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Abstract

Hydrological rating curves are used to convert water level time series to discharge time series.
The least squares method has, until recently, been the standard method used to estimate
these hydrological rating curves from data, even though new methods have been experimented
with, e.g., neural networks and numerical models. However, the lack of in depth uncertainty
estimates causes problems in data processing. Also, it is virtually impossible to incorporate
auxiliary information objectively into this method. Furthermore, recent findings suggest that
heteroscedasticity is not accounted for [1]. Finally, it has recently been reported by the Chiefs
of the Hydrological Institutes of the Nordic countries (CHIN) that the subjectivity of the
methodologies used in the member countries, causes uncertainties in the establishment of rating
curves, resulting in different rating curve estimates between countries. Therefore, long term
discharge averages and maximum values, based on the same data, are surprisingly different [2,
pp. 44].

The main focus of this project is to create an objective methodology for establishing hy-
drological rating curves based on the Bayesian approach. Data collected by the Hydrological
Service in Iceland (HS) at the National Energy Authority (NEA) is analyzed, using scientific
and heuristic methods, establishing a priori knowledge about the required parameters. These
data include all Icelandic rating curve parameters that have as a part of the project been
gathered and organized into an Oracle database, functioning as the basis for Bayesian a priori
information, as well as a plethora of other data, such as water level and discharge time series
and the hydrometric network attributes. When producing discharge predictions, the Bayesian
approach is utilized by using all these data from the HS.

The Bayesian approach naturally combines the statistical model for the data which incorpo-
rates the hydrological model, that data itself and the a priori information which is based on
previously collected data and scientific knowledge. The result of this combination of informa-
tion and knowledge results in a posterior distribution which is used to estimate parameters and
to establish a rating curve as well as all derived data. The Markov chain Monte Carlo (MCMC)
approach is used to sample from the posterior distribution.

Further, rating curve results from 8 case studies are compared to a recent report from a
Nordic working group, established by CHIN on rating curves [2, pp. 35–44].

Application and standardization of the model is discussed as well as the general effectiveness of
the methodology. Finally some issues regarding further research and development are addressed.

This project has a strong support from interested parties, both in Iceland and abroad, as the
goal is a common methodology that will benefit all of the participating nations as well as other
interested parties in an increased quality of data.

The ISO standardization of the methodology is very important. This means that this new
methodology should follow the same principles as previous methods and adhere to ISO stan-
dards wherever possible.

Finally, it must be emphasized that the discharge data, the main product of the hydrometric
network, benefits from the new and improved methodology. These data series are the foundation
of many important and expensive projects including hydroelectric powerplants, bridges and
other transportation structures as well as scientific research such as advanced weather models.
All improvement of data integrity and quality directly influences decision making and planning
in these fields.



Ágrip

Rennslislykill er samband vatnshæðar og rennslis. Hann er notaður til þess að varpa vatnshæðartí-
maröð yfir í rennslistímaröð. Minnstu kvaðrata aðferðir hafa hingað til verið hin staðlaða aðferð
við mat á slíkum rennslislyklum. Þó hafa verið gerðar tilraunir með að nota m.a. tauganet
og ýmsar tölulegar aðferðir. Skortur á nákvæmu óvissumati hamlar ítarlegri notkun rennslis-
gagnanna og vinnslu með þau. Auk þess er nánast ómögulegt að nota jaðargögn sem gögn
við notkun allra þessara aðferða. Nýjar rannsóknir [1], gefa til kynna að ekki sé gert ráð fyrir
flökti (e. heteroscedasticity) í staðlaða líkaninu. Loks hefur CHIN (Chiefs of the Hydrological
Institutes of the Nordic countries) gefið út að huglægar skekkjur í hinum mismunandi aðferðum
meðlimalandanna valdi óvissu í mati á rennslislyklum. Þessi óvissa veldur því að rennslislyklar
geti verið mismunandi milli landa og því sé talsverður mismunur í mati landanna á langtíma
meðalrennsli og hámarks- og lágmarksrennsli, byggðu á sömu gögnum, [2].

