary condition for eq. 3.58 to be valid is completely closed drainage 

area, as all the geometrical configurations in Fig. 3,8 are. 
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Stabilized Stabitized 
conditions conditions 

f01 ~> f01 ~> In CA CA ~IJ.CA In CA CA tPP.CA 

n bounded reservolrl EE, 2.38 10.8 0.3 

8 2 

3.45 31.6 0.1 8, 1.58 4.86 1.0 

8 
2 

3.43 30.9 0.1 ~, 0.73 2.07 0.8 

2 

8 3.45 31.6 0.1 ! 
4 

/' 1.00 2.72 0.8 

/ • /' -1.46 0.232 2.S 

~ 4 

3.32 27.6 0.2 

/ 
• /' - 2.16 0.115 3.0 

til 4 

3.30 27.1 0.2 W 1.22 3.39 0.6 

~~ 3.09 21.9 0.4 m, 1.14 3 .13 0.3 
2 

C!J, m , -<l.5<I 0.607 1.0 
3.12 22.6 0.2 2 

2 

I, EEEH • - 2.20 0.1 l' 1.2 
1.68 5.38 0.7 

4 2 

• 1'0.86 2.36 0.7 {~J. -2.32 0.098 D •• 
S 

EE In wtterod, .... 'lIHrv(li" 

2.56 12.9 0.6 CV 2.95 19.1 0.1 

~ In reserv<oin Of unknown production eh,r.cter 

1.52 4.57 O.S G) 3.22 25 0.1 

Fig:. 3.8 Dietz shape factors for various geometries (Dietz, 1965) 
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3.5 The infinite reservoir case, Theis solution and interference tests 

During the initial transient flow period, it has been found that the well 

can be approximated by a line source. This assumes that in comparison to 

the apparently infinite reservoir the wellbore radius is negligible and 

the wellbore itself can be treated as a line. This leads to a consider

able simplification in the mathematics and for this solution the boundary 

and initial conditions may be stated as follows: 

1 ) P = 0 at D "n- O, for all r D 

2) P
D 

• 0 at r D = ~, for all "n 
ap (3.59) 

3) lim 
D 1 "n>0 r --Darn 

rD-+() 

The solution to the radial diffusivity equation with these boundary and 

initial conditions is given by: 

1 
- - Ei 

2 

2 
r

D 
(- -) 

4tD 
(3.60) 

This solution is the exponential integral solution. Where the exponential 

integral is defined by: 

~ -u 
Ei(-x) = -! ~du 

u x 
(3.61) 

In groundwater hydrology the solution is known as Theis solution. The 

exponential integral eq. 3.61 is usually defined thus: 

W(x) ::: - Ei(-x) (3.62) 

W(x) is known as the well function, it can be expanded as follows: 

W(x) ::: Y + In x + t 
n:l 

(3.63) 
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where Y = 0.5772, Eulers constant. If x<O.Ol it can be approximated as: 

W(x) :::: Y + I n x 

If we define: 

K = eY _ eO.5772 s 1.781 

Eq. 3.64 can be written as: 

Ei (-x) = InKx 

Eq. 3.60 can now be approximated as: 

provided that: 

. 
-D > 25 

2 
ro 

4to 
--2 = 

1 

2 
Cln 

to 
--2 + 0.8091) 

rO 

Eq. 3.67 is called the logarithmic approximation. 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

The exponential integral solution, eq. 3.60, is shown in Fig. 3.9. 

As said before the exponential integral solution is a line source sol

ution. If we take into account the radius of the wellbore, the initial 

and boundary conditions become: 

1) Po = 0 at <0 = 0, for all r >1 
0 

2) Po = 0 at rO 
_ 00, for all to 

oP (3.69) 

3) (r
o 
2) 
aro 

1 

r D = 

which can be compared with eq. 3.59. 



o 
~ 

00-' .0 
z 

to Iro 
.0' <C' 

Fig. 3.9 Dimensionless pressure for a single well in an infinite system, no wellbore storage, no skin. 
Exponential-integral solution (Earlougher 1977) 

.0' 

• 
" -• 
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The solution to the radial diffusivity equation with initial and boundary 

conditions given by eq. 3.69 is given by Everdingen and Hurst (1949): 

2 

2 
-u to 

m (l-e ) 

f 2 2 2 
u (J1 (u) + Y1 (U)) (3.70) o 

where J
o 

and J
1 

are the Bessel functions of the first kind of order zero 

and one respectively, and Y
o 

and Y
1 

are the Bessel functions of the 

second kind of order zero and one respectively. 

3.70 is shown in Fig. 3.10, when ro ~ 20 

The relationship given 
2 

and when to/ro ~ 0.5 or 

> 25, the solution can be approximated by the exponential integral 

solution. It is thus just in the immediate vicinity of the producing 
2 

well that eq. 3.70 should be used for low values of to/ro' When 

rO 1 (r = rw) then the above conditions become, ~ ~ 25, which is the 

case for most geothermal reservoirs, allowing the exponential integral 

solution to be used. 

EXERCISE 3.2 

In Svartsengi, high temperature area in Iceland. the transmissivity and 

the storage coefficient have been estimated, see Kjaran et al. (1980): 

S = 0.012 
2 

T=0.012m/s 

The diameter of a producing well is: 

d = 8 1/2 in. w 

The density of the reservoir fluid is: 

3 
Pw = 825 kg/m 

1) After how long flowing time is the exponential integral solution 

valid for r = r ? 
w 



o .. 

'0 

2 
to / '0 

Fig. 3.1 0 Dimensionless pressure for single well in an infinite system, small rn' short time , no wellbore 
s torage, no skin . (Mueller and Witherspoon, 1965) 

, 
" w , 
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2) After how long flowi ng time is the logarithmic approximation to the 

exponential integral va l id for r = 240 m ? 

3) What will be the pressure drop at an observation well 240 m f rom t he 

producing well , if it has been f l owing at the steady rate of 60 kg/s 

f or 10 hours; assumi ng infi nite reservoi r conditions stil l prevail? 

Solution 

1) r = 0.108 m 
w 

Condition given by: 

or 

Sr 225 
w 

t > -'::--- = 
T 

T 
--2 
Sr 

w 

t > 25 

0.012 • 0.1082 • 2S 

0.012 

2) Condition given by: 

or 

or 

tD 
> 2S 

2 -
r

D 

to Tt 

2 = 2 2 
rO srw rO 

25sr 2 

Tt 
= - > 2S 2 -

Sr 

:.: 0 . 3 sec. 

t > =~= 
T 

2S • 0.012 • 2402 

0.012 = 17 days 



3} Eq. 3. 60 and eq. 3.20 give: 

2'T 
- 6p = Wg 

2 
rO 

4to = 

1 
- - Ei 

2 

2 
rO 

(- - ) 
4~ 

2 
rO 

(- -) 
4to 

2402 • 0.012 
= 4 • 0.012 • 10 • 3600 - 0 . 4 

Fig. 3 . 9 gives: 

- Ei (-0.4) = 

which gives: Po 

sol ving for: 6p 

6p = ~p 
21TT 0 • 

0.35 

= 1 0.35 0.175 • = 2 

60 • 9 .81 • 0.1 75 
2-1T·0.012 

~ 0 . 014 bar = 0. 17 m 

The logarithmic approximation gives: 

1 1 

= 1366 N/m2 

~ 
(In ---2 + 0.8091) = (In 0.625 + 0.891) = 0.170 

2 rO 2 

which can be compared with the exact value Po = 0.175. 

-75-
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The most common use of the infinite reservoir period in well testing, is 

to estimate the reservoir parameters k and $c. The exponential integral 

and its logarithmic approximation is often used in the interference well 

testing analysis. The process of measuring pressure decline in an observa

tion well 't/hile another well is producing at constant rate, is named interfer

ence test. Two methods are available, the match point method using the 

exponential integral, and the straight line method using the logarithmic 

approximation. 

By combining eq. 3.20 and eq. 3.60 and taking logarithm of both sides we 

have: 

W)J 
log bp - log 27ikhP = log P D 

2 
r k 

log - log = log 
t ~Vc 

By selecting a match pOint on Fig. 3.9, eq. Po 

3.71 with respect to k and $c: 

k _ W)J 

2lThP 6.p 

~c 
kt 

2 Vr 

or when S and T are used: 

T =...!!L 
2rr IIp 

s _ Tt 
2 

r 

2 
r

D 
=t= 

D 

(3.71) 

1. we can solve eq. 

(3.72) 

(3.73) 

The match point method is illustrated on Fig. 3.11. It is not restricted 

to the exponential integral solution, but can be used with any dimension

less pressure function. 
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10' 
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--211' hpk 

4>c ~rl 

------.- / 
Morch ./' po,nr 

'.' V (toPI) 

V ., 
10-' / 

/ 
10" 10' 10' 10' 10' 

tolrot 

DolOCl,lrve 
82: OC! 0045 11ft 

Fig. 3.11 Illustration of the match point method 

EXERCISE 3 . 3 

Following data is from an interference test from a geothermal reservoir 

at East Mesa, in the Imperial Valley, California. Data is taken from 

Witherspoon et al. (1976). 

Reservoir temperature 

Distance between the observation 
well and the producing well 

Flow rate 

The pressure response is given by: 

T = 154 "C 

r '" 1250 ft 

Q = 130 gpm 
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Time Pressure 
hours drop, psi 

15 0.34 

26 0.65 

38 1.05 

50 1.35 

60 1. 70 

85 2.20 

100 2.50 

1) Estimate the reservoir parameters kh and ~ch by using the match poi nt 

method for the infinite reservoir case . 

2) Determine the corresponding transmi ssivity and storage coeffi cient. 

Solution 

From the reservoir temperature we have the density and the viscosity. 

P 913 kg/m 3 
=1.77 slug/ft 

3 

-5 2 
~ = 0.17 cp _ 0.35 10 ibfs/ft 

3 
Q = 130 gpm = 0.29 ft /s 

3 
P20·C = 1. 94 slug/ft 

W = QP20'C = 0.563 slug/s 

1) The pressure response is plotted on the datacurve on Fig. 3.12. Ac

cording to the match point method it is compared with the d imension

l ess pressure on Fig. 3.9 and the match point is selected. The result 
2 

for the matchpoint is (PD, 1o/rD ) = (1,1) 

l:!p = 3.8 psi 

t = 77 hours 

The coefficients can now be calculated according to eq. 3.72. 
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Fig. 3.12 Datacurve for interference test at East Mesa 
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~, 0.563 • 0.35 • 10-5 
kh = ~ - ::-'==-:-="'--::-:~-;-;-: 2np6p - 2 • n • 1.77 • 3.8 • 144 

-10 3 
• 3.24 • 10 ft .. 30500 md-feet 

$ch 
kht 3.24' 
--2 • 
lJr 0.35 

- 3 
= 2.36 • 10 ft/psi 

10-10 • 77 • 3600 

• 10 5 • 12502 
• 144 

2) Equation 3. 73 gives the transmissivi t y and the storage coefficient. 

T = ..!'2.... _ 0.563' 32.174 = 5.27 • 10-3 ft2/s 
2Tf6.p - 2 • 'IT • 3.8 • 144 

10-
3 

• 77 • 3600 = 0.93 • 10- 3 

12502 

- 4 2 
:: 4.9 • 10 m /s 

If we combine eq. 3.67 with eq. 3.20 and the definitions for the dimension

less time and distance, eq. 3.17 and 3.19 we get: 

~p = ~ (In 
411khp 

kt ---+ 
2 

<pJ.lcr 
0.8091) 

which can be written as: 

m 
~p. --

2.3 
(1n t + ln~~l 

2 
4l\.lcr 

(3.74) 

where m is the slope of the straight line for pressure drop vs. the 

lO-logarithm of time. Eq. 3.74 is the basis for the straight line method 

mentioned before, but of course eq. 3.68 must be fullfilled for eq. 3.74 

to be valid. If we plot the pressure drop vs. the logarithm of time we 

get an estimate of the permeability from the slope of the line as follows : 



k = 2. 3W\l 
41Thpm 

and expressed in transmissivity coefficient: 

T 2.3Wg 
= 4mn 
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(3.75) 

(3.76) 

If we put 6p = 

3.74 gives: 

Din eq. 3.74 and define the corresponding time by t , eq. 
o 

2.246kt 
~c = __ ::-",0 

2 
~r 

and expressed in storage coefficient : 

2. 246Tt 
S = __ -=--,0" 

2 
r 

EXERCISE 3.4 

(3.77) 

(3.78) 

The following data is from an interference test at Reykir hydrothermal 

system in south west Iceland (Thorsteinsson, 1975). The temperature of 

the geothermal water is about as·c. Well MG- 4 was producing 25 lis for 

about 17 hours, and the water table drawdown was measured in well MG-l1 

at a 300 m distance from the pumping well. The measured drawdown is 

given by: 
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Time Drawdown Time Drawdown 
s m • m 

t llH t llH 

180 0.018 5100 0.195 

330 0.040 7200 0.220 

510 0.060 10500 0.240 

690 0.075 14400 0.265 

1020 0.100 18600 0.280 

1410 0.120 26400 0.320 

1800 0.130 33600 0.330 

3000 0.160 54000 0.380 

3600 0.170 

I) Estimate the parameters S and T by using the semi log straight line 

method. 

2) What would the drawdown at the pumping well be after ten days of 

operation if the pumping rate were 25 lis. The wellbore diameter 

is 0.22 m. 

Solution 

The drawdown is plotted on Fig. 3.13 vs. the logarithm of time. Accord

ing to eq. 3.68 we must have that: 

When the straight line on Fig. 3.13 is drawn the above condition must be 

taken into accoWlt, thus giving the last points greatest weight, and 

accordingly the first points deviate from the straight line. 

From the reservoir temperature we have the density and mass flow of well 

MG-4. 

W = PQ • 24.2 kg/. 

1) According to eq. 3.76 expressed in the slope for the drawdown vs. the 

logarithm of time we have: 



2 . 3W 24.2 • In10 -2 2 
T - 4~P = 4 • 1T • 968 • O~17 = 2.69 • 10 m /s 

and eg. 3.78 gives for the storage coefficient: 

2., 24GTt 
S ; _--;;---,,0 ._ 

2 
r 

2.246 • 2.69 • 10-2 • 310 

300
2 

Checking the condition for t we get: 

; 2 . 08 • 10-4 

25r2S 25· 3002 • 2.08 • 10-4 
t>--- - ~ 

2.69 • 10-2 
17398 sec. 

T 

Accordingly the straight line on Fig . 3 . 13 need not be corrected. 
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2) Ten days = 864,000 s and the logarithmic approximation can be used. 

Eq. 3.67 gives : 

1 to 
Po ; (In - 2 + 0.8091 ) 

2 rO 

1 Tt 
0.80911 ; (In --2 + 

2 Sr 
w 

1 2.69 • 10-2 • 864000 = (In "'-''''--,,-=_-'-==00 + 0.8091) 
2 0.11 2 .2.08.10-4 

Eg. 3.23 then gives for the drawdown: 

11.88 • 24.2 PoW 
~H = -- - -------~:_-- ~ 1. 76 m 

2 2TITp 2· 1T • 2.69 • 10 • 968 



'00 to IOOO· t i me, sec I~OOO 100,000 1 

Fig. 3.13 Data from an interference test at the Reykir geothermal field, Iceland 

, 
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Finally two examples of the entire pressure drawdown history for two 

different reservoirs will be given. The first one is an actual exampl e 

from the Svartsengi geothermal area in Iceland. Fig. 3.14 shows the 

pressure drawdown history and reservoir geometry . The pressure draw

down is given by the following equation, see Kjaran et al . (1980): 

1 
PAS 

where the coefficients are defined as: 

n ~ 0, m ~ ° 

-(t-1")K 
W(T)e mndT 

c = 
run 

4 

2 

1 

(n * 0 and m _ 0) or en = 0 and m ~ 0) 

4lnm = 
mTIx 

cos 
a 

n Oandm=O 

• cos 

and other symbols are defined on Fig. 3.14. 

(3.79) 

(3.80) 

(3.81 ) 

(3.82 ) 

Here the first part is as usual the infinite reservoir case and then 

comes the transition state, which is in this example very large and eq. 

3.58 can not be used to estimate the beginning of the semi-steady state. 

For practical purposes this reservoir has no steady or semi-steady state. 

It is more like a narrow trench, open in one end but closed in the other 

end. 

The second example is for a well draining from the centre of a circular, 

bounded drainage area. The variation of the pressure at the boundary 

with time is given by eqs. 3.55, 3.56 and 3.57. The full solution reads 

using dimensionless parameters: 

2 -a "02 
2tD 3 00 n e J

1 
(anr

eO
) 

Po(to ) = --+ 1n r - - + 2 E 2 
(3 . 83) 

2 eO 2 2 
reD 4 nd a (J 1 (a r 0) - J 1 (an» 

n n e 
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Fig. 3.14 Pressure drawdown history of a well at the Svartsengi geothermal field, Iceland 
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in which reD = r /r and a are -che roots of: e w n 

J 1 and Y1 are the Bessel functions ' of the first and second kind. One 

thing that can be observed immediately from this equation is that it is 

extremely complex, to say the least, and yet this is the expression for 

the case of simple radial symmetry. Fortunately there is a fairly abrupt 

change from transient to semi-steady state flow so the transient term of 

eq. 3,83 need never be used to generate the Po functions. Instead eq. 

3.60 can be used for small values of the flowing time and eq. 3.56 for 

large values, with the transition occurring, according to eq. 3.58, at 

t ' 0 1 DA •• 

These two examples are given to show; that sometimes the full solution 

must be used for the pressure behaviour and in other cases just the infi

nite reservoir solution and the semi-steady state (steady state) solution 

are satisfactory to describe the pressure distribution. 

3.6 Constant pressure solution 

The transient behaviour of a well operatinq at constant pressure is anal

ogous to that of a well operating at a constant flow rate. In a constant 

pressure flow test, the well is assumed to produce at a constant bottom

hole pressure and flow rate is recorded with time. As will be discussed 

later the well flowing at constant rate is influenced by wellbore storage 

i.e. changes in the quantity of fluid contained in the well itself. The 

constant pressure well is there against not influenced by the wellbore 

storage effect. However, if the surface pressure ls maintained constant, 

the frictional pressure drop in the wellbore may act in a manner similar 

to wellbore storage, causing bottom-hole pressure to vary during the test. 

Fig . 3.15 schematically represents pressure and rate behaviour in a con

stant-pressure drawdown test. 
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Fig. 3.15 Schematic representation of massflow and pressure histories 
during a constant pressure test 

The differential equation for the flow situation is the same as before, 

the radial diffusivity equation, eq . 3.21. The initial and boundary con

ditions are given by : 

1 ) Po = ° at "0 = 0, for all ro 

2) Po = ° at rO = ro , for all tD>O 

3) Po 
21fkhP 

(Pi - pwf ) at rO = 1 , for all ~>O WjJ 

The solution is given by Jacob and Lohman ( 1952): 

f 
o 

2 -t x o 
xe 

n 
(-2 + arctg (Y (x)/J (x»}dx 

o 0 

(3.85) 

(3.86) 

in which J (x ) and Y (x) are Bessel functions of zero order of the first o 0 

and second kinds , respectively, and : 



10-4 

1 56.9 
2 40.4 
3 33.1 
4 28.7 
5 25.7 
6 23.5 
7 21.8 
8 20.4 
9 19.3 

10 18.3 

10
4 

1 0.1964 
2 0.1841 
3 0.1777 
4 0.1733 
5 0.1701 
6 0.1675 
7 0.1654 
8 0.1636 
9 0.1621 

10 0.1608 

Table 3 . 1 

10-3 10-2 10-1 

18.34 6.13 2.249 
13.11 4 . 47 1. 716 
10.79 3.74 1.477 
9.41 3.30 1. 333 
8.47 3.00 1. 234 
7.77 2.78 1.160 
7.23 2.60 1.103 
6.79 2 .46 1.057 
6.43 2.35 1. 018 
6.13 2.25 0.985 

105 106 10
7 

0.1608 0.1360 0.1177 
0.1524 0.1299 0.1131 
0 . 1479 0.1266 0.1106 
0.1449 0.1244 0.1089 
0.1426 0.1227 0.1076 
0.1408 0. 1213 0.1066 
0.1393 0.1202 0.1057 
0.1380 0.1192 0. 1049 
0.1369 0.1184 0.1043 
0.1360 0.1177 0. 1037 

values of Wo for values 

(Jacob and Lohman 1952) 
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1 10 102 
10

3 

0.985 0.534 0.346 0.251 
0.B03 0.461 0.311 0.232 
0.719 0.427 0.294 0.222 
0.667 0.405 0.283 0.215 
0.630 0.389 0.274 0.210 
0.602 0.377 0.268 0.206 
0.580 0.367 0.263 0 . 203 
0.562 0.359 0.258 0.200 
0.547 0.352 0.254 0.198 
0.534 0.346 0.251 0 . 196 

108 10
9 

10
10 1011 

0.1037 0.0927 0.0838 0.0764 
0.1002 0.0899 0.0814 0.0744 
0.0982 0.0883 0.0801 0.0733 
0.0968 0.0872 0.0792 0.0726 
0.0958 0.OB64 0.0785 0.0720 
0.0950 0.0857 0.0779 0.0716 
0.0943 0.0851 0.0774 0.0712 
0.0937 0.0846 0.0770 0.0709 
0.0932 0.0842 0.0767 0.0706 
0.0927 0.0838 0.0764 0.0704 

-4 12 
of to between 10 and 10 

(3.87) 

and to is defined by eq. 3.17. The dimensionless mass flow function, Wo' 

has been evaluated by Jacob and Lohman (1952) and is given in Table 3.1 

and Fig. 3.16. The match point can be used as before to estimate the 

reservoir coefficients. By selecting the match pOint Wo = ~ = 1 on Fig. 

3.16 we have: 

(3.88) 

and 
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'0 

Fig. 3.16 Dimensionless mass flow function for a single well in 
an infinite system (Jacob and Lohman 1952) 

kt 
2 

~rw 

or when Sand T are used: 

Tt 
S - --2 

r 
w 

(3.89) 

(3.90) 

(3.91) 

According to Jacob and Lohman (1952) the function Wo can be approximated 

for large values of time by: 
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(3.92) 

According to eq. 3.62 and eq. 

values of time, by: 

1 
3.64 W(4'n) can be approximated for large 

1 
W(-) = In to + 0.8091 

4to 

and inserting in eq. 3.92 gives : 

Wo = "--0---:
2,"",,"-== In tn + 0.8091 

Eq. 3.94 is correct within 

only 1 percent when to ~ 8 

11 
0.1 percent for t > 5 • 10 • 

4 0 -
10 and is 2 percent when to > 

Inserting eq . 3.94 into eq. 3.87 results in: 

1 _ __ ...J~e...... _ _ 

4rrkPh(p
i 

- p
wf

) 

kt 
(in "":''-'=--,c2 + O. B091 ) 

$llcr w 

which can be written as: 

1 - - m (In t + In 
W 

~.246k ) 
2 

4>J.lcr w 

w 

(3.93) 

(3.94) 

The error is 

5 • 103 • 

(3.95) 

(3 .96) 

where m is the slope of the straight line for l/W vs. the logarithm of 

time. From the slope we have as before an estimate for the permeability: 

(3.97) 

and expressed in transmis s-i vi ty and pressure head : 

T = 
I (3.98) 

41Tp.6Hm 
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1 If we put - = 0 in eq. 3.96 and define the corresponding time by t we 
W 0 

have: 

~c -
2. 246kt 

o 
2 Vr 

w 

and expressed in storage coefficient: 

s • 
2. 246Tt 

o 

r 
w 

2 

(3.99) 

(3.100) 

The skin factor can be included if necessary. See chapter 3.16 for dis

cussi'on on the skin factor. 

