
Scripting Modelica Models Using Python

Bernt Lie and Finn Haugen
Telemark University College, Porsgrunn, P.O. Box 203, N-3901 Porsgrunn, Norway

Corresponding author: Bernt.Lie@hit.no

September 13, 2012

Abstract

Modelica has evolved as a powerful language for encoding models of complex systems. In control
engineering, it is of interest to be able to analyze dynamic models using scripting languages such as
MATLAB and Python. This paper illustrates some analysis and design methods relevant in control
engineering through scripting a Modelica model of an anaerobic digester model using Python, and
discusses advantages and shortcomings of the Python+Modelica set-up.

1 Introduction

Modelica is a modern language for describing large scale, multidisciplinary dynamic systems (Fritzson,
2011), and models can be built from model libraries or the user can develop her own models or libraries
using a text editor and connect the submodels either using a text editor or a visual tool. Several
commercial tools exist, such as Dymola1 , MapleSim2 , Wolfram SystemModeler3 , etc. Free/research based
tools also exist, e.g. OpenModelica4 and JModelica.org5 . More tools are described at www.modelica.org.
For most applications of models, further analysis and post processing is required, including e.g. model

calibration, sensitivity studies, optimization of design and operation, model simplification, etc. Although
Modelica is a rich language, the lack of tools for analysis has been a weakness of the language as compared
e.g. to MATLAB, etc. Two commercial products are thus based on integrating Modelica with Computer
Algebra Systems (MapleSim, Wolfram SystemModeler), while for other tools the analysis part has been
more cumbersome (although Dymola includes possibilities for model calibration, an early but simple way
of controlling models from MATLAB, etc.). A recent development has been the FMI standard6 , which
promises to greatly simplify the possibility to script e.g. Modelica models from MATLAB or Python
(FMI Toolbox for MATLAB7 ; PyFMI for Python8). Several Modelica tools now offer the opportunity
to export models as FMUs (Functional Mock-up Units), whereupon PyFMI can be used to import the
FMU into Python. Or the FMU can be directly generated from PyFMI. PyFMI is integrated into the
JModelica.org9 tool. More extensive integration with Python is under way for other (free) tools, too.
Python 2.7 with packages Matplotlib, NumPy, and SciPy offer many tools for analysis of models; a

simple installation is EPD Free10 , but many other installations exist.
It is of interest to study whether the combination of (free software) releases of Modelica and Python

can serve as useful tools for control analysis and design studies, and what limitations currently limit the
spread of such a package. This paper gives an overview of basic possibilities for doing model based control
studies by scripting Modelica models from Python. As a case study, a model of an anaerobic digester
for converting cow manure to biogas is presented in Section 2. Section 3 presents various examples of
systems and control analysis carried out by Python scripts using the model encoded in Modelica. Finally,
the results are discussed and some conclusions are drawn in Section 4.

1www.3ds.com/products/catia/portfolio/dymola
2www.maplesoft.com/products/maplesim
3www.wolfram.com/system-modeler
4www.openmodelica.org
5www.jmodelica.org
6www.fmi-standard.org
7www.modelon.com
8www.jmodelica.org/page/4924
9www.JModelica.org
10www.enthought.com

1

Separator
(filter)

TT1

FT1

FT2

220 L
AD reactor

Biogas

Liquid effluent

Cow manure
(diluted)

Solid manure
for aerobic
composting

Filtered
manure

Feed
P2

PC

PC

PC

Fixed liquid
level

due to weir

TC
1

PC

XT1TT2PC

TT3 PC

Room
temp. CH4 %

PC

Temp.
setpoint

PC

Buffer
tank

400 L

Isolation

FT = Flow Transmitter (sensor)
TT = Temperature Transmitter(sensor)

PC = Personal Computer with LabVIEW
for monitoring and control

TC = Temperature Controller
XT = Concentration Transmitter (sensor)

Electrical
heater

(exterior coil)

Foss Biolab
Skien, Norway

~200 L

TT4

Nitrification
reactor

Air

PC

PC

Vermi
composting

Reser
voir

2500 L

LT1LC1Filled
batch
wise

P1

P = Pump

Biogas

Gutter

Nitrified
foam

Pellets
ferti
lizer

PC

P3

P4

Liquid
nitrified
fertilizer

LC = Level Controller

1

2

3

4

27. March 2012. F. Haugen and K. Vasdal

Figure 1: System for converting cow manure to biogas at Foss Biolab, Skien, Norway. Figure by F.
Haugen and K. Vasdal.