Aðalmarkmið verkefnisins er að skapa hlutlæga aðferðafræði til mats á rennslislyklum með
notkun Bayesískrar aðferðafræði. Gögn frá Vatnamælingum Orkustofnunar (VM) um stika
líkansins eru greind með ýmsum aðferðum og notuð til þess að meta fyrirfram upplýsingar um
stikana. Þessi gögn eru meðal annars stikar allra gildandi rennslislykla hjá VM auk alls kyns
annarra gagna, s.s. vatnshæðar- og rennslisgagna sem og upplýsingar um vatnshæðarmælikerfi
VM. Öll gögnin eru síðan notuð til skilgreiningar fyrirframdreifinga sem notaðar eru í Bayesísku
aðferðafræðinni.

Bayesíska aðferðin sameinar tölfræðilega líkanið fyrir gögnin, gögnin sjálf og fyrirfram up-
plýsingar sem byggðar eru m.a. á reynslu, vísindalegri þekkingu og jaðargögnum. Niðurstöður
aðferðarinnar eru eftirádreifingar sem notaðar eru til þess að meta stikana í rennslislyklinum
og afleiddar stærðir. Markov-keðju Monte Carlo-hermun (MCMC) er notuð til þess að safna úr
eftirádreifingunni.

Niðurstöður átta tilfella eru borin saman við niðurstöður áðurnefndrar CHIN rannsóknar um
rennslislykla.

Notkun og stöðlun ferlisins er einnig rædd sem og heildarkostir og gallar þess. Auk þess eru
næstu skref aðferðafræðinnar og framtíðarsýn varðandi hana rædd.

Þetta verkefni nýtur mikils stuðnings hagsmunaaðila, bæði innanlands sem erlendis, þar eð
markmiðið er sameiginleg aðferðafræði sem nýtist meðlimum CHIN, viðskiptavinum VM sem
og öðrum áhugasömum aðilum um bætt gæði gagna.

ISO stöðlun ferlisins er mjög mikilvæg. Því var leitast við að halda sömu skilyrðum og fyrri
aðferðir notast við og nota ISO staðla þar sem því var við komið.

Að lokum verður að leggja áherslu á að rennslisgögnin, afurð vatnshæðarmælikerfisins, njóta
bættrar aðferðafræði. Þessi gögn eru grunnur margra mikilvægra og kostnaðarsamra fjár-
festinga, s.s. vatnsaflsvirkjana og brúa og annarra samgöngumannvirkja. Einnig má minnast
á vísindarannsóknir s.s. langtímaveðurathuganir. Öll aðferðafræði sem eykur gæði og heilindi
rennlisgagnanna hefur áhrif á ákvarðanatöku og skipulagningu í þessum geirum.
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Chapter 1

Hydrometric Networks

A short introduction is required to gain insight into this field of study. Most of the information
is based on the Icelandic hydrometric network yet it is in principle comparable to the Nordic
countries.

1.1 The Water Level Measurement

1.1.1 Background

The water level gauges in the Icelandic hydrometric network can be largely divided into two
groups depending on the location. The first group covers 34 stations located in the highlands
(400 m or more above sea level). It can be difficult to reach these stations during the wintertime
and they are free from ice for only 3-6 months a year. The other group includes the remaining
131 stations which are located under 400 m above sea level. These stations are normally easy to
reach all year around. In an attempt to correct for ice jams in the highlands during wintertime,
major winter trips are planned to measure the low water discharge, sometimes through ice [4].

At the Hydrological Service in Iceland (HS) several methods have been used for continuous
water level (or stage) measurements. Most of them are based on the previous research and
experience in the field, i.e., standards, though some have been adapted to the, sometimes,
unusual circumstances regarding Icelandic rivers. The oldest and most widespread methods are
the stilling well and the gas pressure gauge, neither of which is constructed anymore. In fact
the last one of each was built in the mid and late 1980’s.

Digital technology and measurement equipment are felt to be the future of hydrological
surveying and many such stations have been erected in the last 15 years, often replacing older
equipment. In order to maintain the older time series, much has been dedicated to these
replacements, the correct placement, calibration and scale. This revolution, however, has taken
a toll. Much of the early experimental work failed in the process due to the inferior first
generation of digital collectors. Many radical improvements were then made to the design and
the construction of the electronic gauging stations, e.g., improved rechargeable batteries with
solar cells, new digital collectors and digital pressure sensors and methods of preventing frost
from damaging the equipment. Not until these corrective measures were taken and the system
redesigned, did the second generation succeed.
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1.1.2 Gauging Stations

These are the three most common types of Icelandic gauging stations:

Stilling Well (Analog)

A stilling well is constructed near the stream, with an intake well below the water level, prefer-
ably so that it will permit a measurement of stage to be made at all levels, from below the
lowest to above the highest anticipated levels [5]. The water level of a well is measured and
monitored, as well as the outside water level. The float height mechanically moves a pen upon
a roll of paper that is driven by a clock. Very often, the stilling well gauging station was also
equipped with a staff gauge.