EXERCISE 3.5 

The following data is from a constant pressure test in Seltjarnarnes low 

temperature area in Iceland (Thorsteinsson 1969). The temperature of 

the geothermal water is 77.S'C. The mass flow of well S-2 is given on 

Fig. 3.17 as a function of the logarithm of time. The recorded pressure 

drop due to the opening of the well was 1 bar. Estimate the transmissivity 

of the reservoir. 

Solution 

From the reservoir temperature we have, p = 973 kg/m3, We then have: 

AH = 973 • 9.81 
.. 10.48 m 

By using Fig. 3.17 we have according to eq. 3.98: 



--.-

10 100 days 

Fig . 3.17 Data from a constant pressure test in Seltjarnarnes, Iceland 
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1 
=----------~------~ -3 4 • TI • 973 • 10. 48 ·6.7 • 10 

-3 2 
':; 1 .16-10 m/s 

3.7 Tidal effects 

In coastal reservoirs in pressure contact with the ocean, sinusoidal 

fluctuations of piezometric head occur in response to tides. If the sea 

level varies with a simple harmonic motion, a train of sinusoidal waves 

is p~pagated into the reservoir. With distance, inland amplitudes of 

the waves decrease and the time lag of a given maximum increases. Fig. 

3.18 shows a schematic explanation of the tidal effects. 

Piezometric 
level 

Ground surface 

_____ J 

---.,-
Rano, of 
fluctuation 
2 • . 

plezometrlc surfoce ranOe 2ho C 

Tidal ronQt.2h~ _ _ __ Meon .. o level , 

: ::" ""'" ~::t:::" "" ::::::::::::::.::::~:~:~~.~: .......... .., .-~ :: iXii"'AX 

"Xll( iX.AliA_Xi AXA AXil 

82 .02 .0056. 

Fig. 3.18 Schematic figure of tidal effects 

The problem has been solved by analogy to heat conduction in a semi-in

finite solid subject to periodic temperature variations normal to the 

infinite dimension. For simplicity we consider the one dimensional f orm 

of eq . 3.13 with the transmissivity and storage coefficient as the res

ervoir paramet ers. The one dimensional equation is given by: 



The boundary conditions are given by: 

h = h sinwt 
o 

h = 0 

x • 0 

The angular velocity is W for a tidal period t : 
o 

w = 

The solution is given by, see Cars law and Jaeger (1959): 

h c h 
o 

e 

-xt; 
o . (2~t 5>n -- -

t o 

The amplitude of the piezometric level is then given by: 

h 
x = h o 

This eq. can be written as: 

n 
X:::~ln 
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(3.101) 

(3.102) 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

If ml is the slope of the straight line for x vs. the logarithm of the 

range ratio we have from eq. 3.106: 

(3. 107) 
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The time lag tL of a given maximum or minimum after it occurs in the 

ocean can be obtained by solving the quantity within the parentheses of 

eq. 3.104 for t, so that: 

tL • f£ x 41T'r (3.108) 

If m
2 

is now the slope of the straight line for x vs. the time lag, tL 

we have from eq. 3.108, 

T 

s = (3.109) 

Eq. 3.107 and eq. 3.109 can be used to estimate the ratio between the 

transmissivity and storage coefficient . If the ocean is not in direct 

contact with the aquifer, but acts as a loading of the reservoir, the 

situation is as described in Fig. 3.19. 

/GrOUnd surface 

(Piezometric head 

Geothermol restlvolr 

82.02.0055. 

'////// 
2h-:::L- _ ... '+----

,Tidal rang' 2 ho 

)--- .,r-Mean .ea level. 

Ocean 

Fig. 3.19 Schematic figure of tidal loading of reservoir 

C is the tidal efficiency as explained in chapter 2. Eq. 3.105 now 

becomes: 



-x r;s 
!tY 

h = Ch e 0 
x 0 

and eq. 3.106 now is: 

x = /:;T (tn 

h 

-"-+ 
h x 
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(3.110) 

In C) (3.111) 

Eq. 3.107, 3.108 and eq. 3.109 remain unchanged. The tidal efficiency 

can be determined from the s_traight line graph of x vs. the logari thIn of 

the range ratio, according to: 

h 
C = (~) 

h 
o 

EXERCISE 3.6 

(3.112) 

X=O 

The following data is from the Laugarnes hydrothermal system in Reykjavik, 

Iceland (Thorsteinsson and El!asson 1970) . The range ratio has been 

measured in different wells in different distances from the shore. The 

result is given in the following table: 

Well Range ratio 
No • 
G6 2.19 

G21 3 . 80 

G13 4. 32 

G5 4.79 

G8 5.89 

GI4 10 .23 

The tidal period is 12.3 hours. 

Distance 
m 

1000 

660 

580 

540 

380 

60 
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1) What is the ratio between the transmissiv!ty and storage coefficient? 

2) What is the tidal efficiency? 

Solution 

1) The data is plotted on Fig. 3.20 . and the slope of the straight line 

is calculated. Eq. 3.107 now gives: 

T 
S 

2 m ~ 
t o 

608.01 2 • ~ 
12.3 • 3600 

2 = 26.2 m Is . 

2) From Fig. 3.20 we find the tidal efficiency according to eq. 3.112: 

h 
C = (~ 

h 
o 

X=O 

11.S\. 

• 

Regular semidiurnal fluctuations of small magnitude have been observed 

in piezometric surfaces of some reservoirs far away from shore. These 

fluctuations have been attributed to earth tides, resulting from the 

attraction exerted on the earth's crust by the moon and, to a lesser 

extent, the sun. 



- 99-

Fig. 3.20 Semi logarithmic plot of range ratios observed in wells 
at the Laugarnes hydrothermal system against distances 
from shore (Thorsteinsson and El!asson 1970) 
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Fig. 3.21 Correlati on be tween variation in the earth's gravitational 
field and water pressure in RRGE 1. (Witherspoon et al. 
1976) 

Fig. 3.21 is taken from Witherspoon et a l . (1976) ' and shows pressure 

response of well RRGE, in Raft River valley geothermal field. Idaho. U.S.A., 

during a interference test . The figure shows also the computed changes in 

the earth's gravitational fie l d for the period September 28 to October 6, 

1975. I t is clearly seen from this figure that superposed on the overall 

pressure decli ne caused by interference due t o the producing well are the 

periodic pressure changes caused by the earth tide effects. 

A theoretical study of the response of a well-aquifer system to earth 

tides has been carried out by Bredehoeft (1975), 
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3.8 Pressure buildup and Homer methods 

One of the most powerful tools at the reservoir engineers disposal in 

solving complex flow problems is the superposition principle. Let us 

therefore begin this chapter on pressure buildup by explaining the method. 

Mathematically the superposition principle states that any sum of individ

ual solutions of a second order linear differential equation is also a 

solution of the equation. As the differential equation 3.12 1s a linear 

second order differential equation the superposition principle applies. 

Let us take for an example the cas'e of a well producing at a series of 

constant rates for the different time periods shown in Fig. 3.22. To 

determine the wellbore pressure after a total flowing time t I when the 
n 

current mass flow is W , the superposition principle is applied to deter
n 

mine the solution in terms of: 

W 

mon 

flow W, 

W2 

I 
I 
I 
I 

" 

Pw, 

" 82..02 .0059. 

W3 

I 
I 
I w. 
I 
I 

'2 '3 

'3 

W, -. 
I 
I 

" 

r--
I 
I 
I 

Fig. 3.22 Mass flow history of a well and bottom hole pressure 
as functions of time 

time 

time 
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W
I 

acting for time t 
n 

+ (W
2 

- W ) 
I 

acting for time (tn-t l ) 

+ (W
3 

- W ) 
Z 

acting for time (t
n 
-tz) 

+ (W, - W, I) acting for time (t
n 

- t
i

_
1

) , ,-
+ (W - W ) acting for time (t -t I) n n-I n n-

Perhaps the best way to l ook at the problem is as follows. The initial 

mass flow W1 ' acts over the entire period t n • At time t1 a new well is 

opened to flow at precisely the same location as the original well at a 

rate (W2 - W1) so that the net mass flow after tl is w2 • At time t2 a 

third well is opened at the same location with mass flow (W
3 

- W
2

) which 

reduces the mass flow to W3 after time t2 •.•.• etc. 

The complete solution is then: 

n 
l: 

j =1 
(3.113) 

Equation 3.1 13 may be regarded as the basic equation for interpreting the 

pressure time-rate data collected during any well test. Eq. 3.113 may 

equally well be used for interference tests by replacing Pwf with p(r , t) 

that is the pressure in the observation well. The skin effect and tur

bulent pressure drop may be included in eq. 3.113 if necessary. 

Let us now consider three important cases. 

a) Single rate drawdown test 

In this type of test the well is producing at a single constant rate. 

We have: 

And eq. 3.113 reduces to: 
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(3.114) 

which is the equation we have been discussing so far. 

b) Pressure buildup testing 

This is probably the most common of all well test techniques and the main 

objective of this chapter. The mass flow and the corresponding pressure 

response are shown in Fig. 3.23. The well is run at a constant mass flow 

rate W for a time t and then closed in. During the latter period the 

closed-in pressure Pwf = PW5 is recorded as a fUnction of the closed-in 

time 6t. Eq. 3.113 can again be used but in this case with: 

W
1 = W, 

w
2 = 0, 

6w1 

6W2 

moss 
flow 

W 

Pressure 

82.02.0060. 

= 

= 

w, 

- W; 

p 
·f 

to = to + 6to 
n 

to - to = 6to 
n 

w 

Co) 

time 

.f 

(b) 

time 

.f 

Fig. 3.23 Pressure buildup test a) mass flow b) pressure response 
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If the skin effect and turbulent pressure drop were included in eq. 3.113 

they would disappear by cancellation and the equation reduces to: 

(3.115) 

Eq. 3.115 is the basic equation for pressure buildup analysis and will 

be discussed in more detail in the following. 

c) Multi-rate drawdown testing 

In this form of the well test the mass flow is not constant but varies 

as a function of time and eq. 3.113 is used directly to analyse the re

sults. Eq. 3.113 is usually written as: 

6w. 
~p (t 
W D D 

n n 
- t ) 

Dj_I 

(Pi - pwf)/W
n 

is usually plotted versus 

n 
[ 

j-I 

6W 
:::.::i p (t 
W D D 

n n 
as shown On Fig. 3.24. 

(3.116) 

The slope of the straight line is m = ~/2rrkhP. The skin effect and the 

turbulent pressure drop could be included as before. 

Turning back to theoretical buildup equation as presented in eq. 3.115 

in which ~ is the dimensionless flowing time prior to closure and is 

therefore a constant, while 6to is the dimension less time for the closed 

in period corresponding to the pressure p , the latter two being vari-
ws 

ables which can be determined by interpretation of the pressure history. 
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m = ---.l!:..-
2711thp 

Fig. 3. 24 Multirate flow test analysis 

-105-

By assuming that 6to is small enough to allow us to calculate PoCto ) in 

the transient flow regime, but large enough for eq. 3.67 to be valid the 

above eq. can be approximated as follows: 

21TkhP 
---

W!J 

I 
+ 6t ) - - In 

D 2 

which can alternatively be expressed as: 

21TkhP 

W~ 

1 t + l!.t 
2 in --'t-- + PoCto 

46to 1 
-- + -In 

K 2 

(3.117) 

in which dimension less time has been replaceq by real time in the ratio 

t+l!.t/6t. Again, f or small values of the closed- in time 6t: 

in (iD + 6iD) = in (iD) 
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and eq. 3.117 can be reduced to: 

21TkhP 
---

W\l 

1 

(Pi - pws ) = 2 In 
t + 6t 

6t (3.1181 

Since the dimensionless time, ~, is a constant then so are the last two 

terms on the right-hand side of eq. 3.118 and therefore, for small values 

of fit a plot of the observed values of p vs. In (t+6t)/6t should be 
ws 

linear with slope m = WV/4TIkhP, from which the value of the permeability 

can be determined. This presentation of the pressure buildup is known 

as a Hor ner plot and is illustrated in Fig. 3.25. 

pw• 

4 

W,lIbore 
effeets . 

, 
, 

. mollAt 

3 2 

82.02.0062. In 

Boundary 
.ffeet • . 
\ , 

large.1 

( 
t -+ 4t .. , 

Fig. 3.25 Horner pressure buildup plot 

o 

Wellbore storage can influence the pressure buildup while 6t is small. 

Wellbore storage and skin effects must therefore be accounted for. 

EXERCISE 3.6 

Let the massflow and pressure history be as given by Fig. 3.26. 
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time 

time 

Fig. 3.26 Pressure response test a) mass flow b) pressure response 

Calculate the theoretical pressure equation for the t i me interval 

t l < t < t2 " 

Solution 

We use eq . 3.1 13 and define: 

6W1 = W
1 

b.W
2 

= W
2 

- W
1 

tD 
n 

= t + t:.t 
D1 D 
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By assuming that 6t
n 

is small enough to allow us to calculate Po(tn ) in 

the transient flow regime, but large enough for eq. 3.67 to be valid the 

above eq. can be approximated as follows: 

21lkhP 

1 
1) ("2 In 

which can alternatively be expressed as: 

21lkhP 

+ 2 

1 
= Pn( t o + 6tn ) - 2 

1 

Again for small values of the time 6t : 

In (to ) 
1 

and the above eq. can be reduced to: 

27TkhP 

1 

2 (1 -

1 

= 2 Cl -

4.., 
In -

K 

1 4fito 
1) In 

2 K 

(3.119) 

Since the dimensionless t i me, to i s a constant then so are the last two 
1 

terms on the right- hand side of the above eq. and therefore, for small 
tl + 6t 

values of 6t a plot of the observed values of Pwf vs. ln should 
tl 
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be linear wi th 
(W

1 
- W2)~ 

slope m = 41TkhP , f r om which the value of the permea-

bility can be determined. 

3 . 9 Response to an instantaneous point injection 

Response to an instantaneous point injection is sometimes named slug test 

in the groundwater well hydrology. Ferris and Knowles (1954) introduced 

a method for det ermining the transmissivity of an aquifer from observa

tions of the water level in a well after a known volume of water i s sud-

denly injected into the well. 

The pressure response 1n · a point (x,y,z) in a three dimensional space 
• • • 

when a mass, M, of wat~r is injected or removed at a point (x ,y ,z ) at 

time t = 0 is given by the following expression, see Cars law and Jaeger 

(! 959) 

6p = 
M ---'-'-----,=-

k 3/2 
8p~c( n--'-;;:t) 

~c, 

(3.120) 

- 3/2 
In this case the late pressure response would be like t • In case of 

horizontal flow the pressure response is transmitted i n a two dimensional 

space and the mass, M, is now removed from a line source parallel to the 
• • z axis and passing through the point (x ,y ) . 

z 

(x ,y) 

z 

(Xl,yl) 0 

82.02 .0064. 

Fig . 3 . 27 Line source parallel t o the z-axis 

Eq. 3.1 20 can now be written in terms of the notation showed in Fig . 3 . 27: 
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~p • ___ "M,-_",,, e 
k 3/2 

8P~c (n-.:t) 
Vc, 

{ 2 2 }/4kt - r + z 
vc~ (3.121) 

By integrating the point source along the z-axis gives us the line source 

solution: 

2 z2}/4kt 00 -{r + 
~p 

M f llc4> dz = 3/2 
e 

nk -8P~C(~) Vc 

2 

..!'Jl... }.. e 
-vc~r /4kt 

~p = (3.122) 
4p7Tk t 

where M is the mass withdrawal per unit length of the line source. If 

the t otal mass withdrawal is, rn, and the thickness of the aquifer is h 

eq. 3.122 can be written as: 

mV 1 @ = --- e 
4P7ikh t 

2 
-vc~r /4kt 

(3.123) 

In this two dimensional case the late pressure response would be like 
-1 

t Let us now derive the solution for the continuous line source by 

integrating the fundamental solution, eq. 3.123, in the time domain. 

Let the mass withdrawal be a function of time, W 3 Wet) 

t 
~ __ V_f 

2 
-vc~r /4k(t- T) 

dt 
p 4pnkh 

o 
WeT) e 

If Wet) is constant this becomes: 

@=~ 
4PTTkh 

-u 

f !......du 
2 u 
~ 

4kt 

= -

(t - t) 

2 
WIJ r vcp 

4P1lkh E1 (- 4kt) 

(3.124) 

(3.125) 

which is the exponential integral solution presented before in eq. 3.60. 
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EXERCISE 3.7 

Fig. 3.28 shows the response of well KG- 5 in the Krafla Geothermal field 

in north east Iceland to an instantaneous increase of volume of water. 

A curve fitted to the water level data by Grant (1978) is given. The 
- 4 2 3 

viscosity of the fluid is 10 Ns/m, the density is 865 kg/m and the 

permeability thickness is 10-
11 m3 . Estimate the volume of the injected 

fluid. 

[ I i VOO·VV·.OO·'PK. 
I.: B2 .02.00Ei!S .• m. 

90 

'x 
80 

70 

60 

Water lev.1 

50 
Iml 

40 

30 

20 

10 

0 
7 8 

x 

x 

• 10 " 

Response or KG!S to eruption 

12 

X m.o,ured values 

-i-l!,h' ~,-B/I 

.6.h in cm 

In haurs 

Sept,mber 1977 

13 14 16 

Fig . 3.28 Response of well KG- 5 in Krafla to a volcanic eruption 
situated 5 km from the well (Grant 1978) 

Solution 

The fitted curve by Grant is given by: 

ll.h .. 73800 e 
t 

28800 
t (3 . 1261 
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where 8h is in meters, and t in sec. According to eq. 3.126 the late 
-I 

response is like t and thus the response is in a two dimensional space 

corresponding to a line source. Physically more correct in this situ

ation we have a point source in a confined aquifer. Because a small 

distance away from the point source the flow pattern can be treated as 

horizontal flow, the resulting solution is the same as for a line source. 

Eq. 3.123 written in terms of water level and injected volume is given 

by' 

flh = VV 1 
4nkhpg t e 

2 
-uc~r /4kt 

(3.127) 

combining eq. 3.126 and 3.127 for late time gives for the volume V: 

v = 73800 4TIkhPg 
~ 

73800 • 4 • n 
= 

_ 787 3 
m 

10 4 

3.10 Leakage solutions 

• 865 • 9.81 

Fig. 3. 29 shows the situation when there is vertical leakage from an 

upper aquifer to a lower main aquifer. 

Because of the potential difference between the upper aquifer and the 

main aquifer (the drawdown, s) there can be a leakage through the semi 

pervious layer. The potential difference is sIb, and if the permeability 

of the semipervious layer is defined as: 

K (3.128) 



-

VOO· VV·900 -SPIC 
8Z.02.0066 .• m. 
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Fig. 3.29 Schematic picture of vertical leakage 

-113-

. . . . 

The permeability K is called the coefficient of permeability. The total 

leakage t hrough the semipervious layer is then: 

00 

Leakage f 
o 

21fr s(r) K dr 
b 

(3.129) 

By including the leakage in the continuity equation, eq. 3.1, we get the 

following differential equation in terms of the drawdown, s. 

1 as 
r ar 

5 

8 2 = 

where B is defined as: 

s as 
T at 

(3.130) 

(3.131) 
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By assumi ng infinite reservoir case and the line source boundary condi

tions, see eq. 3.59, the solution to eq. 3.130 is given by, 

"=~ ! 411T 
u 

1 
-e 
y 

u • 
4Tt 

2 
r - y _0_

2
-

4B Y dy (3.132) 

(3.133) 

W{u,r/B). is called the well function for an infinite leaky aquifer with 

no change in storage in the semipervious l ayer. The well function is 

shown on Fig. 3.30. For small values of time the solution is equal to 

the exponential integral solution. At large times we get stationary 

values and the integral in eq. 3.132 approaches the following value: 

s • ~ Ko (riB) (3.134) 

Fig. 3.31 shows this steady state type curve . The total steady state 

leakage can now be calculated according to eq. 3.129: 

q = steady state leakage = ~ f 
o 

r 
r K (- ) dr 

o B 

Using the definition of B in eq. 3.131 we get: 

00 

q = Q ! 
o 

x K (x)dx = Q 
o 

The steady state leakage is of course equal to the pumping rate. 

(3.135) 

The three coefficients T, S, and B can be determined by the match pOint 

method described in section 3.5 using the type curves in Figs. 3.30-3.31. 
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Fig. 3.30 Nonsteady-state leaky artesian type curves (Walton 1970) 
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I, 

Ko I~ 

0, 1 

o ,01 

0,001 

82.02.0068 

0,01 
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0,1 , 
B 

, 

i'r--

\ 
\ 

10 10 

Fig. 3.31 Steady state leaky artesian type curve (Walton 1970) 

Eq. 3.132 can be written in terms of the dimensionless pressure as: 

2 
r 

= 1. W(---"--
2 4to 

where r 
B 

and eq. 3.134 becomes in terms of dimensionless pressure as: 

P (r ) "" K (r ) 
D BoB 

(3,136) 

(3. 137) 

(3. 1 38) 

As already mentioned above it should be noted that this analysis of 

vertical leakage does not consider storage in the semipervi ous layer and 

a more detailed analysis is necessary in that case. See e.g. Engelund 

(1970) • 
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EXERCISE 3.8 

At Selfoss in Southern Iceland there is a low temperature field. The 

reservoir engineering data is from Halldorsson (1980). The temperature 

of the field is 86"C. Location map of wells and distances between them 

is shown in Fig. 3.32. In order to estimate the reservoir parameters 

S and T an interference test is performed by observing the drawdown in 

well No. 7, while well No. 10 is pumped at a rate of 45 lis. 

r.T=l VOO-VV.900 ·SPK .. ru 82 .02.0069- em 

82.0 2.0069. 

<-

W8 =Wel1nr8 

Fig. 3.32 The Selfess geothermal area (Halldorsson 1980) 

f 
N , 

The results are given in Table 3.2 . After some time the drawdown becomes 

steady. Table 3.3 shows the flowrate in pumping wells and the correspond

ing observation wells . 
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Time Drawdown 
hours 5 

meters 

0 0 
3.5 0.6 
5.5 1.4 
6.5 2 . 2 
7.7 3.0 
9.0 3.8 

10.3 4.6 
11.3 5 . 4 
12.8 6.2 
14.5 7 . 0 
15.5 7.8 
17.5 8.6 
19 . 0 9.4 
21.0 10.2 
23.0 11.0 
26.0 11. 8 
30.0 12.6 
53 . 0 13.4 
68·0 14.0 
89.5 14.8 

170 . 0 14.8 

Table 3 . 2 Drawdown in we l l No. 7 while pumping in we l l 
No . 10 at the rate of Q = 45 l is (Hal l dorsson 1980) 

10 

8 Q=40 lis Q=40 1/5 

10 Q=45 l is 

Table 3.3 Pumping and observation wells 
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1) Estimate the transmissivity T and the storage coefficient S, using 

the match point method for the transient data. 