2 Case study

2.1 Functional description

Figure 1 illustrates the animal waste conversion system at Foss Biolab in Skien, Norway, which converts
cow manure into biogas utilizing Anaerobic Digestion (AD). In this case study, we consider the reactor
only (blue box), where the Feed is described by a volumetric feed rate V̇f [L/d] (control input) with a
given concentration ρSvs,f of volatile solids (disturbance).

The “liquid” level of the reactor is made constant by the use of a weir system, and it is possible
to control the reactor temperature T accurately using electric heating (potential control input). The
main product considered here, is the mass flow rate of methane out of the reactor, ṁCH4,x (controlled
variable).

2.2 Model summary

A model of the reactor is presented in Haugen et al. (2012); in this paper, the same model is used but with
a modified notation. The operation of the bio reactor is described by four states j ∈

{
ρSbvs , ρSvfa , ρXa , ρXm

}
:

d

dt
ρj =

1

θj

V̇f
V

(
ρ
j ,f − ρj

)
+Rj

where V is constant due to perfect level control, the residence time correction θSj = 1 and θXj may differ
from 1, and furthermore:

RSbvs = −YSbvs/XaRa
RSvfa = YSvfa/XaRa − YSvfa/XmRm
RXa = Ra − kdaρXa
RXm = Rm − kdmρXm

2

Table 1: Nominal operational data for biogas reactor at Foss Biolab.
Quantity Value Unit Comment
ρSbvs (0) 5.81 g/L Initially dissolved substrate biodegradable volatile solids
ρSvfa (0) 1.13 g/L Initially dissolved substrate volatile fatty acids
ρXa (0) 1.32 g/L Initial concentration of acetogenic bacteria
ρXm (0) 0.39 g/L Initial concentration of methanogenic bacteria
V̇f 50 L/d Volumetric feed flow of animal waste/manure
T 35 ◦C Reactor temperature
ρSvs,f 32.4 g/L Feed concentration of volatile solids

Table 2: Nominal model parameters for biogas reactor at Foss Biolab.
Parameter Value Unit Comment
V 250 L Reactor volume
θXa = θXm 2.9 — Correction of residence time for bacteria due to nonideal flow
YSbvs/Xa 3.90 gbvs

gXa
(Inverse) yield: consumption of bvs per growth of bacteria

YSvfa/Xa 1.76 gvfa
gXa

(Inverse) yield: production of vfa per growth of bacteria
YSvfa/Xm 31.7 gvfa

gXm
(Inverse) yield: consumption of vfa per growth of bacteria

YCH4/Xm 26.3 gCH4
gXm

(Inverse) yield: production of methane per growth of bacteria
KSbvs 15.5 g/L Half-velocity constant for bvs substrate
KSvfa 3.0 g/L Half-velocity constant for vfa substrate
µ̂35 0.326 d−1 Maximal growth rate at T = 35 ◦C,
αµ̂ 0.013 1

◦Cd Temperature sensitivity of maximal growth rate, valid T ∈ [20, 60] ◦C
kda = kdm 0.02 d−1 Death rate constants for acetogenic and methanogenic bacteria
b0 0.25 gbvs

gvs Fraction biodegradable volatile solids in volatile solids feed
af 0.69 gvfa

gbvs Fraction volatile fatty acids in biodegradable volatile solids feed

with

Ra = µaρXa
Rm = µmρXm

and

µa =
µ̂a

1 +KSbvs
1

ρSbvs

µm =
µ̂m

1 +KSvfa
1

ρSvfa

µ̂a = µ̂m = µ̂35 + αµ̂ (T − 35) , with units ◦C for T

The production (exit) rate of methane is given by

ṁCH4,x = RCH4V

RCH4 = YCH4/XmRm.