Purge-Gas Pressure Gauge (Analog/Digital)

A gas pipe continuously lets out gas bubbles beneath the surface of the water and sensitive
measuring equipment converts the pressure, needed to drive the gas out, to a mechanical force.
This force, in turn, moves a pen upon a roll of paper driven by a clock. It is becoming more
common to digitally monitor this pressure and log into computer memory.

Pressure Gauge (Digital)

A digital pressure transducer sensor, placed under water, measures pressure from the above
water. This pressure reading is converted into a stage measurement and digitally logged into
the memory of the collector.

1.1.3 Construction and Setup

Standard practice has been to place the measuring point, be it a well intake, a pressure gauge
or a digital pressure sensor, at a relative height of 100 cm. This is to encompass all levels
below it in case the intake is above the water level during draughts. Then, the intake needs
to be moved deeper. This is a safety measure and a relocation of the device is rarely needed.
At least one fixed reference point (or benchmark) is drilled into a solid mass, preferably lava
outcroppings or structures nearby, e.g., bridges. These are then given an arbitrary height and
then used for the calibration and monitoring of any changes in the height of the measuring
equipment. For all these height measurements, accurate land surveying equipment is used by
trained personnel.

1.1.4 Monitoring

Standard practice is to visit the station at least three times a year and perform the following
checks and maintenance:

1 Check all peripheral devices and requirements such as; winding the clock, gauge gas pressure,
replace ink, pen or paper if required, etc.

2 Calculate (read) and document point measurement of stage, both from paper/collector mem-
ory and if applicable, an automatic counter.
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3 Measure actual water level, using a fixed reference point and/or land surveying equipment,
based on relative heights. These measurements usually incorporate some kind of a stilling
equipment, usually a stilling tube designed by the HS staff.

1.1.5 Data Collection and Processing

There are two ways of collecting stage data at the HS. One is to use a mechanical analog
measurement equipment to continuously write the water level on paper and the other one is to
log the stage electronically into digital memory.

Analog records

The digitizing of analog water level records was originally done with the aid of a digitizing
table, but is now done with a scanner and processed by a LabView program. This is based on
a Swedish video camera system (SKUR) used before [4]. The digital records are then stored in
the HS database and the original data on paper rolls kept in a fireproof storage facility.

Digital records

Digital records are downloaded from the collector memory with a laptop computer or through
an automated dial-up system, and stored in the HS database.

The results are a digital water level time series for each gauging station that define the
continuous water level curve with acceptable accuracy. These time series are, however, not
equally sampled over time and are called primary data. The primary data are converted into
discharge using the rating curve (see Section 1.3). These discharge time series are then converted
to secondary data, equally spaced in time, usually with daily values. These secondary data, time
series with ice jams and other discrepancies corrected, are then published in annual reports.
Finally, the equally sampled discharge time series are converted back into water level time series
with daily values, again using the rating curve.

1.2 The Discharge Measurement

1.2.1 General

It must be clear that a data set of discharge measurements at different water levels is neither
a uniform nor a homogeneous set. Each measurement is subject to many variable factors,
environmental and other. Those of the most concern to the rating curve establishment process
are discussed, e.g., the measurement method, the type of river runoff being measured and the
steadiness of flow during the discharge measurement.

It is also important to observe that Iceland and especially its highlands are a very harsh and
inaccessible environment. Measuring discharge is confined by weather conditions and logistics
during winter and spring, to short windows of opportunity, leaving summer and fall discharge
to be measured more frequently. This may in part, explain the relative lack of high and low
discharge measurements in the HS data sets.

Defining the water level for a discharge measurement is an integral part of the measurement
process. Usually, the mean of the water level during the measurement, weighted over time, is a
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sufficient estimate. The discharge measurement is also given the label steady, rising or falling
(see Section 1.2.6), according to the state of flow.