2) Estimate the steady state drawdown for the observation wells shown 

in Table 3.3. 

3) If the thi ckness of semipervious layer is 150 rn, estimate its permea

bility. 

4) What thickness of the main aquifer would correspond to this permea

bility. 

The future production of the field is shown in Fig . 3.33. 

pumpinQ 
rote lIs 

120 

80 

40 

o 

82.02 .0070 

o 

Well 9 

Well 8 

Well 10 

10 20 

Fig. 3.33 Pumping rate vs . time 

The wellbore diameter is equa l to 10 in. 

30 time in years. 

5) Calculate the drawdown in well No . 10 as a function of time. 

6) If we assume that the distances between the wells are all equal to 

some average value r, calculate the drawdown in well No. 10 after 

30 years as a function of r. Assume that the steady state drawdown 

in the production well itself is 33 m. 
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7) If the maximum depth of the pumps is 60 rn, what should be the minimum 

distance between wells? 

Solution 

1) According to the matchpoint method the transmissivity and the storage 

coeffici ent is given by: 

T 

s • 

.JL 
4rr5 

4Tt 
2 

r 

The data in Table 3.2 is plotted on Fig. 3.34 and it is matched with the 

type curve in Fig. 3.30. The match points are t = 9 hours and s = 19 

meters. 

From Fig. 3.32 it can be seen that the distance between well No. 7 and 10 

is 315 meters. We then get: 

T 

s = 

45 • 10- 3 - 4 2 
-74"'.:-':rr-"'. """'1""'9 - I. 88 • 10 m 15. 

4'"1. 88· 10-
4 

• 9 • 3600 = 2.46 • 10-4 

315
2 

2) From Fig. 3 . 34 we see that rIB = 1.0 was found in the matchi ng. w~ 

then have: 

B 31,5 315 m 
= 1.0 -

Eq. 3 .134 together with Fig. 3.31 gives us the steady state drawdown: 

40 • 10- 3 200 
57. 8 = - - -""'--'-''----. K (-) • 23. 7 m 

10
-4 0 315 

2·1I'·l.8S· 



40 • 10- 3 170 
s 1 O. e = ----"'----'''----1 0----;-4 KO ( 315 ) '" 2 8 • 8 m 

2-lT-1.8S-

57 10 = 15.2 m has already been used, see Fig. 3.34. 

Fig. 3.34 Datacurve for interference test at the Selfoss geo
thermal field in South Iceland 

3) From eq. 3.131 we have: 

K = 
Tb 

2 
B 

~I"-. ,,8,,8_' -,-I 0,,-;;-4 __ • _1,,5=0 - 7 / . = 2.8 • 10 m 5 

315
2 

4) The transmissivity 1s defined as: 

-1 21-
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from which we get: 

h 
T 

= - "" K 

1.88 • 10-
4 

;0 

2.8 • 10-7 
662 m 

5) We have for the distances between the wells; r lO • lO 
r

I0
•

S 
~ 170 rn, r

10
•

7 
"" 315 m from which we get: 

r 10 . l0 
B 

r lO . S 
B 

r 10 • 9 

= 

--- = 
B 

- 4 
= 315 - 8.06 • 10 - 0.001 

0.254 

170 

315 = 0.54 

345 

315 = 1.1 

0.254 rn, 

From Fig. 3.30 we see that we have approximately steady state conditions 

after: 

I/ u 4Tt > 10
6 

r
2

S 

that is: 

lO6r 2s 10
6 . 0.254

2 • 2.46 . 10- 4 
t > = - 6 hours 

4T 4 . 1.88 . 10-4 

We have steady state conditions after approximately six hours and there

fore it is of no practical interest for the long term behaviour of the 

field t o calculate transient terms. We then have for the drawdown after 

10 years: 
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Q - 4 -40 • 10-3 - 4 
= - - I n 8.06 • 10 = - ---'''--=---;-1n 8.06 • 10 

- 4 
2rrT 2-n-l . 8S·10 

= 241 ID 

Measured steady state drawdown, was much l ess than this . This can be 

explained by a negative skin factor, resulting from a fracture intercept

ing the well . Calculation of t he skin factor from eq. 3.28 gives s ~ - 6. 

After ten years well a ,starts operating and we now have according to Fig . 

3.30 steady state condi t i ons after: 

t 
10

2 2 - 4 
-,-,, _ _ • -.:.1 ,-7 0,,-_ ' ~2".:.;4,,6,,-·-;-1,,0,-_ :: 11 days 

4 • 1.88 • 10-4 4T 

and again no practi cal i nter est for transient calcul ations. We then have 

for the drawdown after 20 years: 

= 241 + 
40 • 10-3 

- - = -=--..,. K (0.54) = 
• 10-4 0 2·rr-l.88 

241 + 28 . 8 _ 270 m 

Afte r twenty years well 9 starts operating and we now have according to 

Fig. 3.30 steady state conditi ons after: 

t 
2 lOr s > 

4T 

. 10 • 345 2 • 2.46 • 10- 4 

- 4 
4- 1 .. 88- 10 

_ 4 . 5 days 

and again no practical interest for transient calculations. We then fi

nally have for the drawdown a f t er 30 years: 

40 • 10-3 
= 24 1 + 2B ~ B + K (1 .,. 1) _ 241 + 28 •. 8 + 12.4 

2 • TI • 1 •. 88 • 10-4 
0 

= 28Z m 
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6) From eq. 3.134 we have: 

= -R- K (~) + 33 
2'ITT 0 B 

- 3 2 • 40 • 10 r 
--"--=-=----,-4 Ko ( 315) + 33 
2 • V • 1.88 • 10 

7) From the last problem we have: 

which gives: 

60 - 33 
67.7 

= 0 . 40 

From Fig. 3.31 we then get: 

r 
B = 1.0 whi ch gives r _ 315 m 

3.11 Jacob's and Rorabaugh's method 

Jacob's and Rorabaugh's method is wide l y used in gr oundwater hydrology 

to determine transmissivity and the turbulent pressure drop in the vicin

ity of the producing we l l. As will be discussed i n this section care must 

be taken when the method is used for geothermal r eservoirs. Eq. 3.46 be

comes in terms of drawdown and volumetric rate: 

5 
W 

= BQ + CQ2 (3.139) 

where s is the drawdown in the producing well itself and Band Care 
w 
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some constants, which shoul d be derived by comparison with eq. 3.46, Eq. 

3.139 can be written as: 

s 
w 

Q 
B + CQ (3 . 140) 

By pumping the well at different rates and observing the corresponding 

drawdown, Sw/Q can be plotted against Q and should give a straight line 

according to eq. 3.140, from which the constants Band C could be deter

mined, see Fig . 3.35. 

Sw 
Q 

Q 

82.02.0072. 

Fig . 3.35 Step- drawdown test 

The value of 8 can be used to determine the formation permeabili ty or 

transmissivlty when there is no skin eff ect (8 = 0). If we have steady 

state condition eq. 3.46 gives us for 8 : 

I r 
e 

B :;: 2'ITT 1n r 
w 

Eq. 3.141 can be solved for the transmissivity: 

I 
T :;: In 2nB 

r 
e 

r 
w 

(3.141) 

(3 . 142) 

If S * 0 , T can still be determined by using eq. 3. 47 instead of eq. 3.46. 

The step injection t e st is to pump cold water into the aquifer. In that 

case eq. 3.46 is no longer valid and eq. 3.35 from exercise 3. 1 must be 

us ed . From which we get: 
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r 
B= (ln~+ 

2l1T r 
w 

1JT PTO 
(--
llTO PT 

1) 1n 
r 
...!.) 
r 

w 
(3.143) 

llT and PT are the viscosity and density respectively of the cold pumping 

water at temperature T and 1.1 and p is the viscosity and densi ty re-
To To 

spectively of the reservoir water at temperature TO. Eq. 3 . 143 solved 

for T gives: 

1 

T - 2TrB (In 

r 
~+ 
r 
w 

r 
In ~) 

r 
w 

(3.144) 

If the temperature difference between the pumping water and the reservoir 

water is great eq. 3.144 must be used instead of eq. 3 .1 42. One of the 

main difficulties in interpreting these test results is to estimate r 
5 

the radius of the temperature front (see Fig. 3.5). 

Eqs. 3.141 and 3.143 assume steady state conditions and other equations 

must be derived for the unsteady state. If we have infinite reservoir 

behaviour eq. 3.60 could be used and is here written down in terms of 

drawdown and volumetric rate as : 

s = 4~ H(u) 

By comparing eq. 3.145 with eq . 3. 139 it can be seen that: 

B 
w(u) 
4l1T 

which s~lved for the transmissivity gives: 

T = W(u) 
41TB 

For u<O.Ol eq. 3.1 45 can be approximated as: 

s 4~ (- In u - 0.5772) 

(3.145) 

(3.146) 

(3.147) 
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which then gives for B and T: 

B 
( - In u - 0.5772) 

= 47fT 
(3.148) 

and 

T 
(- In u - 0.5772) 

= 4TIB 
(3.149) 

If the temperature difference between the pumping water and the reser

voir water is great eqs. 3.147 and 3.149 are no longer valid. Solutions 

which take the propagation of the temperature front into account must be 

used. In the case of a sharp temperature front, rs in eq. 3.144 could be 

e stimated by equating the heat content of the pumping water and the cooled 

section of the aquifer". 

QtP TC T' TIr w, w, 5 

2 
h(P T C T 4> + p C (1 - 4>)) w, w, r r 

o 0 

(3.150) 

where p and c is the density and heat capacity of the water at tempera-w w 
ture T and T respectively and p and c is the density and heat capacity 

o r r 
of the rock mass and ~ is the porosity. But because of heat conduction 

effects and especially dispersion effects there is no sharp temperature 

front making eq. 3 . 150 useless in most situations. In the above dis

cussion it has been pointed out that due to great temperature differences 

between the pumping water and the reservoir water the interpretation of 

the step injection test is extremely difficult. However for two phase 

systems injection tests sometimes give the most reliable results for the 

flow parameters, see Sigur6sson and Stefansson (1977), and B66varsson et 

a1. (1981). 

When water is pumped from the well or the well is flowing there is no 

temperature front to complicate the above method and eq. 3.142 and 3.147 

may be used to determine the transmissivity provided the storage coef

ficient or the effective radius are known. 

EXERCISE 3. 9 

A step drawdown test was perfomed in well MG- 8 at the Reykir geothermal field 
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in S.W. Iceland by pumping water from the well (Thorsteinsson 1975). 

Table 3.4 gives the results of the test. 

Drawdown Pumping rate 
meters 1/5 

22.0 26.0 

32.0 32.0 

44.0 38.0 

56·0 44.0 

Table 3.4 Step- drawdown test in well MG-8 at Reykir S.W. Iceland 

- 4 The storage coefficient is 1.5 • 10 and the effective radius of the 

well is 1000 m. The length of the pumping interval is one hour and the 

wellbore diameter is 2S cm. 

1) Estimate the coefficients for laminar and turbulent pressure drop. 

2) Estimate the transmissivity by using eq. 3.142 and 3.147. 

Solution 

1) The data from Table 3.4 is plotted according to eq. 3.140 on Fig. 

3.36. From the figure we get: 

B _ 0,19 mills 

2 c _ 0.025 mill/si 

2) Eq. 3.142 gives for the transmissivity: 

T 
I 10-3 1000 _ - 3 2 

~"-"-~=-~ In ---- • 7 • 10 m /s 2 • 1T • 0.19 0 .25 

Using this T value gives for u: 



u = 
4Tt 

2 
0.125 • 1.5 

-3 4 • 7 • 10 

1~-4 

3600 
2.3 • 10- 8 « 0.01 
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and eq. 3.149 can be used. 

T = 
Ow12S2 • 1.5 • 10-4 

- 1n ==4:--=-36:-:0"0:-'-T~- - O. 5772 

3 
4 • TI • 0.19 • 10 

-4 -3 
4.19 • 10 In T + 9.2 • 10 

By iteration we get: 

1,5 

1,0 

0,5 

82.D2.0076.em. 

Sw : B+CQ 
Q 

8: 0,19 m/ I/s 

C = slope: O,02!5 m/( I/S) 
2 

O~--------~--------~----------r---------~--",,,-~ 
o 10 20 30 40 Q 1/1 

Fig. 3. 36 Step-drawdown test in MG- 8 at Reykir S.W. Iceland 
(Thorsteinsson 1975) 
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3.12 Boundary effects 

The boundary effects upon the pressure decline are described qualitatively 

i n section 3.3. In this section the method of images is applied to gener

ate pressure functions in case of bounded reservoir, the impervious bound

ary case and constant pressure boundary case will be treated. Fig. 3.37 

shows an impervious (no flow) boundary and a single well. 

" 

(-L ,0) 

w man flow fate 

8202.0071. 

(It, yl 

W: mou 1101'1 ,olf 

( L,o) 
X 

• Actual well 
o Imoge well 

Observation well 

Fig. 3.37 Image well location for a reservoir bounded by an 
impervious barrier 

The boundary barrier must be a streamline. By placing the image well as 

shown in Fig. 3.37 that boundary condition is satisfied the barrier can 

be ignored and the 2-well system treated as unbounded. The pressure de

cline in the observation well can then be calculated using eq. 3.60 just 

like the boundary did not exist. The result is: 

The dimensionless distances are given by: 

,I 2 2 = ...!;(X,--.=Lc:) """:+c.....I.Y_ 
r 

w 

(3.151) 

(3.152) 
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(3.153) 

From eq. 3.60 we have: 

2 
1 r

D 
- -Ei(--) 

2 4tO 
(3.154) 

2 
If to/rO > 25 we can approximate eq . 3.60 by eq. 3.67. Inserting this 

in eq. 3.151 we get for the pressure drop: 

Pi - P (t,x ,y) = 2:hP «1n t + 1n 

which can be written as: 

2 ,246k' ) 

~lJcr lr2 

Pi - P(t,x,y) - m (In t + 1n 2.246k) 
$llcr

1
r

2 

(3.155) 

(3.156) 

where m is the slope of the straight l ine for pressure drop vs. the loga

rithm of time . By comparing eq. 3. 156 with eq. 3.74 we see that the slope 

of the straight line is twice as s t eep when there is an impervious barrier 

boundary as if there were no boundary. The reservoir constants can now be 

estimated by the following equations, which correspond to eq. 3. 75-3.78. 

T = ~ 
2mn 

2.246kt 
~c _ ...."~-,,o 

'\.Ir
1

r
2 

(3.157) 

(3 . 158) 

(3.159) 

(3.160) 
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From eq. 3.1S1 we can define a dimensionless pressure function for the 

reservoir as: 

By using eq. 3.154 we get: 

1 

PD(to,rOl,r02) - - 2 (Ei 

which can be written as: 

1 
2 (Ei (-

where S i s defined as: 

6 : 

2 
-r 

(-.E.!...) + Ei 
4tD 

2 
r D 
4t,,> 

+ Ei ( -

(3.161) 

(3.162) 

(3.163) 

(3.164) 

The method of images can of course be used in case of more than one bound

ary. In case of constant head (equi potential) boundary (recharge boundary) 

the image well must be a recharge well in order to satisfy that constant 

pressure boundary condi tion. A system of a discharge well and a corre

sponding recharge well with the same flowrate is called a dipole system. 

These are extensively treated in potential theory. Fig. 3.38 shows the 

image well configuration for different boundary geometry . The method of 

images transforms the bounded problems into unbounded double infinity prob

lems by using symmetry and antisymmetry. Each line of symmetry is a stream

line. Each line of anti symmetry is a potential line. As may be seen from 

Fig. 3.38 it takes a single infinity of image wells to change singl e 

infinity problems into double infinity problems and double infinity and 

image wells to change completely bounded problems into double infinity 

problems and in that case the method becomes a l ittle cumbersome. If 

icagc wells start falling into the real reservoir area, an infinity of 

image wells will be created in the vicinity of the reservoir and the 

method fails. 
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EXERCISE 3.10 

Let a reservoir boundary be given as shown in Fig. 3.39. 

recharge boundar~ 

r, 

w 
x 

( -'- L,O) ( L,O) 

• Actual well 

o Image well 
82 .02.0079 . x Cbservotion well 

W Mos" flow 

Fig. 3.39 Reservoir recharge boundary 

Calculate pressure decay in the observation well, when the actual well 

produces the mass flow rate Wand we assume that the condition given by 

eq. 3.68 is satisfied? 

Solution 

As we have a recharge boundary, we place a recharge image well with the 

mass flow rate equal to - Was shown in Fig. 3.39. From eq. 3.151 and 

3.154 we get: 

p(t,x,y) = 
2 

ro 
( - - ) 

4to 
- Ei 

2 
r 

(_ -2<L») 
4to 

Using the approximation given by eq. 3 . 66 we have: 

= 

6p = -'?l!..... (In 
4'11"khp 

21TkhP 

r
i 

In -
r 

(3.165) 
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which is the formula for the potential field created by a dipole system 

consisting of one source and a corresponding sink. 

The drawdown becomes steady everywhere as could be expected, because eq. 

3.165 is ·only valid for high time values, and the flow must approach 

steady state with time because of the recharge (constant pressure) bound

ary condition. 

3.13 Wellbore storage effects 

In the reservoir engineering literature the liquid flow from the reservoir 

into the well is sometimes called the sand face flow. The cause of the 

wellbore storage effect is that the sand face reservoir boundary flow 

rate does not necessarily have to be equal to the well fluid flow at all 

times . If a well is suddenly opened, the wellbore pressure will drop, 

and caUSe expansion in boiling wells and water level depletion at first 

in non- boiling wells . If a well is suddenly shut in, fluid continues to 

pass through t he sand face into the hole . Both effects result in changes 

of the wellbore storage volume. Fig. 3.40 shows a schematic picture of 

the sand face flowrate vs. dimensionless time for different wellbore 

storage coeffi cients. The sand face flowrate can be calculated from the 

following equation: 

dp 
w 

= W - pC -
dt 

(3.166) 

where Wsf is t he sand face mass flow, W is the surface mass flow, C is a 

wellbore storage coefficient and P is the bottomhole pressure . If the 
w 

well has free liquid level, the wellbore storage coefficient is given by: 

2 n 
c = -::!. (3.167) 

Y 

and if the well is completely filled with liquid under pressure the well

bore storage coefficient is given by the following equation: 

(3.168) 
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where Vw is the volume of the well and Cl is the compressibility of the 

liquid in the well. Eq. 3.166 can be nondimenionalized by introducing 

the dimensionless pressure and time given by eqs. 3.17 and 3.20. 

c, 

c, 

°0L---------------------~ 
to 

Fig . 3.40 Effect of wellbore storage on a sand face flow rate, 
C

3
>C

2
>C

1 
(Earlougher 1977) 

1 - C 
D 

(3.169) 

where Co is a dimension less wellbore storage coefficient defined by: 

c 
2 21T$chr 

w 

(3.170) 

At the beginning of the well test the sand face flow rate is approximately 

zero in that case eq. 3.169 gives by taking logarithms of both sides: 

(3.171) 

From this eq. we see that from the log-log plot of pressure vs. time we 

would get a straight line with unit slope. The wellbore storage effect 

can thus be recognized by unit slope of the early transient pressure data. 

Fig. 3.41 is an illustration of such a graph. The curves in Fig. 3.42 

are determined by solving the usual differential equation and boundary 

conditions' given by eq. 3.59 for the infinite reservoir case by including 

eq. 3.169 into the third boundary condition getting: 



0,01 "',O..-----",O----',OT- -,+O.-----',O...----'"J 

B2.02.0091. 

Fig. 3.41 Dimensionless pressure including wellbore storage 
(wattenbarger and Ramey 1970) 
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(3.172) 

This differential eq. was first solved by Everdingen and Hurst (1949) 

using Laplace transformation techniques. Fig. 3.42 is a " full scale pic

ture of such a solution including the skin effect, which will be discussed 

i n section 3.14. Fig. 3.42 can be used for well testing purposes by using 

the match pOint me-thod as described in section 3.5. 

Once the final portion of the log-log plot is reached (CD. 0 line), well

bore storage is no longer important and standard Theis match point method 

(semilog dataplotting analysis techniques) apply. As a rule of thumb, 

that time usually occurs about 1 to 1 1/2 cycles in time after the log

log data plot starts deviating significantly from the unit slope. The 

t ime may be estimated from (see Earlougher 1977) 

to > (60 + 3.58) CD 

or approximately: 

t > (9,5 + 0.568) 
kh/~ 

(3.173) 

(3.174) 

Papadopulos and Cooper (1967) took also into account the radius of the 

wellbore. The boundary conditions in this case are given by eq. 3,69 



o 
~ 

'0 

KO- '0' '0' '0' '0' '0' '0' 
to 

Fig. 3.42 Di mensionless pressure for a single well in an infinite system. wellbore storage and skin included. 
(Agarwal et al. 1970) 

, 
~ 

w 
co , 
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except for the third condition which must be altered due to the wellbore 

storage effect. The altered boundary condition is similar to eq. 3.172 

and is given by: 

lim (r
o 

r +1 
D 

(3.175) 

Papadopulos and Cooper gave their solution in the following form written 

in terms of drawdown and volumetric flow. 

where a and u are defined in the following way: 
w 

et • 

u 
w = 

r 28 
w 

4Tt 

(3.176) 

(3.177) 

(3 . 178) 

and the dimensionless drawdown function F(u ,a) is given in Table 3.5 
w 

and shown in Fig. 3.43. Papadopulos and Cooper did not include skin effect 

in their solution. They give the time corresponding to eq. 3.174 for the 

Theis equation to apply by: 

t > 80Y£. 
T 

Including eq. 3.167 gives: 

t > 

2 
'lfI;w 

80-
T 

(3.179) 

For wells of small diameter and/or aquifers of high transmissivity this 

period is very small. However for wells of large diameter and/or aquifers 

of low transmissivity this period is considerably larger. 
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u a = 10- 1 a 10-2 a _ 10- 3 
a = 10-4 

a = 10- 5 
w 

-3 -4 -5 - 5 - 6 
10 9.755x10_

2 
9.976x10_

3 
9.998x10_

4 
1.000x10_

4 
1 . 000x10_

5 
1 9.192x10_

1 
9.914x10_

2 
9 . 991xl0_

3 
1. 000x10 1.000x10 

5x10- 1 
1. 767x10 1. 974x10 1. 997x l 0 2.000 2.000 

2 4.062 4.890 4.989 4.999 5.000 -4 
1 7.336 0 9.665 - 1 9 . 966 - 2 9.997 - 3 1. OOOx10 
5xlO-2 

1.260x10 1. 896xl0 1.989xl0 1. 999xl0 2.000 
2 2.303 4.529 4.949 4.995 5.000 -3 
1 3.276 8 . 520 0 9.834 - 1 9 . 984 -2 1. 000x10 
5x10- 3 

4.255 1.540x10 1.945xl0 1. 994x 10 2.000 
2 5.420 3.043 4.725 4.972 4.998 
1 6.212 4.545 9.069 0 9.901 - 1 9.992 -2 
5x10- 4 

6.960 6.031 1 . 688xlO 1.965x10 1.997x10 
2 7 . 866 7.557 3.523 4 . 814 4.982 
1 8.572 8.443 5.526 9 . 340 0 
5x10-5 

9.318 1 9.229 1 7 . 631 1.768x10 
2 1.024x10 1.020x10 9.676 1 3.828 
1 1.093 1.087 1. 068xl0 6.245 
5x10- 6 

1.163 1.162 1.150 8.991 1 
2 . 1.255 1.254 1. 249 1. 174x10 
1 1. 324 1. 324 1. 321 1. 291 
5x10-7 

1. 393 1. 393 1. 392 1. 378 
2 1.485 1.485 1. 484 1.479 
1 1.554 1.554 1.554 1. 551 
5x10- 8 

1.623 1.623 1. 623 1.622 
2 1.705 1 . 705 1. 705 1. 714 
1 1 . 784 1 . 784 1. 784 1. 784 
5x10-9 

1.854 1.854 1. 854 1.854 
2 1.945 1.945 1. 945 1.945 
1 2 . 015 2 . 015 2.015 2.015 

Table 3 . 5 Values of the function F(u ,a) (Papadopulos and 
w 

Cooper 1967) 

9.932 - 1 
1.975x10 
4.861 
9.493 0 
1. 817x10 
4.033 
6.779 1 
1.013x10 
1.371 
1. 513 
1.605 
1. 708 
1. 781 
1.851 
1.940 
2.015 

In interference tests the wellbore s.torage effect and the skin effect can 

influence the results if the distance between the observation well and the 

producing well is small. The pressure response at any point in the reser

voir will be damped and delayed as a result of the storage effect in the 

active well, because the main effect of the storage capacity of the f l ow

ing well is to cause a time lag for the wel l head flow rate to equal the 

sand face flow rate. Chu et al. (1980) have presented some type curves 

for this case . 