Feed concentrations of states are given as

ρSbvs,f = b0ρSvs,f

ρSvfa,f = afρSbvs,f .

Nominal operating conditions for the system are given in Table 1.
Model parameters are given in Table 2.

2.3 Systems and Control problems

A number of control problems are relevant for this system:

3

• simulation of the system for validation,

• study of model sensitivity wrt. uncertain parameters,

• tuning model parameters to fit the model to experimental data,

• state estimation for computing hidden model states,

• operation of control system,

• optimal control and model predictive control,

• etc.

Only a selected few of these problems are considered in the sequel.

3 Control relevant analysis

3.1 Basic Modelica description

The following Modelica encoding in file adFoss.mo describes the basic model:

model adFossModel
// Simulation of Anaerobic Digestion Reactor at Foss Biolab
// Author: Bernt Lie
// Telemark University College, Porsgrunn, Norway
// August 31, 2012
//
// Parameter values with type and descriptive text
parameter Real V = 250 "reactor volume, L";
parameter Real theta_X = 2.9 "residence time correction for bacteria,

dimensionless";
parameter Real Y_Sbvs_Xa = 3.9 "Yield, g bvs/g acetogens";
parameter Real Y_Svfa_Xa = 1.76 "Yield, g vfa/g acetogens";
parameter Real Y_Svfa_Xm = 31.7 "Yield, g vfa/g methanogens";
parameter Real Y_CH4_Xm = 26.3 "Yield, g methane/g methanogens";
parameter Real K_Sbvs = 15.5 "Half-velocity constant for bvs, g/L";
parameter Real K_Svfa = 3.0 "Half-velocity constant for vfa, g/L";
parameter Real muhat_35 = 0.326 "Maximal growth rate at T=35 C, 1/d";
parameter Real alpha_muhat = 0.013 "Temperature sensitivity of

max growth rate, 1/(C d)";
parameter Real k_d = 0.02 "Death rate constants for bacteria, 1/d";
parameter Real b0 = 0.25 "Fraction biodegradable volatile solids in

volatile solids feed, g bvs/g vs";
parameter Real af = 0.69 "Fraction volatile fatty acids in bvs feed,

g vfa/g bvs";
// Initial state parameters:
parameter Real rhoSbvs0 = 5.81 "initial bvs substrate, g/L";
parameter Real rhoSvfa0 = 1.13 "initial vfa, g/L";
parameter Real rhoXa0 = 1.32 "initial acetogens, g/L";
parameter Real rhoXm0 = 0.39 "initial methanogens, g/L";
// Setting initial values for states:
Real rhoSbvs(start = rhoSbvs0, fixed = true);
Real rhoSvfa(start = rhoSvfa0, fixed = true);
Real rhoXa(start = rhoXa0, fixed = true);
Real rhoXm(start = rhoXm0, fixed = true);
// Miscellaneous variables
Real rhoSbvs_f "feed concentration of bvs, g/L";
Real rhoSvfa_f "feed concentration of vfa, g/L";
Real rhoXa_f "feed concentration of acetogens, g/L";

4

Real rhoXm_f "feed concentration of methanogens, g/L";
Real R_Sbvs "generation rate of Sbvs, g/(L*d)";
Real R_Svfa "generation rate of Svfa, g/(L*d)";
Real R_Xa "generation rate of Xa, g/(L*d)";
Real R_Xm "generation rate of Xm, g/(L*d)";
Real R_CH4 "generation rate of CH4, g/(L*d)";
Real R_a "reaction rate acetogenesis, g/(L*d)";
Real R_m "reaction rate methanogenesis, g/(L*d)";
Real mu_a "growth rate acetogenesis, 1/d";
Real mu_m "growth rate methanogenesis, 1/d";
Real muhat_a "maximal growth rate acetogenesis, 1/d";
Real muhat_m "maximal growth rate methanogenesis, 1/d";
Real mdot_CH4x "mass flow methane production, g/d";
// Defining input variables:
input Real Vdot_f "volumetric feed flow -- control variable, L/d";
input Real T "reactor temperature -- possible control input, C";
input Real rhoSvs_f "feed volatile solids concentration -- disturbance, g/L";