1.2.2 Discharge Measurement Methods

There exist, however, many methods of measuring discharge. The method used in each case
depends heavily on local conditions and the current situation. A vast majority of the HS dis-
charge measurements have been collected using a standard propeller measurement equipment.
Usually, if the stream is wadable, it is measured on foot and these measurements are often
considered to be of the best quality. If the river is too deep or the flow is too strong, a boat
is used. Boat measurements are considered to be of a somewhat less quality. The third most
popular method and the one considered to be of the lowest quality is the cableway suspended
propeller.

The discharge measurement method mainly used is the complete profile method, 4-7 points
per profile and a minimum of 18 profiles across the river. All the small rivers are waded
with a guideline. Where it is not possible to wade, a boat or a cableway installation is used.
There are as many as 34 cableway installations in use, crossing the largest rivers in Iceland.
These installations are of Icelandic design, with some input of ideas from Russian hydrometric
textbooks [4].

The measurement equipment is in almost all cases a propeller type current meter. In some
cases, for example at freezing temperatures or at high levels of bottom vegetation, a magnetic
current meter is used. In the Icelandic West- and Eastfjords where rivers are both fast and
shallow or during flash floods where it impossible to measure in the usual way, dilution methods
have been used to some extent, both dye and chemical (salt).

1.2.3 Types of Runoff in Iceland

The nature of the Icelandic rivers is varied. Based on their origin, they are classified as spring
(ground water) fed rivers, direct runoff rivers and as glacially (glacier) fed rivers. Many rivers
are mixtures of all these runoff types, for example, both spring fed and glacially fed. A mixed
river is categorized by the governing runoff type.

Seasonal snow cover, glaciers and groundwater play a large role in the hydrology of Iceland.
The largest contribution to the runoff is by rivers fed directly by rain and snow melt. However,
glacial contribution to annual runoff is estimated to be approximately 20% of the total runoff
and another 20% of the runoff is estimated to be ground water, some of which is originated
from glacial melt. The distribution of precipitation between seasons, and temperature evolution
throughout the year, determines how much of the precipitation falls as snow. It, therefore,
determines whether a large fraction of the runoff will be snow melt floods in the spring or
whether autumn or winter floods will be larger. The summer and fall temperature affects
how much glacial melt water will be in the glacial rivers during the summer; the higher the
temperature, the more melt water. The different geophysical characteristics of watersheds in
Iceland give an extra basis for variability, especially due to large areas of post glacial, highly
permeable lava fields. Groundwater storage masks some of the climate variability and glaciers
create their own variability of runoff through changes in mass balance, forced by climatic
variations [3].
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Icelandic rivers are divided into 3 basic categories, spring fed, glacier fed and direct runoff
rivers.

Figure 1.1: These rivers are representative for each of the three types of runoff. This figure
shows the daily runoff of each river in m3/s as a proportion of the mean discharge over one
year [3].

1 Spring Fed Rivers A spring fed river has a predictable water level pattern. It consists
of a steady unvaried flow throughout the year, affected only by considerable amounts of
precipitation, in particular, during the winter when the ground is frozen. Notable annual
events are floods at the beginning of snow melt in early spring. The relative change in
the flow over the course of one day can be expected to be very low. Spring fed rivers can
be found in regions with relatively recent lava fields, as the young rock has the highest
permeability.

2 Direct Runoff Rivers A direct runoff river consists of a network of rivers. Its flow is mainly
weather dependent, it oscillates over the year depending on precipitation and snow/glacial
melt. Notable annual events are spring floods and floods in the late summer/early fall,
coinciding with the maximum glacial melt and warm rainy weather. It can be expected
to change rapidly and unpredictably over the course of day, representing weather events
on the catchment area. For example, during snow melt, a substantial diurnal variation
is observed. The direct runoff rivers can be found on the oldest rock on Iceland, i.e.,
the East- and Westfjords. Direct runoff rivers have also been divided into two categories,
direct runoff rivers with lag, where snow and vegetation delay the runoff, and direct runoff
types that respond directly to rain.