Miller (1980) has pointed out that additional dimensionless parameter 

is nece ssary to describe the wel l bore storage due to the time lag between 
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Fig. 3.43 Type curves for the drawdown in a large- diameter well 
(Papadopulos and Cooper 1967) 

the pressure change at the well head and the sand face. That is to say 
dp 

the time it takes for ~ to become constant in the well. She a l so 

demonstrates that temperature effects due to the heating of the well and 

because of heat losses to the surroundings influence the initial behav

iour of the well. 

3. 14 Partial penetration and skin effect 

The skin effect was first introduced in section 3.4 and the skin factor 

is defined by eq . 3.28 . In connection with the wellbore storage effect 

some dimension less pressure functions were introduced, which accounted 

for the skin effect . The ski n factor could then be determined by the 

match point method. We will now demonstrate how the skin factor can be 

determined by pressure drawdown and pressure buildup testing. In a 

single rate drawdown test the pressure drawdown according to eq. 3. 114 

can be written including the skin effect . 

and for 
to 
-> 25 . 

2 
r D 

( 3 .180) 

Eq. 3. 180 can be rewritten in terms of the skin factor: 
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Pi - Pt 
S.I.151( -log 

m 

k 
--""2 - log t - 0.351) 
$ucr 

w 

(3.181) 

where p. - p is the pressure drawdown after t seconds on the semiloga, t 

rithmic straight line. If we take t s 60 sec. we get: 

Pi _ Plmin. _..,..k_:;-
S - 1.151 ( - log 2 - 2.13) 

m $\Jcrw 

(3.182) 

In Horner pressure buildup analysis the skin pressure drop cancels out, 

see eq. 3.115. But by subtracting eq. 3.118 from eq. 3.181 we get by 

using the same assumptions as above : 

Pws - Pwf 
S. 1.151 ( - log -"-'2 - log 6t - 0.351) 

m $\Jcr 
w 

k 
(3.183) 

here p - p f is the pressure buildup after 6t seconds on the semi- logar-
wo w 

ithmic straight line Horner graph. If we take 6t = 60 sec. we get: 

Pws - Pwf k 
S. 1.151 ( - log -".-""2 - 2.13) 

m $l.lcr 
w 

(3.184) , 

We have so far discussed the sk1n effect and the turbulent pressure drop 

which give additional pressure drop in the vicinity of the producing well. 

The pressure drop is given in terms of the dimensionless pressure. 

( ) 2TIkph p + S + WC 
Pi - Pwf ~ - D (3.185) 

By comparing this equation with eq. 3.139 we see that the C-coefficient 

is given by: 

c = (Slope of line in Fig. 3.351 x 2nhkg 
~ 

(3.186) 

If turbulence affects the pressure response, the constants Sand C can only 

be determined if the well is tested for two different flow rates. For 
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single flow rate test an apparent skin factor is determined, defined as 
• 

S • S + wc. 

So far we have assumed that the producing well is completed across the 

entire formation thickness thus ensuring horizontal flow. If the well 

is not fully penetrating, there i s a distortion of the radial flow pattern 

close to the well giving rise to an additional pressure drawdown. This is 

generally accounted for by us ing the ful l formation thickness and including 

the effect of partial pene tration as an additional skin factor . The method 

of calculating this additional skin is described in the following. Brons 

and Marting (1961) have shown that the deviation from radial flow due to 

restricted fluid entry leads to an additional pressure drop close to the 

wellbore which can be interpreted as an extra skin factor. This is be

cause the deviation from radial flow only occurs in a very limited region 

around the well and changes in rate, for instance, will lead to an instan

taneous perturbation in the wellbore pressure without any associated tran

sient effects. This pseudoskin can be determined as a function of two 

parameters, the penetration ratio b and the ratio h/r where: 
w 

and 

b = the total interval open to flow 
the total thickness of the producing zone 

h --r 
w 

thickness of the producing zone 
wellbore radius 

Fig. 3.44 gives some examples of the calculation of these parameters. 

Fig. 3.45 gives the results of Brons and Marting. Where 

permeability and k the vertical permeability. Once the 
z 

k is the radial 
r 

pseudoskin has 

been calculated it must be subtracted from the total skin measured in the 

well test t o give the mechanical skin factor. In case of steady state 

drawdown in the reservoir Muskat (19461 gives in case of partial penetra

tion for the pressure drop. 
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82.01.0084. 
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h 
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Fig . 3 . 44 Examples of partial well compl eti on showing: (a) well 
only partially penetrating the formation; (b) wel l pro
ducing from only the central porti on of the formation; 
(c) wel l with 5 intervals open to production (Brons and 
Marting 1961) 

82 .02.0085 
o 0,2 0,4 0,6 O~ 1,0 

Froctional penetrotion 

Fig. 3.4c Pseudoskin factor for partially penetrating wells 
(Brons and Marting 1961) 
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1 
(3.187) 

By comparing eq. 3.187 and 3.29 we get for the pseudoskin factor: 

S ,., In 
r 

e 
r 

w 

(---~l ....... -:::- - 1) 

b(l + 7 v'(~ cos -7-) 
(3.188) 

This equation is just valid for equal radial and vertical permeabilities. 

Another pseudoskin factor might appear because of slanted wells. Fig . 

3.46 schematically shows a well penetrating a formation at an angle e 
from the line perpendicular to the formation top and bottom. Fig . 3.47 

gives the results by Cinco et al. (1975). for the pseudoskin factor for 

slanted wells. 

h 

82 .02 .0049. 

Fig. 3.46 Definition of terms for slanted wells 

The effect of the slanted wells is to provide more wellbore area and, 

thus, a negative pseudoskin factor. 

The productivity index of a well as defined in eq. 3.30 can now be 

written: 

W PI _ --"-- = 

U(ln 

21ThkP 
r 

e -+ 
r 

w 

s + CW) 

(3.189) 
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Fig. 3.47 Pseudoskin factor for slanted wells (Cinco et al. 1975) 

S is the skin factor and CW is due to the turbulent pressure drop. The 

skin factor is defined according to the above discussion: 

S = S +5 +5 +, ••. 
tr p swp 

(3.190) 

where Str is the true skin factor caused by damage to the completed 

portion of the well; S is the pseudoskln factor resulting from partial 
p 

penetration; and S is a pseudoskin factor resulting from a slanted 
swp 

well. 

3.15 Pressure behaviour of wells intercepti ng fractures 

The principal objective of this section is to provi de a summary of the 

methods used in pressure analysis of wells int ercepted by fractures. 

We will just consider a single fracture existing in a uniform. homogene

ous porous formation. Naturally fractured reservoirs consisting of a 

system of interconnected cracks or failure surfaces coupled to a matrix 

of different porosity and permeability in a random fashion are not exam

ined. Both vertical and horizontal fractures will be considered. The 

differential equation is given by eq. 3.13 and the boundary conditions 

byeq. 3.59 with the difference that boundary condition 3), the wellbore 
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boundary condition is now given by a fracture boundary condition. Two 

fracture boundary conditions will be considered. The first assumes that 

the fracture plane is of infinite conductivity. This implies that there 

is no pressure drop along the fracture plane at any instant in time. 

The second condition is the uniform- flux fracture, where fluid enters 

the fracture at a uniform flow rate per unit area of fracture face. 

Gringarten et al. (1974) gave the solution for the infinite- conductivity 

vertical fracture as: 

- 0.067 

where 

and 

Ei(- 0.018) 
t 

OX
f 

0.134 (erf + erf 
Ito x

f 

- 0.433 Ei( -

0.866 
ItDx 

f 

(3.191) 

(3.192) 

(3.193) 

where erf(x) is the error function of x, - Ei( - x) is the exponential inte

gral, and x
f 

is the fracture half length. A plot of eq. 3.191 is shown 

on Figa. 3.48 and 3.49 on log- log and semi-log paper respectively. At 

large values of time, t > 3, eq. 3.191 can be written as: oX
f 

1 
= -2 In t + 1,100 oX

f 

(3.194) 

For small values of time (to < 0.016) eq. 3. 191 can be approximated as: 
x

f 

(3.195) 
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This early time period is generally referred to as the linear flow period. 

As shown in Fig . 3.48 on log-log coordinates this period is characterized 

by a straight line of slope 0.5. The reason for this may be seen if the 

logarithm of each side of eq. 3.195 is considered. Taking these logar-, 
ithms we obtain: 

(3.196) 

Then the reason for the "half slope line" 1s clear. 

For practical well testing purposes eg. 3.191 together with Fig. 3.48 

can be used for type-curve matching in order to determine the aquifer 

par~eters. At large values of time eq. 3. 194 could be used for tradi

tional semi-log analysis, where the permeability thickness product may 

be calculated from the slope of the drawdown curve. Once the semi- log 

straight line has been identified and the permeability thickness product 

determined the skin factor can be estimated from eq. 3.182 as before. 

Gringarten et al. (1974) also arrived at the uniform-flux solution given 

1 1 1 
( ) - - Ei(- --) 
2v'tnx 2 4tDx 

f f 

(3.197) 

This equation is shown on Fig. 3.48 and 3.49. 

eq. 3.197 may be written as: 

At long times, t > 2 oX
f 

P (to ) • 2 (In t + 2.8091 ) 
Wo x f oX

f 
(3.198) 

For small times, t ~ 0.16 eq. 3.195 applies. These eq. can again be oX
f 

used to determine the reservoir parameters. One of the problems in 

analyzing pressure data by the semi-log approach is that it is difficult 

to locate the beginning of the pseudo-radial flow period. Inspection of 

the theoretical solutions, however, indicates that if the one-half slope 

line can be identified then the correct semi-log line should start approxi

mately two cycles from the time of the end of the one- half slope line for 
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! 
o . 

Dimensionless pressure for single, vertically fractured 
well in an infi nite system, no wellbore storage. Log-log 
plot (G~ingarten et al. 1974) 
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T 
g 

-----.~ 
Dimensionless pressure for a single, vertically fractured 
well in an infinite system, no wellbore storage. Semi log 
plot (Gringarten et al. 1974) 

o 
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an infinite-conductivity fracture. For a uniform-flux fracture the time 

for start of the correct straight line is one cycle from the end of the 

one- half slope line. A second rule~ which is probably more useful than 

the one stated above, is the "double-6P rule". In examining vertically 

fractured gas wells, Wattenbarger (1967) noticed that the dimensionless 

pressure drop at the start of the semi-log straigh~ line is twice that 

of the dimensionless pressure at the end of the one-half slope line. 

This result, strictly true only for the uniform-flux case, is the "double

/::'P rule". For the infinite-conductivity vertical fracture the pressure 

change between the end of the one-half slope line and the beginning of 

the semi- log straight line is approximately 8. In any event it is clear 

that the ratio of the pressure change must be at least 2. Eq. 3.194 and 

3.198 can be written respectively as: 

P (t ) 
1 (In kt + 0.8091) -2 2 w

D 
DX

f x
f 

' ~~c(-) 
2 

(3.199) 

and 

(t
n 

) 1 (In kt 
2 + 0.8091) p • '2 w

D 
x

f x
f 

~~c(-) 
e 

(3.200) 

By comparing these equations with eq. 3.67 it can be seen that by defin

ing the correct effective wellbore radius, the fractured well can be 

treated as an unfractured well. From eq. 3.199 we see that the correct 

definition of the effective wellbore radius for an infinite-conductivity 

vertical fracture is: 

r 
w 

(3.201) 

that is one fourth of the fracture length. The correct definition for 

the uniform- flux fracture can be seen from eq. 3.200 to be: 

r 
w 

(3.202) 
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In case the fracture has finite capacity, that is the actual finite per

meability of the fracture is taken into account, the effective wellbore 

radius will be different. Fig. 3.50 shows the effect of the finite ca

pacity on the effective wellbore r~ius. The dimensionless fracture ca

pacity is defined as: 

0.203) 

where k is the matrix permeability, k
f 

the fracture permeability and w 

the fracture width. 

82.02.0089 . 

Fig. 3.50 

w 
> ... 
<.J 
W 

I:: 
'" 

10 

SLOPE: I 

DIMENSION LESS FRACTURE CAPACITY, F' 
CD 

Effective wellbore radius vs. dimensionless fracture 
capacity (Raghavan 19t6) 

In many instances there is skin damage associated with the frac t ured sys

tem. Interpretation of data from these wells can be difficult as can be 

seen from the following. Eq. 3;195 for small times can be written with 

the skin effect. 

(3.204) 
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where S is the skin factor as before. The equation indicates that for 

small times the first term would be small and thus the one- half slope 

line would be obscured. Theoretical studies of the wellbore storage 

effect in fractured wells have been presented by Wattenbarger and Ramey 

(1968) and Ramey and Gringarten (19751, for the infinite- conductivity 

vertically fractured well and by Raghavan (1976) for the uniform- flux 

case. 

w 
~ 
o m 0 
J • 
J" W. 
~o 

UNIfORM- FLUX 
WELL IN AN INFINITE RESERVOIR, _,/l,: OD 

"'~ 
fII 0 D1MENS1QNLESS 
~ ~ STORAGE CONSTANT, C 
z~ -.,....:,,y 
2 ~ .1 
"'w~ 
z~ 

~" 
o 

82.02.0090 DIMENSIONLESS TIME, I 0 '. 
Fig. 3.51 Dimensionless wellbore pressure drop vs. dimensionless 

time for a uniform- flux vertical fracture with wellbore 
storage (Raghavan 1976) 

Fig. 3.51 is a log- log p lot describing the pressure behaviour of a well 

producing via a uniform- flux fracture which is controlled at early times 

by wellbore storage. The parameter of interest in Fig . 3.51 is the well

bore storage constant defined as before as: 

(3.205) 

age. 

The C = 0 curve corresponds to a fractured well with no wellbore stor-
DX

f 

for unfractured systems is 

For large valu~s of C a line of unit slope similar to that 
DX

f However obtained, see section 3.13. 

for small values of C no unit slope l ine is evident. 
DX

f all curves become asymptotic to the C = 0 line. DX
f 

As time increases, 

Fig. 3.51 also 
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demonstrates that if wellbore storage is large then the presence of the 

fracture would be obscured. 

The solution for a single horizontal uniform-flux fracture is given in 

Fig. 3.52. The dimensionless time and thickness are defined as follows: 

"or
f 

• 
kt 

4>c lJr
f 

2 
(3 . 206) 

h ;{k h • or
f 

r
f z 

(3.207) 

where r
f 

is the fracture radius, k is the horizontal permeability , and 

k is the vertical permeability and other symbols as before. Fig. 3.52 
z 

is easy to use for type- curve matching purposes because all curves have 

in common an initial one-half slope straight line, corresponding to early 

time vertical linear flow (instead of horizontal linear flow, as for the 

vertical fracture case). Also, a single curve is obtained for h > 100. ""r -
For further details see Raghavan (1976). For special problems f con-

cerning inclined fractures, limited entry (partial penetration) constant 

wellbore pressure see Raghavan (1976). 

The discussion above has been limited to testing of the production well 

itself. When performing interference tests the idea of a single vertical 

fracture might not be correct. In that case the porous medium should be 

treated as anisotropic. The pressure response caused by a line source 

well at origin in an anisotropic reservoir is given by: 

1 

= - - Ei 
2 

- k 
xy 

2 

- ~Vc 
{--

4t 

k y 
("" 

2 

k 

+ k 
2 

- 2k xy x 
yy xy )} 

k - k 
2 

(3.208) 

xx yy xy 

where k ,k ,k are the components of the permeability tensor. By de
xx yy xy 

fining the following dimensionless variables: 



Fig. 3.52 Dimensi onless pressure for a single, hor izontally 
fractured (uniform-flux) well in an infinite system . 
no wellbore storage. Fracture located in the center 
of the interval (Gringarten et al. 1972) 
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and 

tn 
2 = 

rn 

t 

- k xy 
W)J 

k 

2 

k 

2TfhP 
(P·. - P ) 

~ x,y,t 

- k 
2 

xxyy xy - -
$~c k y 

2 
k 

2 
- 2k + x xyXV xx yy 

(3.209) 

(3.210) 

and inserting in eq. 3.208 we obtain: 

2 
1 rn 

= - - Ei(-) 
2 4tD 

(3.211) 

which is identical to eq. 3.60 for isotropic reservoir, and the methods 

described in section 3.5 can be used. As there are three unknown permea

bilities, three observation wells are needed. Economides et al. (1980) 

presented another model for interpreting interference tests in fractured 

formation. They used a linear flow model, which is shown schematically 

in Fig. 3.53. 

OBS ER VATION WELL 

\ 
PRODUCING WELL 

Fig. 3.53 

". 

8 2.02 .0092. 

Schematic diagram of the linear flow configuration 
(Economides e"t al. 1980) 

The linear flow model represents production by a planar source at the 

center of a cylinder of infinite length such that all flow is parallel 

to the lateral boundaries. The cross-section of the cylinder is as

sumed to be a rectangle with height h and width b. This model would be 

a good approximation in a formation where the faults run parallel and 
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the permeability of the matrix formation is very low. The planar source 

boundary condition for the linear flow model is analogous to the line 

source for radial flow. The solution to the problem is given by: 

where 

kt 
to - - -

4l~cw 
2 

and 
x 

x
D w 

Xo 
erfc(--) 

2;;;;- (3.212) 

(3.213) 

(3.214) 

A log-log graph of eq~ 3.212 is shown in Fig. 3.54. The characteristic 

half-slope behaviour for log-log graphs of pressure versus time results 

from small values of x and from large t. The limiting solution for 
2 

to/xo > 1000 is: 

P
D 

• 2 (3.215) 

2 
Values of FO/XO vs. to/xo are given in Table 3.6, 
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82.02.0093. 

Fig. 3.54 Drawdown interference type-curve for linear flow to a 
planar source (Ecanomides et al. 1980) 

tD P tD PD tD P
D D 

--2 x 2 xD 2 x 
xD D xD xD D' 

.03 6 
2.0 .7912 150.0 12.84 2.204xlO_

5 .04 2.850xlO_
4 3.0 1. 115 200.0 14.98 

.05 1. 347xl0_
4 4.0 1. 396 300.0 18.56 

.06 3.93Oxl0_4 5.0 1.648 400.0 21.58 

.07 8.676xlO 6 . 0 1. 878 500.0 24.24 

. OB .001603 7.0 2.091 600.0 26.65 

.09 . 002625 8.0 2.291 700.0 28.86 

.10 .003943 9.0 2. 479 800.0 30.93 

.15 .01465 10.0 2.657 900.0 32.86 

.20 .03073 15.0 3.443 1000.0 34.69 

.30 .0719 20.0 4.109 1500.0 42.71 

.40 .1184 30.0 5.232 2000 . 0 49.47 

.50 .1666 40.0 6.181 3000.0 60.81 

.60 .2149 50 . 0 7.019 4000.0 70.37 

.70 .2625 60.0 7.777 5000.0 78.79 

.80 .3092 70.0 8 . 474 6000.0 86.41 

. 90 .3548 80.0 9.124 8000.0 99.93 
1.0 .3993 90 .0 9.734 10000.0 111.8 
1.5 .6061 100.0 10. 31 

Table 3.6 Dimensionless pressure solution for linear flow to a 
constant rate planar source. (Econom1des et' al . 1980) 
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Fig. 3.55 shows the combined drawdown buildup interference type-curve 

for the linear flow model. The buildup part of the type-curve is calcu

lated from eq. 3.115. 

82.02 .0094 . 

10 

'0 
'0 

0,2 

0/3 
a,s 

0,4 

I02~ __________ L-__________ L-~~ ____ ~ 

10-1 

Fig. 3.55 Drawdown-buildup interference type-curve for linear 
flow to a planar source (Economides et al. 1980) 

EXERCISE 3.11 

An interference test was run in a new development at the Geysers. Well 

A was producing for 30 days, while well B, 1800 ft. from well A, was shut 

in. Pressures recorded at well B and pertinent flow data appears in 

Table 3.7. Determine the reservoir parameters. 
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Time 
(Days) 

0 
10 
15 
20 
25 
30 

Well A shut 

35 
40 
75 

100 
150 
250. 

Flowrate, W 
Viscosity, l.J 

in 

Compressibili ty. c 
Gas deviation factor, 
Temperature, 'Rankine 

Z 

Bottomhole pressure 
(psia) 

442 
441.3 
439.8 
438.9 
437.3 
435.8 

434.8 
434.2 
434.8 
435.6 
436.7 
437.8 

97000 lb/hr 
.017 cP -I 
.0025 psi 
.84 
913" - 915·R 

2 2 
P - P 

i 2 
(psia ) 

620 
1940 
2730 
4130 
5440 

6310 
6830 
6310 
5620 
4660 
3700 

Table 3.7 Pressure interference and flow data for wells A and B 
(Economides et al. 1980) 

Solution 

The dimensionless variables written in units according to Table 3.6 are 

as follows: 

kh(p . 
2 2 

- P ) 

Po 
J. 