equation
// Differential equations
der(rhoSbvs) = Vdot_f/V*(rhoSbvs_f - rhoSbvs) + R_Sbvs;
der(rhoSvfa) = Vdot_f/V*(rhoSvfa_f - rhoSvfa) + R_Svfa;
der(rhoXa) = Vdot_f/V/theta_X*(rhoXa_f - rhoXa) + R_Xa;
der(rhoXm) = Vdot_f/V/theta_X*(rhoXm_f - rhoXm) + R_Xm;
// Feed
rhoSbvs_f = rhoSvs_f*b0;
rhoSvfa_f = rhoSbvs_f*af;
rhoXa_f = 0;
rhoXm_f = 0;
// Generation rates
R_Sbvs = -Y_Sbvs_Xa*R_a;
R_Svfa = Y_Svfa_Xa*R_a - Y_Svfa_Xm*R_m;
R_Xa = R_a - k_d*rhoXa;
R_Xm = R_m - k_d*rhoXm;
R_a = mu_a*rhoXa;
R_m = mu_m*rhoXm;
mu_a = muhat_a/(1 + K_Sbvs/rhoSbvs);
mu_m = muhat_m/(1 + K_Svfa/rhoSvfa);
muhat_a = muhat_35 + alpha_muhat*(T-35);
muhat_m = muhat_a;
// Methane production
mdot_CH4x = R_CH4*V;
R_CH4 = Y_CH4_Xm*R_m;
end adFossModel;

3.2 Basic Python script

The following Python script adFossSim.py provides basic simulation of the Anaerobic Digester reactor
at Foss Biolab starting at the nominal operating point, and performing some step perturbations for the
inputs:

#
Python script for simulating Anaerobic Digester at Foss Biolab
#
script: adFossSim.py
author: Bernt Lie, Telemark University College, Porsgrunn, Norway
location: Telemark University College, Porsgrunn
date: August 31, 2012

5

Importing modules

matplotlib, numpy
import matplotlib.pyplot as plt
import numpy as np

JModelica
from pymodelica import compile_fmu
from pyfmi import FMUModel

Flattening, compiling and exporting model as fmu
adFoss_fmu = compile_fmu("adFossModel", "adFoss.mo")

Importing fmu and linking it with solvers, etc.
adFoss = FMUModel(adFoss_fmu)

Creating input data
t_fin = 100
adFoss_opdata = np.array([[0,50,35,32.4],[10,50,35,32.4],[10,45,35,32.4],

[30,45,35,32.4],[30,45,38,32.4],[60,45,38,32.4],
[60,45,38,40],[t_fin,45,38,40]])

adFoss_input = (["Vdot_f", "T", "rhoSvs_f"], adFoss_opdata)

Carrying out simulation
adFoss_res = adFoss.simulate(final_time = t_fin, input = adFoss_input)

Unpacking results
rhoSbvs = adFoss_res["rhoSbvs"]
rhoSvfa = adFoss_res["rhoSvfa"]
rhoXa = adFoss_res["rhoXa"]
rhoXm = adFoss_res["rhoXm"]
mdot_CH4x = adFoss_res["mdot_CH4x"]
Vdot_f = adFoss_res["Vdot_f"]
T = adFoss_res["T"]
rhoSvs_f = adFoss_res["rhoSvs_f"]
t = adFoss_res["time"]