28 . 62WlJZT 

O.OOO264kt 
to = 2 

~~cb 

(3.216) 

x 
Xo = w 

where the units of the constants are: 



-161-

-I W in ft., c in psi , h in ft., k in md, P in psi, t in hours, tempera-

ture T in oR, W in lb/hr, ~ in centipoise, x in ft. The dimensionleS5 

pressure in eq. 3.216 is defined for compressible steam and will be dis

cussed in section 3. 16. The new constants in the dimensionless pressure 

expression are the temperature, T, and the gas deviation constant, Z. 

The type-curve in Fig. 3.55 is used and the result is shown in Fig. 3.56. 

10 

'0 
'0 

82 .02 .0095. 

-I 
10 

10 4;-___ ~_""'_-_~-:-_-...;,...,-~,-_-, 
-0 .. 

0 
..... ......... ..... 

-- '0 .... ............. ... 
... ... .... '0 ................. " 

.......... ..... 0,8 
- - - -- ........... 9.6 

......... 0,4 

4 

2 

6 

60 

40 

20 

10 

Fig. 3.56 Type-curVe matching for example application- linear flow 
model (Economidas et al. 1980) 

The following match points can be obtained: 

Po -2 
",4.1-10 

Xc 

tpo + .6.tp I 
--"''--".-"- = 2 • I 0-

2 
Xc 

2 2 2 
Pi - P • 1000 psi a 

t = 10 days 

Using eq. 3.216 and solving for the kh product: 
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khW = 

p 

.J2. 
28.62\illZTx 

2 2 
Pi - P 

- 2 4.1 • 10 • 28.62 • 97000 • 0.017 • 0 . 84 • 914 • 1800 
1000 

6 2 = 2.67 • 10 rod ft. 

Solving eq. 3.216 for the ~hW product: 

~hW = 
0.000264(khW)t 

to 2 

= 

(--2) lJcx 
KO 

0.000264 • 2.67 
-1 2 • 10 • 0.017 

3 2 
= 6.14· 10 ft. 

106 • 10 

0.0025 • 

• 24 

1800
2 

If we introduce the values of khW and ~hW obtained above and the value 
• 2 

of tp = 30 days in the dimensionless time equation, we obtain tpo/xo 

: 0~6 which agrees with the type-curve match. 

3.16 Well test analysis in two phase flow reservoirs 

= 

In a vapour-dominated field we have a two phase flow of water and steam . 

In a well test lowering of the pressure results in isenthalpic flow to

wards the well. If the steam becomes dry before it reaches the well, the 

well will produce superheated steam. Fig. 3.57 shows the pressure-en

thalpy diagram for water and steam. The isothermal flow for steam tem

perature 250·C in the superheated steam region is shown on the figure for 

a pressure drop of 10 bars. We see from the figure that for isothermal 

flow of the superheated steam its enthal py is increased and this extra 

heat must be delivered by the rock mass. If the steam behaved like ideal 

gas, then the flow would be isenthalpic as well as isothermal. 
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Fi2' 3.57 Pressure-enthalpy diagram 

If we assume that the superheated steam zone around the well dominates 

in the well test and that the rock delivers enough heat to the steam for 

it to flow isothermally eq. 3.6 for isothermal, compressible flow can be 

used : 

1. 1... (kP r 1e.) 
r dr \J dr = (3.6) 

The equation of state for the steam can be written as: 

(3.217) 

where R is the universal gas constant equal t.o 8314 joules/mole ' K, 

M is the molecular weight of water equal to 18 g/mole , and Z is the gas 

deviation factor, telling how much the steam deviates from ideal gas. 
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The gas constant for steam is defined as: 

• 
R ~ = 8~~4 s 461.9 joul es/kg"K 

Inserting the gas constant into eq. 3.217 we get: 

..J.'... 
pRT 

z 

(3.218) 

(3.219) 

From eq. 3.219 we see how pressure dependent the density is. In the 

range of pressure difference encountered in most well testing situations 

we assume that the dynamic viscosity and the gas deviation factor are 

independent of pressure. Eq. 3.6 can now be written by inserting the 

density from eq. 3.219: 

2 
(kr 3,Pr ) (3.220) 

We now see that we have partly transformed the nonlinearities from eq. 

3.6, by using the pressure squared ins_tead of pressure . The compressi 

bility c is still pressure dependent as we see from the following. If 

we assume that the rock compressibility is small compared with the ,steam 

compressibility we get from eq. 3.5: 

c (3.221) 

By combining eq. 3.219 and eq. 3.10 we get: 

1 
c = B = (3.222) 

p 

showing clearly the pressure dependance of c . The compressibility is a 

part of the definition of the storage coefficient, see eq. 3.7. The 

storage coefficient is very different depending on the type of reservoir 

fluid. Let us define the mass derived from storage per unit decline in 

pressure per unit area for four different reservoir fluids: 1) water, 

2) superheated steam, 3) saturated steam, 4) water in a watertable aqui

fer. 



1) We have from eq. 3.7: 

dm 
- - p B $h dp w w 

2) We get from eq. 3.7 and 3.222: 

dm _ p 1. "h = 
dp sp"" 

I "h 
ZRT 't' 
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(3.223) 

(3.224) 

3) The pressure and temperature must remain on the saturation curve, 

see Grant and Sorey (1979), so we have: 

fiT _ 
dp 

s fip/
dT 

The C!ausius - Clapey.ron equation is: 

dp 
s 

dT • 

p P L w s ----
P - P T 
w s 

(3.225) 

(3.226) 

where L is the latent heat of vapourization. Inserting eq. 3.226 into 

eq. 3.225 gives: 

P"" Ps L 
~T • 8p --- -P -P T 

w s 
(3.227) 

With the temperature drop, heat is released from the rock and water, the 

enthalpy of steam is nearly constant on the saturation line. The amount 

of heat is given by: 

= V {(I - $) pc 
r r 

+$SPc}fiT www 
(3.228) 

where V is some reference volume, S is water saturation, and the sub
w 

scripts r,w,s refer to rock, water and steam respectively. This heat is 

used to evaporate a mass of water given by: 

(3.229) 



- 166-

which corresponds to an increase in volume: 

t:N • !Jm (3.230) 

The compressibility can now be calculat ed from the definition by com

bining eq. 3.227- 3. 230: 

(I - t) p c + ts p c ________ r~~r ____ w'_w"-!w 
T t 

T is in degrees Kelvin. 

We can now write: 

dm 
-- : p 8 th 
dp 5 5 

: _ T_ {(I 
p L2 

s 

- t)p c + ts pc) h 
r r w w w 

(3.231) 

(3.232) 

4) In a watertabl e reservoir the mass realeased from storage comes from 

the movement of the watertable. We thus have: 

dm : 5!E. tp (3.233) Y w 

which results in: 

dm P. 
-: 
dp g (3.234) 

Let us compare these four different cases by inser ting numerical values. 

For example T = 240'C, $ _ 10%, P = 
r 

S ;;; 0. 5, c = 4700 J/kg'C, 6 = 1.3 
w W 3 W 

Ps = 16.·8 kg/m. L ;;; 1765 kJ/kg, and h = 1000 m. 

3 
2500 kg/m , er = 

- 4 - I 
10 bar , p 

w 

1000 J!kg ' C, 
3 = 814 kg/m, 

(dIn) = 814 • 1.,3 • 10- 4 • O'!"l • 103 ;;; 10 ; 6 kg/bar m2 
dp I 



dm 
(-) 
dp 2 

(din) 
dp 3 

1 3 2 = 16.8 • • 0.1 • 10 _ 50.1 kg/bar m 
33 .5 

513.15 = (0.9 • 2500 • 1000 + 
16.B • (1765 • 103)2 

+ 0.1 • 0.5 • 814 • 4700) • 103 

2 
= 2393.7 kg/bar m 

= ~ _ 1019.4 kg/ bar m2 
9.Bl 
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From the above figures we can conclude that i n two phase reservoirs the 

vapourization effect dominat es the storage behaviour of the reservoir. 

In watertable reservoirs the free surface effect dominates the storage

behaviour of the reservoir. Eq. 3.7 gives the storage coefficient for 

a wat er-dominated reservoir with no watertable. If we have free surface 

condition in the reservoir the storage coefficient in all the preceeding 

equations must be replaced by the storage coefficient for a watertable 

reservoir. which can be derived from eq. 3.7 and 3.234 and is given by: 

s = ~ (3.235) 

Let us turn again to eq. 3.220 for superheated s t eam. As mentioned be

fore the differential equation is non linear due to the pressure depend

ance of the compressibility, which will affect time dependant solutions 

of the equations, but steady and semi-steady state conditions are given 

by a linear equation, as we will see in the following. Let us consider 

the steady condition gi ven in Fig. 3.3. oarcy's law can be expressed as: 

w _ 

Inserting p from eq. 3.219 gives: 

w = 21Trhkp ..££ 
RTZll dr 

(3.236) 

(3.237) 
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which can be written as: 

w • 
2 

Trrhk ~ 
TRZll <:Ir 

and separating the variables and integrating results in: 

2 
P 

2 
- P wf 

W)JTRZ In r 
= lThk r 

w 

which can be compared wi th eq. 3.25 . 

If we define a dimensionless pressure as: 

1Thk 2 2 
= ~TRZ (Pi - P ) 

(3.238) 

(3.239) 

(3.240) 

the sol utions for the superheated steam become exac t ly the same as t he 

solutions gi ven in section 3.4 for the steady state written in t e rms of 

dimensionless pressure. Let us now tur n to the semi- steady state. Eq. 

3.49 for a circular drai nage area is: 

~ . -
dt 

w 
2 

c$hP1Tr 
e 

By inserting p from eq. 3.219 we have: 

dt 

WRTZ 
2 

ccphTrr p 
e 

which can be written as: 

dp2 

dt 

2WRTZ 
2 

c~h'ITr 
e 

combining with eq. 3.220 we obtain: " 

(3.49) 

(3.241) 

(3.242) 
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r 
e 

cp21Trdr - f 

r 
e 

r 
w 

cp$h21Trp dr = - Wt 
r 

According to eq. 3.219 and 3. 222, cp is constant and can therefore be 

taken outside the integration above, giving: 

cP~hp.A - cP~h2~ ! 
> 

r 
e 

r 
w 

p rdr = - Wt 
r 

(3.246) 

p ls' taken from eq. 3.244 and the integration must be performed numeri-
r 

cally. The result would be quite different from eq. 3.55. If we had 

assumed that c was independent of pressure in eq. 3.245 we could have 

arrived at an equation corresponding exactly to eq. 3.55 by using the 

before mentioned dimensionless pressure functions. But assuming that 

c is pressure independent is obviously incorrect, because we are in semi

steady state where pressure is falling continuously with time and ac

cording to eq. 3.222 c is inversely proportional with pressure. In the 

case of well testing the situation is different. We are in the infinite 

reservoir region of the drawdown curve and much smaller pressure drop can 

be assumed than in the whole period of pseudosteady-state. Let us there 

fore consider equation 3.220 again, which is, as said before, nonlfnear 

due to the pressure dependance of the compressibility. We assume the 

well test to last only for a short time so we can consider an infinite 

reservoir case and we assume the pressure drop to be small so we can 

linearize the equations by setting the compressibility equal to some 

average value or its initial value. By defining the dimension less press

ure according to eq. 3.240 and dimensionless radius and time according to 

eqs. 3.17 and 3.19, eq. 3.220 can be written as: 

(3.247) 

which is exactly the same as the dimension less differential equation for 

water, eq. 3.21. The well testing equations for water- dominated reser

voirs can thus be used directly with this new definition of the dimension

less pressure, that is to say by using the pressure squared instead of 



1 a 
r ar 

2 
(kr ~) 

ar 
- 2WRTZlJ 

hnr 2 
e 
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(3.243) 

which again is a linear equation in pressure squared and can be solved 

exactly . Integrating once we get: 

ar 
- WR~Z].J r2 + cl 

h1Tr k 
e 

where cl 
2 

ap lar = 

is a constant of integration. At the outer no flow boundary 
WRTZl-l 

o and hence the constant can be evaluated as cl = h7Tk which, 

when substituted in the last equation gives: 

ap2 = 
ar 

WRTZll (.!.. 
h1Tk r 

Integrating once again: 

= WRTZl-l (In 

hlTk 

r 

r 
w 

2 
_r_) 

2r 2 
e 

in which the term r 2/r 2 is considered negligible. 
w e 

(3.244) 

Eq . 3.244 can be compared with eq. 3.51. If we define the dimensionless 

pressure for superheated steam according to eq. 3.240 and according to 

eq. 3.20 in the case of water-dominated reservoir, the solutions in this 

section and section 3.4 become identical. This is not quite true for the 

equations in section 3.4 involving time. This can be seen by looking at 

the derivation leading to the equation corresponding to eq. 3 . 55. The 

material balance equation similar to eq. 3.53 is (see Fig. 3.7): 

! 

r 
e 

r 
w 

cp~h2~rdpdr = - Wt 

which can be integrated to give: 

(3.245) 
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pressure. Let us take Theis solution as an example. To get the same 

solution as before, the boundary condi tions, eq. 3.59, must remain the 

same. 

The two first are straight forward, let us look at number three in some 

more detail. Darcy' s law and the continuity equation require, when r -+ 0 : 

p21Tr E.e. ~ h _ W ar u 

By using eq. 3.219 we get: 

nhk 
r 

RTZ~ 
~ 
(lr = W 

which can be written as: 

r a( nhk 2) 
RTZUW P 

= 1 
a r 

r 
w r 

w 

Inserting from eq. 3.19 and 3.240 we obtain: 

r ~o 
D 

= 1 

(3.248) 

(3.249) 

(3.250) 

(3.251) 

and the boundary conditions become exactly the same as 3.59, and the sol

ution then remains unchanged and we get the exponential integral solution 

for the new definition of the dimensionless pressure. It is l eft as an 

exercise to show that the slope of the semi-log straight line g i ven by eq. 

3.74 is now given by: 

ID = WjJRTZ 
2nkh 

(3.252) 

Just remember that it is the pressure squared that must be plotted against 

time. 
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Before we begin to discuss well testing in two phase reservoirs, it is 

necessary to introduce the concept of relative permeabilities. Darcy's 

law has been defined before in section 1 but in case of water and steam 

flowing together we need modification of Darcy's law. I t is generally 

accepted t o write Darcy's law for a two phase flow mixture in the follow

ing way f or horizontal flow: 

v 
w 

v 
s 

= -

kk (S ) 
w w 

~w 

kk ( S ) 
s w 

~s 

grad p (3.253) 

grad p (3.254) 

k (S ) and k (S ) 
w w s w 

are the relative permeabilities for water and steam 

respective ly, and S is the water saturati on as before. They are func
w 

tion of wate r satur a tion. Typical relative permeability curves are 

s hown in Fig. 3.58 . In order to establish the well testing equations 

we must f ormulate t he conservation of mass and energy. 
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Fig . 3.58 Relative permeability curves 

They are g i ven respectively as: 



,at (~(P S + (I - S }p » + div {p V + P v } - 0 o ww w s ww ss 

!t {(1 - ~) Prhr + ~s P h + ~ ( I - S ) ph} 
o www wss 

+ div {p h v + P h v } = 0 
www sss 
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(3.255) 

(3.256) 

where the indices w,s,r mean water, steam and rock respectively. With 

some approximation, see Sorey et al. (1980) and O'Sullivan (198 1), eqs. 

3.253 to 3.256 can be simplified to the fo l lowing equati on : 

dP Cl rk 

Pt8s~ "t - - " -v () r or t 

ap 
( - ) ar + P P (h _ h)V grad ht • grad p 

w s s w t 
(3.257) 

where Ss is defined in eq . 3.231 and Vt'~t,ht and Pt are defi ned in the 

following way: 

k k 
w S +-

V
t 

V V 
w s 

(3 .258) 

k k 
w s = + 

~t ~w ~s 
(3.259) 

h
t 

k k 
...!Ch s 

h + V V w V S 
t w s 

(3.260) 

Pt = 
~t 
V 

(3.261) 
t 

and other symbols have been defi ned before . We will now conside r the 

solution to eg. 3. 257 for three different cases. 

1) Saturated steam, i mmobile water phase 

Because the steam entha lpy can be considered almost constant eq. 3.257 

reduces to: 
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I a r ap 
- -a (;;- ar) = r r v 

s 
(3.262) 

which is nonlinear due to the pressure dependance of the steam kinematic 

viscosity and density. Grant (1978) has suggested the following trans

formation in order t o remove the nonlinearities from the left hand side. 

* m = fS>. 
v 

s 

Inserting eq . 3. 263 into eq . 3. 262 gives: 

I a 
r dr 

* am 
(r ""5r) "" 

(3.263) 

(3 . 264) 

which i s the ordinary differential equation used in well testing and the 

methods we have been discussing in this. section can be used. Grant (1978) 

* has calculated an approximate formula for m given by: 

* m = 2.58 • 109 p 13!7 

where p is in bars. 

* 

(3.265) 

The slope of the semi- log straight line, that is m vs . log t, is given 

by' 

m = 
W 

41Tkh 

2) Saturation, immobile steam 

(3.266) 

In this case we assume that the pressure gradients are small, thus re

ducing eq . 3.257 to: 

a op 
(r - ) = or (3.267) 

This is the ordinary well test equation and all the standard well testing 
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procedures can be used. There are small nonlinearities on the right hand 

side, which can be overcome by using initial values for the parameters on 

the right hand side. 

3) Saturation, both water and steam mobile 

It has been shown that the flowing enthalpy, ht' becomes constant after 

some time from the starting of the well test, see Sorey et al. (1980). 

Eq. 3. 257 can then be written as: 

1 a 
rdr 

ap 
(r --) = ar 

w~ 
- k-at (3.268) 

where the left hand side has been linearized by taking V
t 

out of the 

differentiation. Now again the standard well testing methods can be 

applied. Initial values must be used for the parameters on the right 

hand side. In this case the differential equation is highly nonlinear 

and care must be taken when interpreting well tests. It should e.g. 

be noted when using recovery tests (Horner plot), that although pressure 

might recover linearly with log (t}, that liquid saturation overrecovers. 

If the pressur e rise during recovery is great enough all liquid condi

tions can be produced around a well that previously discharged under two

phase conditions. 

EXERCISE 3.12 

The following data are from one well in the Tongonan field in the 

Philippines, and reported by Paete (1980) . 

Flowing enthalpy, h
t

: 

Fluid temperature, T: 

Well radius, r 
w 

1433 kJ/kg 

262·C 

10.8 cm 

A pressure buildup test was performed, with the massflow rate equal to 

26 kg/s prior to closing down the well. The pressure buildup data is 

given on Fig. 3.59. The well was shut at 1020 hours. The pressure prior 

to shut in was Pwf = 22 bar. 
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Calculate the reservoir parameters and the skin effect. 

Solution 

From steam tables we get: 

h s = 2795 kJ/kg 

h 1145 kJ/kg w 
3 

Ps = 24.6 kg/m 
3 

Pw = 780.8 kg/m 
-6 

Vs = 18.3 10 kg/ms 

Vw = 102 10-6 
kg/ms 

c = 4.983 kJ/kg'K w 

Let us take c = 1. 0 kJ/kg ' K, P = 2500 kg/m 3 , and ~ _ 10%. We see that 
r r 

the water enthalpy is less than the flowing enthalpy indicating two phase 

conditions . By combining eq. 3. 258 to eq. 3.260 we get: 

k 
w 

ks = 

Inserting numerical values we get: 

k 
w 

k 
s 

102 • 10- 6 24 6 • (2795 - . 1433) 
- -----=-6 ------- = 0.83 

18. 3 • 10- 780.8 (1433 - 1145) 

(3.269) 

Let us assume the Grant relative permeability curves, see Fig. 3 . 58 . We 

now have: 

k + k = 1 (3.270) 
w s 

Inserting the above value we get for the relative permeabilities: 

k = O~55 s 

k • 0.45 
w 
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Fig. 3.58 gives with the above relative permeabilities S = 0.84, again 
w 

showing two phase conditi ons. We can now use eq . 3.231 to calculate the 

two phase campressihili ty: 

~B • 
s 

780.8 - 24.6 · 

780.8 24 . 6 • (2795 - 1145) 

• 2500 + 0.1 • 0.84 • 780.8 • 4983} 

2 
) 535 • {O . 9 • 1000 • 

Eq. 3.258 and eg . 3.259 give for the flowing kinematic viscosity and dy

namic viscosity: 

_ = ,,0;,.. 4",5'-'._7"8",0,,,. ,,8 + "0,,,. 5",5,--,2,,4"".0:6 

102 10- 6 18 . 3. 10-6 

- 7 2 
V

t 
= 2.4 • 10 m /s 

_.:0,".~4"5c-,,, + ° . 5 5 

102 • 10-6 18.3. 10-6 

- 5 
~t = 2 . 9 • 10 kg/ms 

The analysis of the pressure buildup data is given on Fig. 3 .59. We now 

get for the permeability thickness (see Fig. 3.25): 

kh 
26 • 2.4 • 10-7 W''t 

• - = ---~~-~. 0.5 am 
• -1!... • 105 

In10 
4mn 4 • n 

We can now calculate the skin effect according to eq . 3. 184 with 6t 

= 60,000 sec. and P = 37 bar, by assuming the aquifer t hickness to be ws 
10 m. 
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5.1.151 ( ( 37 - 22) _ log ___ -'0".,:5'-'.' -,1,-,0,--_1..,20-'-' -'I"'O'--__ "CC 

24 7.8 ' 10-7 , 0.1082 , 2.9 ' 10-5 

- log 1,000 - 2.13) 

.1.151 (0.63 - 1.3 - 3.0 - 2.13) = - 7.2 

Let us finally describe a situation that might occur in a well test in a 

water- dominated reservoir. By applying the standard well testing methods 

we determine the parameters for the water- dominated reservoir. As press

ure drops a flash front propogates into the reservoir away from the well

bore. To begin with the water zone dominates the two phase zone and the 

parameters determined would be the same as before. In the long term the 

two phase zone becomes dominant and the parameters determined would be 

representative for that zone. See Horne et al. (1980) and Garg (1980) 

for discussion on phase boundaries. Final ly a dry steam zone mi ght be

come the controlling zone. The above description shows clearly the com

plications involved in a two phase f low test analysis. 
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4 RESERVOIR MECHANICS 

4.1 Introduction 

This section on reservoir mechanism describes how the geothermal reser-

voir behaves under natural conditions and exploitation. General equa

tions for rJhe flow in geothermal reservoirs will be formulated. Hydro

thermal convection will be discussed as a part of the natural state of 

the reservoir. For the engineer developing a geothermal reservoir. the 

question of energy capacity of the reservoir is very important. Equally 

important are the rate, at which this energy can be exploited, and for 

how l ong it is possible to extract the energy at this rate. In order to 

understand and try to answer these questions we discuss reservoir re

sponse and capacity, heat extraction from geothermal reservoirs and rein

jection. Due to the non- linearity of the equations describing flow in 

geothermal reservoirs, no analytical solutions exist and numerical 

methods have to be used. A small section on numerical models is there

fore included. 

4 . 2 General equations for the flow in geothermal reservoirs 

The equations for the flow in a porous medium are presented. They are 

the ordinary conservation equations in fluid mechanics. That is the con

servation of oass, momentum and energy together with the necessary con

stitutive relationship and equations of state. In order to shorten the 

presentation, the equations will not be derived microscopically, but the 

reader is referred to Pinder (1979). The conservation equations are the 

following: 

Conservation of mass: 

Conservation of momentum: 

v =
w 

kk (S ) 
w w 

~w 
grad P 

(4.1 ) 

(4.2) 
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v 
s 

kk (S ) 
s w 

Vs 
grad P 

Conservation of energy: 

aat « 1 - ~) P h + ~S P h + ~ (1 - S ) Ph) rr www wss 

+ div (p h V + p h V ) _ d i v (A grad T) 
www sss e 

(4.3) 

(4.4) 

all the above symbols have been defined before. Eqs. 4.2 and 4.3 are the 

Darcy equations for two phase flow defined in section 3, see eqs. 3. 253 

and 3.254. In writing down these equations we have used the enthalpy 

(h) , ·'as a variable in the energy equation and we have neglected viscous 

dissipation and pressure work, see Garg and Pritchett (1977) and Pinder 

(1979) for detailed derivation. 

In well test analysis we can neglect the heat conduction term on the 

right hand side of eq. 4.4 and eq. 3.257 in section 3 can then be derived. 

The differential equation 3.12 for a horizontal isothermal flow in a 

single phase water reservoir of constant thickness can be derived from 

the above equation by volume averagi ng . If we use vertical averag~ng, 

neglect the transient terms in the energy equation and introduce circular 

symmetry, the above equations read in cyl indrical coordinates: 

Mass: 

Momentum: 

v 
w 

Energy : 

T .. constant 

1 a (rp v h) 
ww 

-; or (4.5) 

(4.6) 

(4.7) 
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Combining we get: 

1 a kp h ap a 
w 

r3r (--r - ) = at (Pw~h) 
Vw ar (4.8) 

or 

1 a kp ap 1 a 
w 

-) (Pw~h) r ar (-r 11 at Vw ar (4.9) 

Eq. 4.9 is identical to eq. 3.2 and the rest of derivation of eq . 3.12 

now follows section 3.1. 

The equations 4.1-4.4 are highly nonlinear and i n most cases no analyti 

cal solution exists and therefore numerical methods must be applied. The 

differential equations must be solved with the appropriate boundary con

ditions and one set of boundary conditions gives e.g. the solution for 

hydrothermal convection discussed in section 4.4. 

4.3 Reservoir capacity, response and heat extraction from geothermal 
reservoirs 

Let us start this section by introducing a schematic simplified model of 

a geothermal reservoir as described in Fig. 4.1. 

The geothermal reservoir has a surface area, A and a thickness, h. Over

lying the geothermal reservoir is a cold water zone sealed from the res

ervoir by a caprock. I n the reservoir we have a water and steam zone and 

a hot water zone. Their relative magnitude is dependent on if the res

ervoir is water-dominated or vapour- dominated. The general flow picture 

is shown in the figure. I f fluid is withdrawn from the reservoir at the 

W , an internal pressure drop will occur. 
w 

It stimulates a recharge rate 

flow from the sides, W
r

, and may change the base inflow, W
b

, and the 

steamflow, w
s

' and the nat ural discharge flow, W
d

• The mass bal ance i s 

g i ven by the following equation: 

(4.10) 
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Fig. 4.1 A schematic model of a geothermal reservoir 
(Adapted from McNabb 1975) 

Let us look at each of these flows in eq. 4.10. 

1) The base inflow, W
b

• In most models of geothermal systems it is as

sumed that cold meteoric water percolates down to some considerable depth 

where it is heated and driven, due to the density difference, back up to 

the surface. The flow path involved is so long that the pressure changes 

due to exploitation do not change the flow very much. The baseflow will 

therefore be treated as a constant under exploitation. 

2) The recharge flow, 

difference between the 

w • 
r 

The recharge inflow is created by the pressure 

inside and outside of the geothermal reservoir. 
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This inflow will increase with increasing drawdown due to exploitation. 

This recharge water will have the effect of moving in the cold side 

boundaries of the reservoir. The cold water percolates into the reser

voir and gets heated by the heat stored in the rock and hot water al

ready resident in the pores. When exploitation of a field starts, the 

pressure starts declining thus increasing the pr essure difference be

tween the inside and the outside of the reservoir. But very long time 

may elapse before any effect of the recharge is observed, due to low 

permeability zones near the boundary. When considering possible recharge 

due to exploitation it must be kept in mind that in the natural state of 

the reservoir there may exist great pressure differences between the in

side and outside of the geothermal reservoir due to the higher temperature 

of the reservoir. In . the Svartsengi geothermal field in Iceland there 

was a 16 bar pressure difference at 1000 m depth between the insi de and 

outside of the reservoir in the natural state of the reservoir. 

As a result of the recharge flow the reservoir properties will change by time. 

These changes can be observed in reservoir pressure, chemistry and enthalpy . 

3) The well discharge, Ww' The total well discharge will be controlled 

by several factors, mainly well head pressure. The well discharge will 

be discussed i n more detail in section 5. 

4) Natural di scharge, W
d

, and steam flow, Ws. If we increase the well 

discharge sufficiently to decrease the reservoir pressure, the natural 

discharge might reverse in sign because t he pressur e difference which 

maintains the flow becomes reversed. We then have a recharge of cold 

water from above and the steam flow stops . 

In view of the simplifi ed model we have been discussing let us now return 

to the main topic of this section, that is reservoir capacity, the re

sponse and heat extraction from geothermal reservoirs. The energy stored 

in the water zone of the geothermal reservoir in Fig . 4.1 is: 

qh • (c P (1 - ~) + ~c P )6ThA r r w w 
(4.11) 

where ~T is the temperature difference between the reservoir and the sur

roundings and A is the reservoir area. Let us take an example of a reser-
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voir with the following dat a: 6T 
3 

er - 1000 J/kg"C, Pw - 812 kg/m I 

calculate the heat energy: 

200·C, h = 1000 rn, p _ 2500 kg/m3, 
r 

$ = 0.1, c ~ 4200 J/kg"C, we can then 
w 

6 
qh = (1000 • 2500 " 0.9 + 0.1 • 4200 • 812) • 200 • 1000 • 10 

17 17 . 2 
= (4.5 + 0.68) • 10 _ 5.18 • 10 Joules ~ 16488 MW year/km thermal 

87% of the energy is in the rock and onl y 13% is in the water. 16488 MW 

year/km
2 

corresponds to a 330 MW/km
2 

for fifty years. If the area of the 

geothermal field is e.g. 4 km
2 this figure corresponds to 1320 MW for 

fifty years. If the heat extraction process just consisted of taking the 

fluid in the reservoir, we would only get about 13% of the total heat con

tent. The heat extraction must therefore aim at mining the heat from the 

rock and we will turn to that later on. The heat energy calculated above 

is not all available for power production due to the efficiency in the mi n-

lng operation and in the power plant, which is less than one. It is customary 

to multiply this energy with a factor, recovery factor, in order to calcu

late the energy presumably available for power production. The recovery 

factor is poorly defined. Many authors have discussed the appropriate 

magnitude of the recovery factor, r, it seems that it can range up to 

~ 25% for hot- water reservoirs. If we take e.g. r = 0.1 in the exampl e 

above we would get for the recoverable energy : 

= 0.1 • 16488 = 1649 MW year/km
2 

thermal 

which again corresponds to 132 MW for fifty years in a geothermal area 
2 

of 4 km. This method to estimate reservoir capacity is known as the 

volume method, see Muffler and Cataldi (1978) and is accepted as a method 

for geothermal assessment. The uncertainty of the method lies in the es 

timation of the recovery factor, which depends on many factors such as , 

the nature of the reservoir, its degree of fracturing, its temperature 

variation; the nature of the fluid, noncondensable gas; and the way in 

which the field is operated, the reinjection strategy, the rate of with

drawal. The main drawbacks of this method is perhaps that it is very dif

ficult to include available information on the performance of individual 

wells into the estimation of r. 
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In the exploitation of a reservoir we may at some time exceed reservoir 

capacity, which means that we do not get the sufficient discharge from 

the wells. The reservoir drawdown can at any time be stopped and the 

wells operated at constant pressure, but then the discharge will decrease 

logarithmically with time. This corresponds to the constant pressure sol

ution given in section 3.6. Let us however estimate the discharge decline 

with the following: 

- t/K 
W - W

1 
• e (4.12) 

where t is the time elapsed since we started operating the wells at con

stant pressure and mass flow equal to W
1

• K is some time constant for 

the geothermal reservoir which can be estimated if we have constant press

ure data for mass flow vs. time, see Zais and B66varsson (1980) for analy

sis of production decline in geothermal reservoirs. Let us assume that 

we have to stop due to economical reasons the exploitation of the field 

at time t , and then the discharge has decreased to W • 
o 0 

Moss flow 
W 

82.02.0445, 

w, 

Fig. 4.2 Production decline in geothermal reservoirs 

The area in Fig. 4.2 shows the total amount of fluid that can be with

drawn until we reach the capacity limits and is therefore the present 

state capacity. We have for this capacity, U: 
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u • f 
o 

t 
o 

(4.13) 

From U it is now possible to calculate the total thermal energy available 

to power production. This figure is, for all practical purposes the pres

ent state capacity of our geothermal field. Now compare eq. 4.13 to eq. 

4.11 and the following calculations that include an estimate of the recov

ery factor r. It is quite clear that the present state capacity should 

be equal to the recoverable energy minus already produced energy. But in 

practice it will be almost impossible to estimate the recovery factor so 

accurately as to make these two estimates of the present state capacity 

equal. 

Let us now turn to the second topic of this section, which is reservoir 

response. The reservoir response was discussed in detail in section 3 

so let us just draw some general conclusions from that discussion. In 

section 3 we saw that the differential-equation for pressure for some 

pressure transformation could be linearized to give an equation of the 

same type as the heat conduction equation: 

1 an 
-~. 6p 
K at 

where K is the hydraulic diffusivity defined as: 

K _ 

The solution to eq. 4.14 can be written as: 

p - p = f 
o 

o 
f(t - T)W(T)dT 

(4.14) 

(4.15) 

(4.16) 

where f is the instantaneous unit response function of the reservoir. 

Another unit response function can be defined as: 

F(t) = f 
o 

t 
f(T)dT (4.17) 



Eq. 4.16 can then be written in terms of F as: 

00 

! 
o 

WeT) dF(t - T) dT 
dT 
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(4.18) 

If we have field data for pressure decline and mass flow rate eq. 4.18 

can be solved numerically, by using the least square procedure, in order 

to determine the unit response function. (See Barelli and Palama 1980 

and Zais and 856varsson 1980). The unit response function is just the 

r eservoir response to unit mass flow rate. It is therefore very conveni

ent to use for well testing purposes. If it is not possible due to some 

practical considerations to maintain constant mass flow rate in a well 

test, the method above can be used to determine the unit response func

tion, which then can be analysed by the standard methods described in 

section 3, which require constant flowrate . Fig. 4.3 gives a result of 

such calculations for the Svartsengi geothermal field in Iceland. 

For the calculations shown in Fig. 4.3 there were available 2000 days of 

drawdown and mass flow rate records. The unit response function was de-

termined for that period. The response function is then extrapolated by 

a fitted theoretical model into the future. The unit response function 

can then be used to calculate future pressure drop, provided that all 

existing boundaries of the system have shown up in the historical press

ure record. 

The unit response function for the infinite reservoir case is given by: 

F(t) = 

2 
r 

(-Ei(- --» Kt 

as may be seen from eqs. 3.60 and 3.22. 

(4.19) 

We can now use eq. 4.18 to solve eq. 4.14 for the case of constant pumping 

(W = constant): 

p - p 
o = 

~t 

4nkh 

2 
r 

(- Ei(- --» 
Kt 

(4.20) 
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From the equation above we see that constant pressure drop p - p corre-
o r2 

spends to a constant argument of the unit response function that is Kt • 

eonstant. The pressure drop has therefore diffused out a distance on 

the order of IKt at time t. Let us define the diffusion radius: 

rd = /Kt - LE:: - /$U-t-C (4.21) 

The diffusion radius for a two phase system is much smaller than for 

water-dominated systems due to the much greater compressibility of the 

two phase mixture, see section 3.16. The ratio 

bility to water compressibility can be as great 

of two phase compressi-
4 as 10. The ratio be-

tween the diffusion radia is given approximately by: 

two phase 
rd 
-'"'-==- = water 

rd 

water h 
I-."'C::-::;:h=:- • 1 4 ' O. 0 1 

c two p ase 10 
(4.22) 

We see that the diffusion front travels two orders of magnitude faster in 

water reservoirs than in two phase reservoirs. This explains why inter

ference tests are difficult to perform in a two phase reservoir, because 

of the relatively long time for the pressure front to diffuse out to the 

observation well. Because the speed of the diffusion front spreading 

through compressed liquid is high it only takes a relatively short time 

for the pressure pulse to cross a liquid- dominated geothermal field. It 

takes the pressure pulse a short time to reach the boundaries of the sys

tem and thus creating cold recharge from the side boundaries. This cold 

pressure front sweeps through the reservoir and mines heat from the for

mation, which contains most of the heat content in the reservoir as we 

saw in the preceeding example. This is a very desirable mode of exploi

tation, because it means th~t the wells can have a long lifetime, as their 

region of exploitation is the entire field. Let us calculate the speed of 

the temperature front. Eq. 4.4 can be written for compressed liquid and 

we neglect heat conduction effects: 

(1 - ~)P c + ~p c ) ~T = - p cV, grad T 
rr wwat ww 

(4.23) 
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If we define: 

a- (1 _ 

p c 
w w 

t)p c + 
r r 

tp c ww 
(4.24) 

and assume for simplicity the flow field is uniform and horizontal eq. 

4.23 becomes: 

(4.25) 

Solution to eq. 4.25 is given by: 

T = f(x - avt) (4.26) 

From this solution we see that the speed of the temperature front is 

given by (lV. V is the Darcy velocity, the actual velocity is then given 

by: 

(4.27) 

and the speed of the temperature front can then be written as: 

(4.28) 

The heat front is thus delayed relatively to the hydraulic front by the 

factor a~. Let us as an 
3 

values. Pw - 812 kg/m , 

~ - 0.1, we have: 

example calculate 

c - 4200 J/kg"C, 
w 

this factor for the following 
3 

Pr = 2500 kg/m, er - 1000 J/kg"C, 

1 --;;--;;--'-;;=:-;-;= = 0, 1 3 0.9 2500 1000 

1 + 0.1 

The speed of the heat front is in this case seven to eight times smal ler 

than the hydraulic front. If the boundary recharge is small due to low 

permeability zones at the boundaries, very small heat mining from the 
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rock is then possible. As most of the reservoir heat content is in the 

rock, it is very important to be able to exploit that too. For that 

purpose reinjection of cold wate r mi ght be necessary . 

We have seen that the compressibility of the two phase mixture is much 

greater than for a single phase fluid . We have also seen that it takes 

much longer time for the pressure pulse to diffuse out to the boundaries 

in a two phase fluid . Each well then just exploits the reservoir in its 

immediate vicinity. Very little recharge is now induced from the bound

aries and the heat must now be mined from the rock differently than for 

the compressed water reservoir. This is a l so what really takes place in 

two phase mixtures. In two phase reservoirs, pressure drop is accom

panied by a temperature drop, energy is mined from the rock thus cooled. 

4.4 Natural convection in geothe~al reservoirs 

A hydrothermal system may be looked upon as a thermodynamical engine that 

pumps energy from the interior of the earth by means of free or forced 

convection. In free convection the flow i s dri ven by the density gr adi 

ents and there is a close non-linear relationship between the temperature 

distribution and the flow field. In forced convection the flow is driven 

by external pressure gradients and more or less independent of the tem

perature. Flow within geothermal reservoir is often of a mixed type where 

both external pressure gradients and internal density gradients drive the 

fluid flow. In a reservoir we have often the situation that internal flow 

is of the free convection type, but flow towards wells is almost entirely 

forced convection type. 

Free convection flow in homogeneous thin layers of single phase fluids at 

moderate flow velocities takes place in regular hexagonal flow- cells 

(Benard-cells) • 

The flow is upwards in the middle of the cell when the fluid is liquid, 

down when it is gas (Palm 1960). The flow characteristics ar e functions 

of the Rayleigh number: 

Ra 
Bp c k 

w w 
= 9 -v-- X- l:!Th 

w e 
(4.29) 
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82 .02.0447. 

Fig. 4.4 Flow in Benard- cells 

8 is the volume coefficient of thermal expansion defined in eq. 2.8 and 

~T is the maximum temperature difference, and other symbols have been 

defined before. The Rayleigh number relates buoyancy forces to viscous 

forces. 

When there is no convection (low temperature differences) the heat flux 

is constant everywhere and the temperature distribution is linear (con

stant temperature gradient). When Ra > 4n
2 ~ 40 convection starts and 

the temperature gradient is disturbed . 

Fig. 4 . 5 shows the temperature distribution in a porous medium heated 

from below. We see that the "hot area" gradient has a great resemblance 

to what we find in geothermal areas. The heat flux caused by such con

vection is measured by the Nusselt's number (Nu): 

Nu 
Heat flux with convection 

Heat flux without convection (same temperature difference) 

(4.30) 

Fig . 4.6 shows some experimental results for the relation between the 

Nusselt's number and the Rayleigh number for liquid water. 

Eliasson (1973) gave the following equation for the solid line in Fig. 

4.6: 

Nu _ 1.... rRa 
3rr (4.31) 
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Fig . 4.5 Two-dimensional temperature, velocity distribution for 
free convection in a porous medium. a) isotherms and 
temperature distribution with depth; b) streamlines. 
(Elder 1965) 
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Fig. 4.6 Nu-Ra experimental results (Eliasson 1973) 
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By using Fig. 4.6 or eq. 4.31 it is possible to estimate the natural 

heat output of geothermal convective reservoirs. On the other hand it 

is possible to estimate Ra and thereby the permeability k if the natural 

heat output is known. Care must be taken that all the cell area must be 

included when area of the geothermal field is estimated and Nu calculated, 

i.e. the downflow area must be included, when the heat flow without con-

vection is estimated. 

For low Rayleigh numbers, convection may be calculated, but above Ra _ 250 

the stability of the cells breakes down and secondary convection starts in 

smaller cells inside the big cells, (note the irregularity on the Nu- Ra 

graph) • 

Let us look at a simple example to clarify the concepts we have been de

fining: 

To To 

\ I 
0 I 

I 

Temper01ur • \ GOC/km I 
I 

h I 
I 

T, 

82 . 02 .0400 

~ 
Ttz) 

T, 

I 
I 

10. permeability 
uctlon only cond 

conv ~hI'h permeability 
ec110n occur. 

I 

r"" o • 
ndOTle. of 
e01t1ermlnol 
ervolr I res 

Fig . 4.7 Temperature profiles with and without convection 

Fig. 4.7 shows a geothermal system bounded as indicated by the dashed 

lines. The geothermal reservoir consists of a high permeability zone 

where the heat transfer is mainly by convection as indicated by the near

ly constant temperature profile. Above the geothermal reservoir we have 

a low permeability zone where we have the Raylei gh number less than the 

critical one and the heat transfer is by conduction only, as shown by the 

linear temperature profile. To the left in the figure is shown the tem

perature profile as it would be in the geothermal system if there were no 

convection but just conduction. The verti cal heat flux can be calculated 
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as the heat flux by condu~tion in the low permeability zone. We have: 

qconvection = 

If there were no convection the. heat flux is given by: 

qconduction ;:; 

(T 1 - T ) 

-7.( h~-::7°) - A + D 

The Nusselt number is then given 

qconvection h 
Nu . = 1 + 

qconduction D 

by' 

(4.32 ) 

(4.33) 

(4.34) 

Let us take the following numerical values for an example: h = 1000 rn, 
. - 3 - 1 3 

_ 1.7 • 10 ·c , P = 812 kg/m I C s 4200 J/kg, V = 1~4 
w w w 

D_IOOm,B 

10-7 2; m s, A 
e 

:;: 1. 7 watt/m'C, T = lO ' C, T, = 240·C. The Nusselt mun 
o 

her is 

Nu 

according to eq. 4.34: 

= 1 + 1000 :: 11 
100 

Eq. 4.31 then gives for the Rayleigh number: 

Ra 
2 

(3~ Nu) = 2687 » 4n2 
2 

6T in eq. 4 . 29 is given by: 

6T = (T - T ) _h_ 
1 0 h + D 

1000 = 230 • 1100 = 209'C 

Eq . 4.29 then gives for the permeability: 

Ra\) ;\ 
k = we 

gSP c 6Th 
ww 

(4.35) 
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Inserting numerical values we get: 

- 7 _________ -=2~6~8~7~·_=I~.4'_~·_1~0"_ __ ·C_I~.7C_ ______ ___ k = : 54 md. 
1.7 • 10- 3 • 812 • 4200 • 209 9.81 • • 1000 

Let us now calculate the necessary permeability to maintain convection 

in a high temperature geothermal reservoir. From eq. 4.29 and the necess

ary condition that Ra > 4~2 we get: 

Inserting the same numerical values as above gives: 

_______ ~4~~~_2~.~1~.~4~~1~0~--7~.~1~.~7-------k > 
10-3 • 812 • 4200 • 209 • 1000 

(4.36) 

~ O,B md. 

This is a very low permeability indicating that we would have convection 

in most high temperature geothermal reservoirs. 

Let us now derive the differential equations describing the single phase 

convection of water. In case of single phase water eqs. 4.1-4.4 reduce to 

the following equations , if we neglect the transient term in the equation 

of continuity, add the gravity term to the momentum equation and apply 

Boussinesq assumption, which consists of neglecting the variation in the 

density everywhere in the equations except in the buoyancy term: 

div V = 0 (4.37) 

v • - K 
(grad p + p gl 

~ w 
(4.38) 

aT at - div (Ke grad T) - aV • grad T (4.39) 

where a is defined in eq. 4.24 and K is the effective diffusivity de
e 

fined as: 



K 
e 

A 
= ~(71-_~~~)_p-C::.e_+~~p-C-

r r w w 
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(4.40) 

These equations have been treated by many authors with various boundary 

conditions and with respect to geothermal reservoirs . See e . g. El{asson 

(1973), Combarnous and Boris (1975), Witherspoon et al . (1975), Garg and 

Kassoy (1981), Lapwood (1948), Caltagirone (1975), Waeding (1963). A 

linear stability analysis of the above equations shows that thermal con

vection in a liquid- saturated porous layer is initiated when a critical 

value of the Rayleigh number, Ra, is exceeded. In a horizontal layer of 

constant thickness and a constant temperature difference across, the 
2 

critical Rayleigh number is 4~ , as originally proved by Lapwood. 

In the above we have just considered the relative simple single phase con

vection of water with constant fluid properties. Straus and Schubert 

(1977) determined the critical Rayleigh number for variable fluid proper

ties. They also investigated the basic physical processes involved in 

three-dimensional medium convection with phase transition. They found 

that the phase change instability mechanism induces convection prior to 

the onset of ordinary buoyancy driven thermal convection. Finally we 

mention that Straus and Schubert (1979) showed that the buoyancy of the 

geothermal fluid depends heavily on the presence of CO
2 

because of the 

large volume changes that occur when CO
2 

enters or leaves solution and 

forces water to simultaneously change phase. 