Setting up figure with plot of results
plt.figure(1)
plt.plot(t,rhoSbvs,"-r",t,rhoSvfa,"-g",t,rhoXa,"-k",t,rhoXm,"-b",linewidth=2)
plt.legend((r"$\rho_{S_{bvs}}$ [g/L]",r"$\rho_{S_{vfa}}$ [g/L]",

r"ρ_{X_a} [g/L]",r"ρ_{X_m} [g/L]"),ncol=2,loc=0)
plt.title("Anaerobic Digestion at Foss Biolab")
plt.xlabel(r"time t [d]")
plt.grid(True)

plt.figure(2)
plt.plot(t,mdot_CH4x,"-r",linewidth=2)
plt.title("Anaerobic Digestion at Foss Biolab")
plt.ylabel(r"\dot{m}_{CH_4} [g/d]")
plt.xlabel(r"time t [d]")
plt.grid(True)

plt.figure(3)
plt.plot(t,Vdot_f,"-r",t,T,"-g",t,rhoSvs_f,"-b",linewidth=2)
plt.axis(ymin=30,ymax=55)
plt.title("Anaerobic Digestion at Foss Biolab")

6

Figure 2: Nominal evolution of inputs at Foss Biolab, with perturbation.

plt.legend((r"\dot{V}_f [L/d]",r"T [${}^{\circ}$C]",
r"$\rho_{S_{vs,f}}$ [g/L]"),loc=0)

plt.xlabel(r"time t [d]")
plt.grid(True)

plt.show()

Running this Python script leads to the results in figs. 2 —4:

3.3 Uncertainty analysis

Suppose the value of parameters b0 and af are uncertain, but that we “know” they lie in intervals
b0 ∈ 0.25× [0.9, 1.1] and af ∈ 0.69× [0.9, 1.1]. We can study the uncertainty of the model by running a
number NMC of Monte Carlo simulations were we draw values at random from these two ranges – e.g.
assuming uniform distribution. The following modifications of the Python code will handle this problem,
excerpt of script adFossSimMC.py:

#
Python script for Monte Carlo study of Anaerobic Digester at Foss Biolab
#
script: adFossSimMC.py
author: Bernt Lie, Telemark University College, Porsgrunn, Norway
location: Telemark University College, Porsgrunn
date: August 31, 2012

Importing modules

matplotlib, numpy, random
import matplotlib.pyplot as plt
import numpy as np
import numpy.random as nr

7

Figure 3: Nominal production of methane gas at Foss Biolab, with perturbation.

Figure 4: Nominal evolution of states at Foss Biolab, with perturbation.

8

...

Carrying out simulation
adFoss_res = adFoss.simulate(final_time = t_fin, input = adFoss_input)

...

Setting up figure with plot of results
plt.figure(1)
plt.plot(t,rhoSbvs,"-r",t,rhoSvfa,"-g",t,rhoXa,"-k",t,rhoXm,"-b",linewidth=2)
plt.legend((r"$\rho_{S_{bvs}}$ [g/L]",r"$\rho_{S_{vfa}}$ [g/L]",

r"ρ_{X_a} [g/L]",r"ρ_{X_m} [g/L]"),ncol=2,loc=0)
plt.title("Anaerobic Digestion at Foss Biolab")
plt.xlabel(r"time t [d]")
plt.grid(True)

...

Monte Carlo simulations
Nmc = 20
b0nom = adFoss.get("b0")
afnom = adFoss.get("af")

for i in range(Nmc):
b0 = b0nom*(1 + 0.1*(nr.rand()-0.5)*2)
af = afnom*(1 + 0.1*(nr.rand()-0.5)*2)
adFoss.set(["b0","af"],[b0,af])
Carrying out simulation
adFoss_res = adFoss.simulate(final_time = t_fin, input = adFoss_input)

Unpacking results
rhoSbvs = adFoss_res["rhoSbvs"]
rhoSvfa = adFoss_res["rhoSvfa"]
rhoXa = adFoss_res["rhoXa"]
rhoXm = adFoss_res["rhoXm"]
mdot_CH4x = adFoss_res["mdot_CH4x"]
t = adFoss_res["time"]

Setting up figure with plot of results
plt.figure(1)
plt.plot(t,rhoSbvs,":r",t,rhoSvfa,":g",t,rhoXa,":k",t,rhoXm,":b",

linewidth=1.5)

plt.figure(2)
plt.plot(t,mdot_CH4x,":m",linewidth=1.5)

plt.show()

The result are as shown in figs. 5 and 6.