4 . 5 Lumped and distributed reservoir models 

The simplest type of a geothermal reservoir model is the "lumped para

meter" model. In this case, the entire geothermal system is described 

in terms of only a few major parameters . Instead of considering the in

ternal distribution of mass and energy, attention is restricted to the 

total amounts within the system and what crosses the boundaries. In these 

models, time is the only independent variable, and the system can there

fore be characterized mathematically by a set of ordinary differential 

equations or an equivalent set of algebraic expressions representing total 

mass and energy balance. Lumped parameter models are appealing for their 

simplicity, generality and ease of appl ication. A model in which the prop

erties of the rock and the fluid are allowed to vary in space is called a 
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distributed parameter model. Unlike the lumped parameter models, which 

are relatively simple mathematically and for which the use of numerical 

computing methods is not a dominant feature, distributed parameter models 

are often so complicated that large computers are needed to obtain numeri

cal solutions to the partial differential equations describing the heat 

and fluid flow processes. By taking into account spatial variations of 

these properties the resulting problem may become too complex to be treat

ed analytically. An alternative approach is to replace the governing par

tial differential equations by an equivalent set of algebrai c equations 

and then solve the problem numerically with the aid of a computer. In 

order to explain the difference between these two model approaches and 

to show their use in reservoir engineering some examples will be given in 

the following. 

Let us first take an example of a lumped parameter convection model. The 

following model was uSed for the Svartsengi geothermal reservoir in I ce

land (see Kjaran et al. 1980). Fig. 4.8 explains the mechanism of the 

model. 

82.02.0452 

Fig . 4.8 

Steom flow from 
t he convection 
cell, W" hs, 

Notura l dlschargl ~I--""'f---------, 
from the convection A 
cell 
Wd , y, h., Td 

Flow downwards 

Wa,y, hc , 
piT, y) 

W: Flowrote. 
h: Enthalpy. 

T: Temperatur&. 
a,/3, y.: Clorlde content. 

p (Tu' {3~ Liquidden,ttyof water'with 

temperature Tuond con
centration. {3 

B 

Flow upward, 
W, 
h, 

fJ 
plTu ,13) 

Boae inflow to the 
convection cell 
Wb,hb,Tb,O. 

A lumped parameter convection model (Kjaran et al. 1980) 
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A base inflow flows into the geothermal reservoir and due to buoyancy 

effects it is convected upwards, a part of it flows away as a natural dis

charge and steam flow, but the rest flows down again to mix with the base 

inflow. Due to the vapourization the chlori de content in the Svartsengi 

geothermal water ls different in the different flowpaths in the convec

tion cell . The conservation equations for mass, energy and chloride con

centration can be written in points A and B as: 

Point A: 

Mass: W 
_ W 

u c 

Energy : W h 
u u 

Concentration: 

Point B: 

Mass: W 
u 

+ Wd + W 
s 

• W h + Wdhd + Wchc s s 

W B = WdY + WcY u 

Eqs.4.41 - 4.46 can be arranged to give the following equations: 

W 
C 

Wb 

Wd 

W 
s 

= W 
u 

• w 
u 

= W 
u 

W 
u 

f.....:..S!. 
y - Cl 

Y....::..1. 
y - Cl 

f!. Y....::..1. 
y y - Cl 

Y....::..1. 
y 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4 .45) 

(4 . 46) 

(4.47) 

(4.48) 

(4.49) 

(4.50) 
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h = h - L r....::J. 
c u y 

(4.51) 

hb = h + L L...£ 
u y 

(4.52) 

where L is the latent heat of vapourization. If we assume that the chlor-

ide concentration is known we have here 6 equations with seven unknowns. 

In order to determine W , so the equations above can be solved, let us 
u 

look at Fig. 4.9, which shows a vertical section through the convection 

cell. Darcy's law for the flow in the convection cell can be written as: 

2 

h 

82.02.0453. 

Fig . 4 . 9 Vertical section through the convection cell 

s..U+pg.+ 
K i , 

where the symbols are defined in the following way: 

2 massflux vector, kg/s/m 

coefficient of permeability, m/s 
2 acceleration of gravity (o,g), m/s 

density, kg/m3 

pressure. N/m2 

Xi: coordinates. i = 1.2, m 

Integrating eq. 4 .53 around the convection cell gives: 

(4.53) 
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(4.54) 

The first term in eq. 4.54 is due to the energy dissipation in the flow, 

the second term is the buoyancy effect in the convection and is in fact 

the density difference between the upflow and downflow. The third and 

last term is the integration of the pressure gradient and must equal zero 

for the closed integration path. The second term in eq. 4.54 can be ap

proximated as: 

(4.55) 

where ~p is the density difference between the downf low and the upflow. 

The upflow i n the convecti on cell occurs over much smaller area than the 

downflow, the energy dissipation is therefore greatest in the upflow 

area. The first term in eq. 4.54 can therefore be approximated in the 

following way : 

.. !rUd. 
'f K i 

= !r _u_ 1 
K 1 - E: 

(4.56) 

where u is the massflux in the upflow and E: is the part of the energy dis

sipation, which occurs in the downflow and must be much smaller than 0.5. 

Equating equations 4.55 and 4.56 we get: 

U • - K(l - E)6p = K(l - E) (P(T ,y) - PIT ,a)) 
c U 

(4 . 57) 

If the area of the upflow is A, the upflow can be written as: 

(4.58) 

If the coefficient of permeability , X, the upflow area A and the energy 

dissipation factor, £, can be estimated, the upflow can be calculated from 

eq. 4.58. This upflow value can then be used to solve eq~. 4 .47- 4.52. 

The result of these calculations has been used for the Svartsengi geothermal 

reservoir to calculate the natural heat flow from the reservoir, which is 

given by: 
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qnatural =W h -Wh 
u u c c 

(4.59) 

The next example is a distributed parameter model just around a discharg

ing well. The example given is for a geothermal field with low gas con

centration. The following example is from the Kawah Kamojang geothermal 

reservoir in Jawa presented by Grant (1979). The steam discharging from 

vapour-dominated fields usually contains some gases. Carbon dioxide and 

hydrogen sulphide are the most common. As these gases are soluble in 

water, the reservoir's stock of gas partitions itself between the liquid 

and vapour phases. When the pressure and saturation vary, there is a 

transfer of mass from one phase to another, and this usually implies a 

change in the gas concentration in each phase. Large quantities of gas 

markedly affect field behaviour (Grant 1977), in two phase systems with 

both phases mobile. A simpler case is when the gas content is small. 

Then the gas has little ef~ect on the equations for conservation of mass 

and energy. The small gas concentration functions only as a tracer, with

out otherwise affecting field behaviour. Let us first consider a distrib

uted model for the reservoir response to the discharging well. According 

to Grant (1979) the geothermal reservoir contains immobile water and mo

bile steam. There is also a small amount of gas present, mixed with the 

steam and dissolved in the water. Changing the flow rate at the well 

head causes a response in the reservoir pressure and gas content. 

The pressure response is given by eqs. 3.263 and 3.264. The changes in 

gas content are determined by the equation for conservation of gas: 

:t {~S P n + ~(1 - S )p n ) = -div {p n V + P n V } 
"www w ss www sss (4.60) 

where n and n is the mass fraction of gas in water and steam respective-
W 5 

ly. Now using that the water is immobile, V = 0 and inserting Darcy's 
W 

law into eg. 4.60 we get: 

a 
't {~S P n + ~ (1 - S ) p n } 
"www wss 

n 
= k div {VS grad p} 

5 

We now introduce the following definition: 

y (1 - S )p 
W 5 

+ 
n 

W 
S P 

n W W 
5 

(4.61) 

(4.62) 
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Grant (1979) assumes that the variations in y with saturation and tempera-

ture can be ignored, and it can be evaluated at undisturbed reservoir con-

ditions. By inserting the definition of y into eq. 4.61 we get by using 

cylindrical coordinates: 

n ap 
{r ...!!. -} 

V ar 
5 

(4.63) 

By using the pressure solution from eq. 3.264 and inserting into eq. 4.63 

for dp/dr we get: 

an W 2 a 2/4 
5 { -r Kt} y$-_---- ne at 41Th r er 5 

(4.64) 

where W is the mass flow rate from the discharging well as before . Grant 

(1979) has shown, that by introducing the similarity variable defined by: 

eq. 4.64 can be reduced to: 

dn W d 
5 

- y$!; df = 4~Kh dE; 
(n e -E;) 

5 

which can be integrated to give: 

n 
1n _5_ = - ! 2 

n r 
50 w 

4Kt 

(4.65) 

(4.66) 

(4.67) 

where n is the initial mass fraction of gas in steam, before the well 
50 

was switched on and w is defined by: 

w = 
w w ~ C 

5 ==-=- -4~$Kh 41Tkh Y 
(4.68) 

Let us now use a lumped-parameter model for the change in gas content ac-



-206-

carding to Grant (1979). Let us model the geothermal reservoir as a con

fined box, from which fluid is withdrawn. Let the volume of the box be 

V, and the mass withdrawal W. Then conservation of gas is: 

~ {V$[S p n + (1 - S )p n J) = 
dt w w w W 5 5 

n W 
5 

(4.69) 

remembering that we have just steam flow, because the water was immobile. 

Using the same definitions and approximations as before we get: 

dn 
V$Y _5 

dt 
n W 

5 

Integrating the above equation results in: 

n 
In (_5_) 

n 
50 

fWdt 

V$Y 

In case of constant mass flow rate we have: 

n Wt 
In (_5_) = __ 

n - V$Y 
so 

(4.70) 

(4.71) 

(4.72 ) 

where t 1s the total flowing time. Comparing eqs. 4.72 and 4.67 we see 

that now the gas concentration is dependent on cumulative mass flow rate 

instead of directly on the mass flow rate in eq. 4.67. This is a direct 

consequence of the confined reservoir in the lumped parameter model above, 

contrary to the infinite reservoir we used in the distributed parameter 

model leading to eq. 4.67. Let us now assume we have two different gases 

with different concentrations. Eq. 4.72 now gives for the two gases de

noted by subscribts 1 and 2: 

(4.73) 

Integrating yields: 
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In "s1 
Y2 

:; ~ In ns2 + C (4.74) 

If the concentration of gas 1 is plotted against the concentration of gas 

2. on log-log paper, the result should be a straight line. The slope of 

the straight line is given by: 

(1 - 5 )p 
n

w2 
5 p Y2 

+ 
w 5 n

52 
w w 

n = (4.75) 
n 

Y1 
(1 - 5 )p + ~s p 

W 5 "s1 w w 

In this expression for the slope, all the variables are known functions 

of temperature , except the saturation S. Thus from the slope, the water 
W 

saturation of the rock can be immediately obtained, independent of other 

physical parameters such as permeability of porosity. The following ex

ample is given by Grant (1979) for the Kawah Kamojang, geothermal field, 

Java. 
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Fi g. 4.10 Log-log plot of CO
2

-H
2
S concentrations for KMJl1 

(Grant 1979) 

Log- log plot of CO
2

-H
2

S concentrations i s given in Fig. 4.10 for one well. 
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The reservoir temperature is 240·C. For low gas concentrations the mass 

fraction by the mole fraction, that is: 

and 
s 

N H ° 2 
is the number of moles of water 

w s 
in water phase and steam phase respectively and N and N is the number 

of moles of the noncondensable gas in water phase and steam phase re

spectively. According to Fig. 4.11 we have: 

n
wco 

A 
2 

0.007, - --- = CO
2 n seo

2 

-logA 

4 

3 

2 

o 
o 100 

A 
H

2
S 
, n 

WH
2

S 
0.0216. 

n -
SH

2
S 

Dota from 
H C He1oeson ( 1969), 
Am . J . $1:1, Vol. 267, 
bls.729-804. 

200 

A 

'" CO. 

300 

Temperature QC 

Fig. 4 .11 ~ S and Aea vs. temperature (Arnorsson 1973) 
2 2 



From steam tables we have, 

now wri te according to eq. 

- 16.8 - 11.1 S w 

p = 814 kg/m3 and p = 16~8 kg/m3• 
w s 

4.62, 

From eq. 4.74 and the slope of the line in Fig . 4. 10 we get: 

n = 1.2 = 
16.8 + 0.785 S 

w 
16. 8 - 11.1 S 

w 

whi ch gives for the water saturation: 

S = 0.24. 
w 
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We can 

(4.76) 

(4.77) 

Thus with the assumptions made the water saturation of the undisturbed 

reservoir is found to be 24%. Even a small mass fraction of noncondens-

able gas changes the behavi our of the geothermal reservoir, and we final

ly show an example of a distributed parameter model of such a gas domi

nated f i eld. In its natura l state, the parti al pressure of the noncondens

able gas causes the reservoir to boil at a lower temperature than does a 

pure water field. Under exploitation the presence of CO
2 

or 8
2
S, which 

are the most common gases in geothermal fie l ds, dominate the transport 

and thermodynamical characteristics of the flow. The Broadlands (Ohaki) 

geothermal field in New Zeal and is an example ot a gas-dominat ed field, 

(Grant 1977 and Zyvoloski and Sulllvan 1980). The initial pressure 

response to exploitation at Broadlands is dominated by changes in gas 

pressure. The differential equations describing the distributed parameter 

model are the conventional equations for the conservation of mass, momen

tum, energy and carbon dioxide. The equations for the conservation of 

mass, momentum and energy are the same as before given by eqs. 4.1-4.4 if 

we r eplace the water phase with liquid phase and the steam phase with a 

vapour phase, denoted by the subscripts i and v instead of w and s. The 

equation for carbon dioxide is given by : 
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(4.78) 

Together with these equations we need some thermodynamical relationships: 

1) Density: 

The vapour phase density is given according to Gibbs-Dalton law by: 

where p 
s 

sity of 

is the density of steam and Pc is the density of CO
2

, 

steam can be taken from steam tabl es and similar tables 

(4.79) 

The den

f o r the 

density of carbon dioxide exist (see Sutton 1976). The amount of CO
2 

in the liquid phase is small and neglected in the liquid density, that 

is: 

(4.80) 

2) Carbon dioxide content: 

From the definitions of gas densities and mass fraction of CO
2 

we 

have: 

n 
v 

For the liquid phase Sutton (1976) gives the empirical formula: 

a (T)p 
c 

3) Enthalpy: 

(4 . 81) 

(4.82) 

(4.83) 
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h • n h + (1 - n ) (u +~) 
v v vc v 5 P

v 

,. n h + (1 - n ) U 
v vc v 5 

(4.84) 

=nh +h -nU 
v vc 5 V S 

where h n and h are the specific enthalpies of dissolved and gaseous 
kC vc 

carbon dioxide respectively and U stands for internal energy_ 

4) Viscosity: 

The carbon dioxide is assumed to have no effect upon the viscosities. 

That is: 

(4.85) 

(4.86) 

5) The total pressure can be calculated as the sum of steam pressure and 

partial pressure of carbon dioxide as: 

p ,. p + P 
5 C 

(4.87) 

These equations are too complicated to be solved analytically and numeri 

cal methods must be used. Zyvoloski and Sullivan (1980) have solved these 

equations numerically. Their conclusion is that the reservoir response to 

exploitation is initially governed by changes in partial pressure of the 

CO 2" Another effect demonstrated by their results is that the presence of 

CO
2 

leads to a reduced compressibility of the fluid and, therefore, a 

faster propagation of pressure transients. Let us look at these effects 

in more detai l . The two phase compressibility was defined in eq. 3.231 

and can be defined in relation to relative volume changes as: 

6v 
V 

a 6p 
5 5 

(4.88) 



- 212-

At reservoir temperature 260'C, water saturation equal to 0.5, and 10% 
- I 

porosity the two phase compressibility is approximately 1 bar • The 

compressibility resulting from the carbon dioxide can be written simi

larly to eq. 4.88 as: 

Av 
V· B Ap 

c c 
(4.89) 

In order to calculate Se we note that the volume changes when CO2 leaves 

the water solution can be calculated from eq. 4.82 and written as: 

Av An~ 
V· -p- Pw ;;;;: 

c 
(4.90) 

By using eqs. 4.79, 4.81 and 4.89 we can write for the compressibility: 

a(T) P <1 - n ) 
w v 

(4.91 ) 

According to Sutton (1976) aCT) is given by the following formula: 

"(T) • {s 4 - 3 5 ~ + I 2 (
I
T
Oo

12) 10-9 Pa- I 
~ • • lOO • 

and n can be calculated from: 
v 

n • p /p 
v c 

Let us calculate a 
c 

from steam tables we 

lated from eq. 4.92: 

with typical data from 
3 

get: p = 784 kg/m , 
w 

{ 260 
a(260'C) = 5.4 - 3.5 lOO + 1.2 

the Broadlands: 
3 

P = 23.7 kg/m • 
s 

(4.92) 

(4.93) 

T _ 260'c, 

et. is calcu-

Table 4.1 given by Sutton and McNabb (1977) gives the partial pressure 

of CO2 for the Broadlands geothermal field, which gives Pc = 12.42 bar 

for T = 260·C. nv can now be calculated from eq. 4.93: 
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12.42 
nv " 59.33 • 0.209 

T P P n n hl h 
e w 5 V 

deg bars bars • • MJ/kg MJ/kg 

180 11.47 1.44 0 . 04 12.58 0.762 2.449 
190 14 . 46 1.91 0.06 13. 19 0.807 2.441 
200 18 . 04 2.50 0.08 13 . 85 0.851 2.431 
210 22.33 3.26 0.11 14.61 0.897 2.417 
220 27.44 4.25 0.15 15.47 0.942 2.399 
230 33.50 5.53 0 . 20 16.51 0.989 2.374 
240 40 . 66 7.20 0.28 17.70 1.035 2.345 
250 49.17 9.42 0.39 19.15 1.082 2.309 
260 59 . 33 12.42 0.55 20.94 1.131 2.261 
270 71.66 16 .65 0.78 23.24 I. 179 2.200 
280 87 .1 6 23.03 1.15 26.42 1.229 2. 114 
290 107.77 33.38 I. 78 30.97 1.279 1.993 
295 121.87· 41.86 2.31 34.35 I. 303 1.905 
296 125.17 44.01 2.44 35.16 I. 308 1.884 
297 128.71 46.37 2.59 36.02 1.313 1.862 
298 132.47 48 . 96 2.75 36.96 I. 317 1.838 
299 136.58 51.86 2.94 37 . 97 I. 322 1.812 
300 141.05 55.12 3.14 39.08 1.326 I. 783 
301 146.21 59.06 3.39 40.39 I. 331 I. 750 
302 152.06 63.67 3.68 41.87 1.335 I. 712 
303 158.87 69.23 4.02 43.58 I. 339 1.669 
304 167.07 76.18 4.46 45.60 I. 342 1.618 

Table 4.1 Values of temperature, tota l pressure, partial press
ure of C02' mass ratios nl' nv of C02 in the liquid 
and vapour phases, and the specific enthalpy hI' hv 
of each phase on the theoretical boiling curve for the 
Broadlands (Sutton and MCNabb, 1977) 

Eq. 4.91 now gives for the compressibility: 

=
4.4 • 10-9 • 784 • ( I - 0.209) _. -I 

Se 3 0.06 bar 0.209 • 2 .7 

-I 
which can be compared with the two phase compressibility 1 bar From 

eqs. 4.88 and 4.89 we see, because 6 < 6 that for the same volume change 
e 5 

the drop in partial pressure for carbon dioxide is much greater than the 
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drop in steam pressure. Let us now define the total compressibility re

sulting from the two phase compressibility and carbon dioxide compressi

bility in the usual way according to the following equation: 

~V 
= B~p 

V 

where ~p is the total pressure drop defined from eq. 4.87 as: 

~p • ~p + ~p 
C 5 

(4.94) 

(4.95) 

By combining eqs. 4.88, 4.89, 4.94 and 4.95 for the same volume change 

we get: 

1 
S= (4.96) 

Because Bc « Bs we have that: 

(4.97) 

We see that the compressibility now becomes less than the compressibility 

for a pure two phase mixture without carbon dioxide. As we have noted be

fore this changes the pressure transmission significantly. 

4.6 Rein jection into geothermal reservoirs 

Reinjection of geothermal wastewater is gradually becoming a preferred 

means of waste disposal. At present continuous reinjection is practiced 

at the Geysers, California (Chasteen 1975 and Kruger and Otte 1973), 

Ahuachapan, El Salvador (Einarsson et al. 1975 and Cuellar et al. 1981), 

Mak Ban , Phillippines (Borne 1981), and at five Japanese geothermal 

fields (Otake, Onuma, Onikobe, Hatchobaru, and Kakkonda) (Home 1981, 

Kubota and Aosaki 1975 and Hayaski et al. 1978). Small-scale rein

jection tests have been reported at a number of geothermal fields, 

e.g. Baca, New Mexico (Chasteen 1975); East Mesa, California (Mathias 

1975); Larderello, Italy (Giovannoni 1981); Cerro Prieto, Mexico (Vides 

1975); Broadlands, New Zealand (Brixley and Grant 1979); and Tongonan, 
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Phillippines (Studt 1980) , 

Reinjectlon of water into geothermal reservoirs dur ing utilization is in

tended to serve threefold purposes. 1) waste water disposal 2) pressure 

maintenance 3 ) improved energy extraction. 

Geothermal power plants producing electricity produce often waste water, 

which creates disposal problems. Maintaining pressure is important in many 

geothermal reservoirs. In the Svartsengi high temperature field in Ice

land pressure must" be maintained in order to keep calcite precipitation 

inside the cemented casings of the wells (Kjaran et al . 1981). Main

taining pressure is also important in order to reduce subsidence. In 

section 4.3 we discussed natural recharge into geothermal reservoirs. 

When the natural recharge is small reinjection can be used to improve the 

heat extraction process by mining heat from the rock. The danger in em

ploying re injection is the possibility that the colder water will prema

turely break through from the zones around the injection well into the 

production region, thus drastically reducing the efficiency of the oper

ation. Production wells are sited to produce at high flow rates of geo

thermal steam , and are drilled to the depth at which production occurs. 

Reinjection well s, on the other hand, may be sited with greater degree of 

choice, since their major superficial requirement is only the intersection 

of some permeable formation . In view of the greater freedom of choice, 

there is correspondingly greater controversy as to where to best locate 

re injection well s in a given system. Home (1981) defines the following 

location of reinjection wells: al injection into one side of a system 

and production from the other, referred to by Horne (1981) as side by 

side, and b) an intermixed arrangement of reinjection wells and produc

tion wells , referred to as intermixed. Other than the choice of lateral 

pos,ition, reinjection wells may be drilled to intersect formations at 

shallower, equal, or greater depths than the producing formation. These 

are referred to by Home as above, equal and below . There is disagreement 

as to which arrangement is best suited to reservoir preservation criteria. 

In many cases , geologic, environmental, or economic factors may more great

ly influence the choice. Table 4.2 gives a summary of production and rein

jection data in Japan as reported by Borne (1981). 



Station Oniko:Qe Kakkonda Onuma Hatchobaru 

Capacity 25 r.i: ..... 50 Mw 1.0 Mw 55 Mw 

1980 Production 7 . 5 Mw _40 Mw 7 Mw 55 Mw 

c No. of wells 12 1; 5 8 0 ." .. Av. depth 300 ID 1000 ID 1600 ID 1000 ID U 

" '8 Total steam 75 t/hr 380 t/hr 91 t/hr 400 t/hr 

" *) 
'" WHP 200 kPa 686 kPa 300 kPa 481 kPa 

No. of wells 1 15 4 14 
c Av. depth 1000 m 700 ID BOO m 1000 m 0 .... .. 

Total flow 115 t/hr 2700 t!hr 360 t/hr 400 t/hr u 
w 
~ Temperature 9S·C -160·C 95 ·C 60/9S·C c ." w Pressure 0 540 kPa 0 0 '" 

Configuration side/be low mixed/above side/above side/equal 

Tracer flow rate n . a ~ . ?P to 4 m/hr up to 80 m/hr 

Coounents Gas interference Silica Scaling 

Table 4.2 Summary of production and reinjection in Japan. September 1980 (Horne 1981) 

~) WHP: Well head pressure 

, 
~ 

Otake -'" , 
12 Mw 

12 Mw 

4 

500 ID 

120 t!hr 

304 kPa 

8 

500 m 

680 t/hr 

95 · C 

0 

side/equal 

_0.3 m/hr 

Accepts water 
from Hatchobaru 

17 5 t/hr 
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According to Borne (1981) the following conclusions can be drawn from 

the Japanese experience. 

(1) In many cases, reinjected water moves through the reservoir through 

fractures or fissures of extremely high permeability. It is therefore of 

great importance to determine inter- well connectivities in the designing 

of a reinjection-scheme. 

(2) In cases where i nter- well flows do occur, the resulting thermal in

terference can be greatly detrimental to the performance of the producing 

well. On the other hand, the hydraulic interference may be beneficial in 

providing pressure support. The problem is one of removing the reinjec

ticn well t o such a safe distance that the cooled reinjected water is re

heated before arriving at the producing well . 

(3) In view of the "safe distance" requirement, the "side-by-side" rein

jection configuration would seem preferable to the "intermixed arrange

ment. Experience in Japan however, shows that either configuration can 

cause thermal interference if inter-well spacing is insufficient. 

(4) Maintenance of reservoir pressure by reinjection may indeed be ben

eficial; however, in practice, only a single example of performance im

provement has been observed (at Otake). On the other hand, three examples 

of reduction in performance by thermal interference have been observed 

(Hatchobaru, Kakkonda, and Onuma). If priorities are to be allocated, it 

appears to be expedient to avoid thermal interaction even at the cost of 

losing hydraulic support. 

Finally Horne (1981) summarizes the above experience in the following two 

statements: 

a) Reinjection wells and production wells shoul d be as hydraulically far 

apart as possible. 

b) Underground flow paths need to be fully understood before embarking 

on a reinjection scheme. 

The above example by Home (1981 ) is an actual experience from five 
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japanese geothermal fields. Theoretical analysis can also give valuable 

answers and insight into the physical nature of the injection process, 

but they can never replace actual field experiments. One of the answers 

we can get from theoretical analysis is e.g. the advancement of the ther

mal front. The equation governing the advancement of the cold water 

front in a porous medium for a hot water reservoir is obtained from eq. 

3.150, 

iciOt 
r.~ 

where a is defined in eq. 4.24. 

(4.98) 

If the advancement of the thermal front for a hot water reservoir is in 

a single fracture the equation for the diffusion radius becomes different 

and is now given by according to B06varsson and Tsang (1981). 

1) Early-time behaviour: 

r • (4.99) 

where w is the fracture aperture, and P
f 

and c
f 

are the density and speci

fic heat of the fracture material respectively. 

2) Intermediate- time behaviour: 

r _ 

2 
4.396AP C 1T 

r r 

(4.100) 

where). is the thermal conductivity of the rock matrix and other symbols 

have been defined before. 

3) Late- time behaviour: 

r = / 
QtP c ww 

r.rr (2P c D 
r r 

(4.101) 
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where D is the thickness of the rock matrix per fracture. 

The transition between the early-time behaviour and intermediate-time be 

haviour occurs at the following time and distance according to B66varsson 

and Tsang (1981). 

t ~ 

r = 

2 
w 

4.396 (4.102) 

(4.103) 

and the transition from the intermediate-time solution to the long-time 

solution is given by: 

t 

r ~ 

2 
P c D 

r r 
4. 3961. (4.104) 

(4.105) 

The results above apply for the injection of cold water into a hot water 

reservoir. In that case the fluid remains single phase, but for the in

jection of cold water into a two phase or dry steam reservoir the spread

ing cold water heats up by extracting thermal energy from the rock and as 

it advances, the reservoir fluid condenses. Theoretical analysis is much 

more difficult in this case (see O'Sullivan and Pruess 1980). As men

tioned before field experiments should always be conducted in order to 

choose reinjection strategy. One of these experiments is to use tracer 

tests in order to be able to understand the underground flow paths. Be

cause the flow situation is influenced by dispersion effects, theoretical 

analysis of the tracer test results are difficult. But without much the

oretical calculations the time for the tracer to reach production wells 

can be measured, as shown i n Table 4.2. A comprehensive evaluation of 

well-to-well tracers for geothermal reservoirs is given by Vetter and 

Zinnov {1981}. 
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4.7 Numerical modelling of geothermal reservoirs 

In section 4.2 the general equations for the flow in geothermal reservoirs 

were formulated. Having generated this set of governing equations, one is 

faced with the task of solving a set of highly non-linear partial-d!fferen

tial equations. In nearly all cases, this is approached numerically. 

There are several difficulties encountered in the numerical solution of the 

geothermal reservoir equations, The first task is to select a set of inde

pendent variables since several possibilities exist. One must then decide 

upon a method of approximation. Currently. finite difference and finite 

element schemes are employed. One is now confronted with the problems as

sociated with the simulation of convection dominated transport, namely nu

merical dispersion (oscillations) and diffusion (smearing of a sharp front). 

Possibly the most difficult task, however, remains; the efficient and ac

curate treatment of the highly non- linear coefficients. 

From the reservoir engineering point of view, there are two additional fac

tors to be considered. The field application of a geothermal code requires 

a proper representation of the wellbore dynamics and thermodynamics. This 

is particularly important in the case of simulations in the immediate vi

cinity of the well. A second practical problem involves the reduction of 

the general three- dimensional system to an areal two- dimensional represen

tation. This requires. of course, formal integration over the vertical 

direction. This integration should be carried out carefully so that es

sential elements of the reservoir physics are salvaged. 

Further description of the numerical methods and codes will not be given 

here but the reader is referred to Pinder (1979). 

Finally it should be mentioned that at the sixth Stanford worshop on Geo

thermal Reservoir Engineering held at Stanford University December 16-18, 

1980 one session was devoted to geothermal reservoir engineering computer 

code comparison (see Kruger and Ramey 1980). Most of the computer codes 

available in USA were compared and no significant difference in the re

sults were observed between the existing computer methods and codes. 
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5 WELL PERFORMANCE 

5.1 Introduction 

The well is a part of the system exploited and it is through the well we 

get our fluid to operate the power plant. It is therefore of importance 

to be able to understand the reservoir well interaction. The flow in the 

wel lbore is e ither a two phase flow of water and steam or saturated steam. 

Well logging methods and their interpretation will not be treated here, 

but the reader is referred to Ste£ansson and Steingrfmsson (1980) and 

Grant (1979). 

5.2 Pressure discharge relation 

Fig. 5.1 is a schematic picture of the pressure in a discharging well and 

its immediate vicinity. Far away from the well we have undisturbed reser

voir pressure, Pe ' As we have seen in section 3 the pressure declines to

wards the wel l resulting in well pressure, Pw' In section 3.11 we saw 

that the pressure decline in the well can be written as: 

= BW + Cw
2 

(5 . 1 ) 

where the first term on the right hand side is due to the pressure drop in 

the reservoir as well as skin effect around the well, and the second term 

is due to t urbulent pressure drop. If the second term is small in relation 

to the first term, eq . 5 . 1 becomes: 

(5.2) 

and if the first term is small in relation to the second term eq. 5 . 1 now 

becomes: 

W = constant • IPe - Pw (5.3) 

In section 3. 16 we saw that if the fluid in the vicinity of the well is 

superheated steam, the same equations apply if we replace the pressure term 

in the equations with the pressure squared. Eq. 5.1 then becomes for a 
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superheated steam reservoir: 

2.BW+CW2 
- Pw 
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(5.4) 

2 If we now assume that BW »CW eq. 5 . 4 becomes: 

2 2 
W = constant . (Pe - P ) w 

(5.5) 

and in case of cw2 » BW eq. 5.4 becomes: 

/ 2 2 w = constant • Pe - Pw 
(5.6) 

Eqs. 5.1 - 5.6 are the socalled discharge pressure relations, where the ref-

erence pressure is the well pressure, 

If we ignore frictional pressure drop 

p , at 
w 

in the 

the feeding point in the well . 

well and assume the well to 

have zero length, which also includes that we neglect the weight of the 

fluid overlying the feeding zone in the well, the feeding point pressure, 

p , becomes equal to the well head pressure, p. Pw can then be replaced w 0 

by P in eqs. 5.1-5.6 . We then get what commonly is known as theoretical 
o 

pressure discharge relation, where the reference pressure in the wellbore 

is the well head pressure. Theoretical pressure discharge curves are 

shown in Figs. 5.2 and 5.3. The wellbore is of course not of zero length 

and we must take into account the frictional pressure drop, acceleration 

of the fluid in the wellbore and the gravity term, we then get the actual 

pressure discharge relations. These effects are called wellbore effects. 

These are shown on Figs. 5.2 and 5.3 for different well depths and well 

diameters for steam wells at the Geysers in California. Fig. 5.4 shows 

typical pressure-discharge relation for a liquid-dominated reservoir in 

Svartsengi, Iceland. We see on Figs. 5.2, 5.3 and 5.4 that the wellbo~e 

effect is greater for narrow holes than for wide holes, it is also greater 

for deep wells than for shallow wells as was to be expected as the well 

bore effect is essentially flow-resistance. 

If the liquid does not flash in the wellbore or in the reservoir we can 

use eq. 5.1 to calculate pressure decline for various pumping rates, when 

the constants Band C have been determined according to the methods in 

section 3.11, and a suitable pump arrangement can be designed. 
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Let us now calculate the actual pressure-discharge relations for steam 

wells. The momentum equation for the flow in the well is given by: 

_se. 
dz 

f DV
2 

- --- + o 2 
pv dv 

dz 
(5.7) 

where f is the friction factor, D the well diameter, V the steam. velocity 

and z is a verti cal coordinate, positive in the upwards direction. 

The equation of state is: 

p - ..£... ZRT (5.8) 

and if we assume isothermal flow eq. 5.8 becomes: 

(5.9) 
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I 
where Cl is defined as Cl = ZRT In the momentum equation 5.7 we have 

neglected gravity forces, that is we have assumed that the weight of the 

steam column in the well is negligible. We now define the Mach number as: 

V M ; (5.10) 
C 

where V is the fluid velocity and C is the sonic velocity. If we now 

furthermore assume for M« 1 that the acceleration term in eq. 5.7 is 

negligible eq. 5.7 becomes: 

~ 
dz • 

f pv
2 

0-2- (5.11) 

We assume the well to be of a constant diameter. The mass flow rate in 

the well is given by: 

W = PAV • constant (5.12) 

If we insert the velocity from eq. 5.12 i nto eq. 5.11 we get: 

_9F. (5. 13) 
dz 

By using eg. 5.9. eg. 5.13 can be written as: 

dl 
; - (5.14) 

dz 

Eq. 5.14 can now be integrated from the feed point of the well up to the 

well head. Let us call this length of the well L. We have: 

2 - p 
o 

Eq. 5.15 can be written as: 

(5.15) 



W 2 

+ (bP ) 
w 

1 

where b is defined as: 

b 
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(5.16) 

(5.17) 

Eq. 5.16 is the equation of an ellipse and a schematic plot of the equa

tion is given in Fig. 5.5 with p as a parameter. 
w 

w 

P, 

82.03.0559. 

Fig. 5.5 Schematic picture of eq. 5.16 

P
WQ 

is the initial pressure in the reservoir, as pressure declines with 

time the pressure-discharge relation changes according to eq. 5.16 as 

shown in Fig. 5.5. We also see that eq. 5.16 is in accordance with Figs. 

5.2 and 5.3. The effect of well depth and well diameter is also described 

by eq. 5.16 as indica ted in Figs. 5.2 and 5.3. 

When the Mach number becomes larger the assumption of neglecting the ac

celeration term is no longer valid and the full momentum equation, eq. 5.7, 

must be applied. The energy equation for the isothermal well flow can be 

written as: 

dq = - 2VdV (5.18) 
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where q is the heat flow t o the well. For large velocities and Mach num

bers this heat flow can become unrealistically high and the isothermal 

flow assumption will no longer be valid. Adiabatic flow assumption is 

therefore more realistic. The reader is referred to standard textbooks 

in fluid mechanics for these large Mach number flows. For increasing 

velocity we might end up with choked flow or critical flow, that is the 

steamflow in the well or in the formation becomes sonic. After we get 

critical flow in the well or in the formation we can lower the WHP with-

out increasing the massflow rate. When this happens at a WHP, p , say, 
oc 

the pressure discharge graph will be a straight line with constant flow 

rate for decreasing WEP, as shown in Fig. 5.6: 

w 

82 ,03 .0556 

Fig. 5.6 A schematic picture of a pressure-discharge relation 
with choked flow 

Such critical flow has tendency to happen where two phase flow enters the 

wellbore and in widening flow sections, where we have a change in well di

ameter, but scale deposits will do the same. 

Calculation of the pressure-discharge relation when flashing occurs in 

the well is more complicated, because of the two phase flow situation. 

Next section describes two phase flow calculation. 

5.3 Two phase flow calcul ations 

Let us start this section on two phase flow by calculating the location of 

the flash level in the well. Let us call the height of the flash level 
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• above the feeding zone in the well z , see Fig. 5.1. Now using the en-

ergy equation in the single phase water from the feeding pOint up to the 

flash level, where the pressure is denoted p , we get: 
5 

(5.19) 

where f is the friction factor in the single phase water zone. Eq . 5.19 

• solved for z gives: 

• (pw - ps) 
z 

8fW
2 

(Y
w 

+ 
2 5 

TI D P 
w 

If we insert p from eq. 5.1 into eq. 5.20 we get: 
w 

• z 

The saturation pressure Ps is just a function of temperature, C 

stant but B is a function of time as we have seen in section 3 . 

shows then how the flash level drops with time as the pressure 

the reservoir. Sometimes it is accurate enough to neglect the 

(5.20) 

(5.21) 

is con-

Eq. 5.21 

drops in 

frictional 

pressure drop when calculating the flash level, in that case eq. 5.21 be-

comes: 

• 
z 

p - BW - cw2 
- p 

e 5 

Yw 
(5.22) 

The two phase flow situation will just be discussed briefly in the follow

ing, but the reader is referred to Wallis (1969), Ryley (1980) and 

Kutukcuoglu (1969). Fig. 5.7 shows the flow pattern in a vertical two 

phase flow and Fig. 5.8 shows the flow pattern boundaries. 
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Basically it is possible to distinguish three fundamental physical models. 

The HOMOGENEOUS flow model is the simplest. This assumes that the liquid 

and the gas or vapour are uniformly distributed over the flow cross sec

tion and in the flow direction so that the mixture can be regarded as a 

single phase flow with suitably defined mean values of the thermodynamic 

and hydrodynamic properties of the two phases. However, the meaningful 

definition of mean physical properties, particularly viscosity, of the 

two phase mixture leads to difficulty. The homogeneous flow model is fre 

quently used as a reference. 

In the SEPARATED flow model, or slip model, it is assumed that the gas 
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and the liquid flow separately as continuous phases with distinct mean 

velocities within different parts of the flow cross section. A set of 

basic equations is formulated for each phase, the solution is closed by 

expressions detailing the interaction of the two phases and the inter

action of the two phases with the channel walls. These are obtained from 

empirical equations which give the mean void fraction, defined as the mean 

proportion of a pipe's cross sectional area containing the gaseous phase, 

or the ratio of the mean velocities (slip) and the wall shear stress as 

functions of the primary parameters of flow. This model represents the 

other limiting case; the actual flow behaviour lies somewhere between the 

homogeneous and separated flow models. 

Below the separated flow model is used, as it represents the more 

general case with water and steam having different velocities. The equa

tions for conservation of mass, momentum and energy are presented without 

giving detailed derivations. Only steady state conditions are considered. 
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Conservation of mass: 

(5.23) 

where W and W 
5 W 

are the steam and water mass flow rates respectively. A 
5 

and A are the flow 
w 

area of steam and water respectively. We now define 

the mass flux as: 

G 
W 
A 

- ap V 
5 S 

+ (I - alP V 
WW 

(5.24) 

P V a 
5 5 

P V 
W W 

(I " a) 

• - --
x 1 - x 

where a is defined as the ratio of the steam volume to the total volume. 

The relation between a and the mass fraction x is given by: 

a = (1 _ 

xp 
w 

x)P s 
5 

+ xp 
w 

where S is the slip factor defined by: 

V 
S = ~ 

V 
w 

Conservation of momentum: 

_ .9E._ pg + A .E....(WV +WV) 
dz-m dz ss ww 

_ (S'.) 
dz F 

(5.25) 

(5.26) 

(5.27) 

The first term on the right hand side is the hydrostatic pressure drop 

with the average density: 

Pm = ap + (1 - alP 
5 w (5.28) 

The second term is the acceleration and can be rewritten as: 



1 d 
(W v + w v ) 

Adz ss ww 

2 
x 
(-+ 

p a 
s 

2 
(1 - x) 

p (1 - a» 
w 
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(5.29) 

In order to be able to calculate a according to eq. 5.25 we have to know 

the slip factor in eq. 5.26. Many empirical equations exist and one of 

them is the Moody slip factor defined as (see KutUkcuoglu 1969). 

v 1/3 

s s 
= = V 

(5.30) 
w 

The last term on the right hand side of eq. 5.27 is the frictional press

ure drop. Many methods are available to calculate this pressure drop and 

one of them is the method of Martinelli" and Nelson (1948) where the fric-

tional pressure drop is written as: 

(9J2.) 
dz fa 

(5.31) 

(9J2.) 
dz fa 

is the single phase pressure drop, resulting from if the total mass 

flow in the well flowed as water. This term can be easily calcu

lated by standard methods. ~fo is called two phase flow multiplier given 

e.g. by Martinelli and Nelson (1948) as a function of x. See also 

KutGkcuoglu (1969) for various methods to calculate the two phase fric 

tional pressure drop. 

Conservation of energy: 

q = 
d 
dz 

1 2 
(- xV 
2 s 

(5.32) 

where q is the heat flow into the well from the surroundings per unit 

length, per unit massflow rate. These conservation equations together 

with steam table data give the necessary equations for the solution of 

the two phase flow problem. The equations are too complicated to be solv

ed analytically and must be integrated numerical vertically up the well, 

from the flash point up to the well head. Fig. 5.9 shows an example of 

the result of such calculation. Eq. 5.21 showed us that the flash level 
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dropped for declining reservoir pressure. The family of curves in Fig . 

5.9 shows us the result of the two phase flow calculations for declining 

reservoir pressure and the figure can be compared with Fig. 5.5 which 

schematically shows the same for a steam well. The following equation 

has been fitted to the family of curves in Fig. 5.9. 

w 2 

- C ) 
1 

Po 2 
+ (b P - C ) 

2 w 2 
= 1 (5.33) 

with the numerical values of the constants given in Fig. 5.9. If eq. 

5.33 is compared with eq. 5.16 for the steam well, we see that they are 

quite similar. We also see from Fig. 5.9 that if the well is operated 

at constant flow rate equal to the designed well output 60 kg/s, the WHP 

drops as the reservoir pressure drops, finally when a minimum WHP press

ure is reached the well must be operated at that constant WHP, and the 

mass flow rate declines as indicated by the arrow in Fig. 5.9. Fig . 5.6 

shows a schematic picture of a pressure-discharge relation with choked 

flow in a steam well. Choked flow also occurs in the two phase well. 

Fig. 5.10 shows a pressure-discharge graph for well KJ-7 in the Krafla 

geothermal field. We see that the massflow rate does not change with 

different well head pressure. It seems likely that there is choked flow 

(in the well). Theoretical calculations of critical flow in the two 

phase flow well are complicated and will not be given here. Let us in

stead look at the following simple calculations. Choking conditions are 

characterized with sonic fluid velocity. The velocity of sound is given 

by' 

(5.34) 

where K is the bulk modulus of the fluid equal to the reciproc of the 

fluid compressibility. If we assume that steam behaves like a perfect 

gas we have for the sound velocity in steam, as the sound is transmitted 

isentropically: 

c = &RT 
5 

(5.35) 

where k is the ratio of the heat capacities at constant pressure and vol

ume. If we have a mixture of water and steam bubbles the speed of sound 
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in that mixture is given by 5.34 as: 

c = IKTiJ m m m (5.36) 

If a i s the proportion of steam by volume, the density of the mixture is: 



p = ap + (1 - a)p m s w 

The bulk modulus for the mixture is given by: 

1 
K 
m 

a 
- - + K 

s 

1 - a ---
K 

w 

- 237-

(5.37) 

(5.38) 

At low steam concentrations the sound is transmitted nearly at constant 

temperature and the bulk modulus for steam is then given by eq. 3.222. 

We now have for the sound velocity: 

C 
m 

/ 
= "I(a K + (1 -

w 
a)p ) (ap 

s s 
+ (1 - ex) P ) 

w 
(5 . 39) 

Let us insert numerical values as an example to calculate sound velocity 

in water, steam 

K 
w 

and ·a steam- water mixture. 

104 bar, Ps c 33.5 bar, a _ 

We use the following 
3 0.3, P _ 812 kg/m, 

w 

values. 

p = 16.8 
s 

T om- 240 · C, 
3 kg/m , R = 461.9. k = 1.3. The velocity of sound in water is now given by: 

c 
w = /:; = /:~: = 1110 m/s 

and the sound velocity in steam: 

c = IkRT • 11.3 • 461 . 9 (240 + 273.15) = 555 m/s s 

and f or the steam water mixture : 

C 
m 

/ 105 • 33.5 • 109 
= {f.----=------''''-...:.-"-'~...:.~!..--------- = 140 m/s 

(0 . 3' 109 + 0.7 • 33.5 • 105) (0.3 • 16.8 + 0.7 • 812) 

We see that the velocity of sound is drastically reduced to the velocity 

in either water or steam . Choking condition in a two phase well are there

fore possible at relatively low fluid velocities. For water with a small 

concentration of steam bubbles the elastic modulus of the mixture is re

duced with no appreciable reduction in density, and thus the acoustic vel-
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oeity is reduced. For steam with minute water droplets. the density of 

the mixture is increased, with no appreciable change in elastic modulus, 

and again the accoustic velocity is reduced. 
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