3.4 Wash-out and recovery of reactor

Suppose that the reactor gets “washed out”by accidentally applying too high a feed rate V̇f , e.g. V̇f =
120L/d, while T and ρSvs,f are as in Table 1. It is of interest to see whether the original production
can be recovered. Figures 7 —9 indicates the behavior over a period of more than 4 years (1500 d) of
operation.

9

Figure 5: Monte Carlo study of methane production at Foss Biolab, with variation in b0 and af .

Figure 6: Monte Carlo study of evolution of states at Foss Biolab, with variation in b0 and af .

10

Figure 7: Evolution of inputs at Foss Biolab leading to wash-out/recovery.

Figure 8: Production of methane gas at Foss Biolab during wash-out/recovery.

11

Figure 9: Evolution of states at Foss Biolab during wash-out/recovery.

As seen, although increasing V̇f initially leads to a significant increase in the methane production, the
bacteria are washed out of the reactor leading to a dramatic fall in the methane production. Furthermore,
it takes an inordinate long time to recover after a wash-out if the input is simply set back to the original
flow rate. The steady state values at wash-out (t = 400 d) can be found to be

ρSbvs,wash−out = 8.0999999985826001

ρSvfa,wash−out = 3.96169944436781

ρXa,wash−out = 1.3193454767561001× 10−9

ρXm,wash−out = 0.13282069444970099

3.5 Optimal recovery of methane production

The accidental wash-out of bacteria is a serious problem in the operation of Anaerobic Digesters. It is
thus of interest to see whether it is possible to recover the operation in an optimal way. We consider the
possibility of recovering the operation in the 1100 d horizon spent to wash-out the bacteria, fig. 7 —9.
We thus seek to maximize the production of methane, but without using too much feed of animal waste.
The following criterion is thus sought maximized :

J =

∫ Th

0

(
ṁCH4,x − cV̇V̇f

)
dt

where cV̇ is a cost parameter. We add the following constraints to make sure that the solution has
physical meaning.

ρj ≥ 0

ṁCH4,x ≥ 0

V̇f ∈ [0, 120] L/d.

We assume that the temperature T and the disturbance ρSvs,f are as in Table 1.
To solve this problem, we use the Modelica extension class optimization in JModelica.org. In Model-

ica, the criterion function is minimized, so the criterion in Modelica needs to be −J where J is as above.
The essence of the Modelica code for this problem is as given below:

12

optimization adFossOpt(objective = J(finalTime), startTime=0, finalTime=T_h)
// Optimal recovery of Anaerobic Digestion Reactor at Foss Biolab
// Author: Bernt Lie
// Telemark University College, Porsgrunn, Norway
// September 2, 2012
//
// Instantiating model adf from class adFossModel
adFossModel adf;
// Additional parameters
parameter Real T_h = 1100 "time horizon in optimization criterion, d";
parameter Real cost_V = 1 "relative cost of animal waste";
parameter Real Vdot_max = 120 "maximal allowed feed rate, L/d";
parameter Real T_nom = 35 "nominal reactor temperature, C";
parameter Real rhoSvs_f_nom = 32.4 "nominal feed concentration

of volatile solids, g/L";
// Defining cost function
Real J(start=0, fixed=true);
// Defining input variable:
input Real Vdot_f(free=true, min=0,max=Vdot_max) "max feed flow, L/d";

equation
// Passing on inputs to model instance
adf.Vdot_f = Vdot_f;
adf.T = T_nom;
adf.rhoSvs_f = rhoSvs_f_nom;
// Computing cost function
der(J) = - adf.mdot_CH4x + cost_V*Vdot_f;

constraint
// Constraining states
adf.rhoSbvs >= 0;
adf.rhoSvfa >= 0;
adf.rhoXa >= 0;
adf.rhoXm >= 0;
// Constraining methane production
adf.mdot_CH4x >=0;

end adFossOpt;

With cV̇, the result is as in figs. 10 —12. With cV̇, the result is highly oscillatoric time evolutions.

4 Discussion and Conclusions

Comparing Python to MATLAB for use in control studies reveals clear advantages and clear disadvan-
tages for Python. Python is a free tool, and a rich programming language. However, there is (currently)
no control toolbox for Python, the various packages and sub packages are not so well documented, and
the quality of some tools are far from perfect. Yet, the combination of Python and Modelica/PyFMI of-
fers ample opportunities for analysis of models and control studies. This paper illustrates this by showing
how natural models can be encoded in Modelica, and how easy Modelica models can be accessed from
Python using e.g. PyFMI. Furthermore, it is shown how natural and powerful Python is as a scripting
language, e.g. for doing uncertainty/sensitivity analysis of dynamic models. Finally, a simple optimal
control problem illustrates on-going research and development in extending the Modelica language using
JModelica.org; similar extensions of the Modelica language are also studied in e.g. Bachmann et al.
(2012). And yet, in this paper, only the most rudimentary use of Modelica and Python has been touched
upon.
Currently, some key problems with the Python+Modelica combination are:

• There is no equivalent of MATLAB’s Control Toolbox. This is such a shortcoming that many
control engineers will not seriously consider the Python + Modelica combination. Some work at

13

Figure 10: Evolution of optimal input V̇f at Foss Biolab after wash-out (solid lines), with initial guess
(dotted lines).

Figure 11: Evolution of optimally recovered methane production at Foss Biolab after wash-out (solid
lines), with initial guess (dotted lines).

14

Figure 12: Evolution of optimally recovered states at Foss Biolab after wash-out (solid lines), with initial
guess (dotted lines).

CalTech11 aims to resolve this problem by developing a Python control toolbox, but there does not
appear to be a clear timeline for such a toolbox. Within the Modelica groups, some on-going work
addresses this by developing a 12 Linear Systems library within Modelica.

• Although there are a number of powerful (and free) optimization solvers, it is not trivial to inte-
grate these into Python, and those which already have simple Python installers are often poorly
documented and/or uses non-standard array packages. A minimal package should include LP, QP,
NLP, and NLS solvers of high quality, and they should be equally simple to install in the main OS
platforms.

• The FMI is a very positive initiative, and well suited to scripting using either Python or MATLAB.
More work is needed in order to make FMI export from the various tools more standardized.

• The initiative of extending Modelica with optimization (and model calibration) possibilities is very
interesting for the control society. It would be even more interesting if some standards evolve.

The evolution of alternatives to MATLAB + SIMULINK is very interesting, and Python + Mod-
elica holds promise to be such a tool. There are advantages with commercial tools such as MATLAB
+ SIMULINK and similar tools for Modelica such as MapleSim and Wolfram SystemModeler, but in
academia with limited resources for buying software, free software is of interest.

References

[1] Bachmann, B., Ochel, L., Ruge, V., Gebremedhin, M., Fritzson, P., Nezhadali, V., Eriksson, L.,
Sivertsson, M. (2012). “Parallel Multiple-Shooting and Collocation Optimization with OpenModel-
ica”. In Proceedings of the 9th International Modelica Conference (Modelica’2012), Munich, Germany,
Sept.3-5, 2012.

[2] Fritzson, P. (2011). Introduction to Modeling and Simulation of Technical and Physical Systems with
Modelica R©. IEEE Press and Wiley, Hoboken, New Jersey.

11http://sourceforge.net/apps/mediawiki/python-control/index.php?title=Main_Page
12https://modelica.org/libraries/Modelica_LinearSystems2

15

[3] Haugen, F., Bakke, R., and Lie, B. “Mathematical Modelling for Planning Optimal Operation of a
Biogas Reactor for Dairy Manure”. Presented at the IWA World Congress on Water, Climate and
Energy (IWA-WCE), Dublin, 14 —18. May 2012.

16