3 Glacially Fed Rivers Glacial rivers, like the spring fed ones, have a relatively predictable
flow pattern. Over the winter, snow and glacial melt is negligible and river flow contains
only the spring fed part of the river, as such it follows a similar flow pattern. This flow is
often around 1% of the maximum summer discharge. As soon as snow melt begins with
the spring the discharge increases steadily until snow melt is over and glacial melt begins.
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At that time the discharge is dependent on weather events on the glacier catchment area,
i.e., temperature, wind and sun. Given steady weather conditions, the diurnal pattern of
flow becomes very predictable with a low glacial melt during the night and a high melt
during the day.

One very important feature encountered in Icelandic glacial rivers is their extreme sed-
iment transport. Often the riverbed at the control section contains only sand and fine
sediment. This means that the control section may be unstable and subject to change.

Shifts have been observed in rating curves for gauging stations in all river types, seemingly
because of an unstable control section (see Section 1.3). Sometimes, in glacial rivers, extreme
sediment transport is to blame [6]. In spring fed rivers, sand drift is often to blame and following
floods in direct runoff rivers, drastic changes in the control section are often observed.

In recent years it has been attempted at the HS to establish if and when the rating curve
shifts. These attempts have been relatively successful yet some problems have followed. Some
have pointed out the lack of predictive power in these shifted rating curves, as the estimate of
the shift is usually based on historical data instead of predictable patterns, such as a rating
curve dependant on seasonal events such as the summer growth of river bottom vegetation.
Rather, the shift is thought to depend on unpredictable events, natural occurrences, such as
floods, earthquakes or such. Shifts can be thus, be loosely divided into two types, predictable
and unpredictable.

It has also been put forth that the scatter or variance of the data does not support such accu-
rate analysis. It is, however, evident from the data that it is possible to track the shifts, if the
frequency of discharge measurements is high enough. The value of the improved information is
not very significant with regard to the long term mean discharge, but it is very important with
respect to annual flows as well as to the seasonal flows [6]. Further analysis on shifts in rating
curves can be inspected in various reports published by the HS, for example: [7], [8], [9] and [10].

Thesis It is proposed, that the analysis of rating curve shifts, high frequency or not, needs
better estimates of data variance and prediction intervals, in order to judge whether the data
is reliable enough for further inspection. If, for example, 19 of 20 discharge measurements fall
within the 95% prediction intervals, it should be hard to justify further shift analysis unless,
for example, the data set demonstrates some attributes that enable it to be divided into subsets.
Then, prediction intervals may be constructed around each of the subsets and decisions made on
that basis e.g. the frequency and cause of the shifts between the different rating curves, and the
nature, or shift type. This demonstrates, even further, the importance of dependable prediction
intervals.

1.2.4 The Manning Equation

The Manning equation is the most widely used of all uniform-flow formulas for open channel
flow computations. It describes steady state flow in an open channel as a function of friction,
slope and geometry, e.g., the desired flow for most rating curves. It is relatively precise when
flow is steady and the channel is uniform. The formula is an empirical relationship and n can
not be deducted from any natural laws of physics.

Sf =
n2Q2

2.21A2R(4/3)
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where

• Sf is the friction

• A is the

• n is the

• R is the

• Q is the

1.2.5 General Open Flow Equations

The general equations for open channel flow are based on the continuity equation and Newton’s
second law of conservation of linear momentum. Mathematical models for various simplified
and approximate special cases have been developed and applied to engineering problems (Chow,
1959; Henderson, 1966). More rigorous derivations were done, by Strelkoff (1970) and Chen
and Chow (1971). In both cases, the one dimensional incompressible open channel flow equa-
tions were derived by the integration of the point form of the continuity equation and the
Navier-Stokes equation. In a series of paper, Yen (1973, 1975) derived the equations describing
an unsteady, spatially varied, turbulent, free surface flow of a viscous nonhomogeneous fluid
in a channel of arbitrary cross-sectional and alignment geometry with an erodible boundary.
This was done rigorously by integrating the point form of continuity, momentum and energy
equations over a cross-sectional area of the channel [11].

For an incompressible fluid, the integrated equation of continuity is, (Yen, 1973)

∂A

∂t
+
∂Q

∂x
=
∫

σ
q̂dσ

in which

• A is the active cross-sectional area of flow

• Q is the discharge through A

• σ is the perimeter bounding A

• x is the lateral distance

• t is the time

• q̂ is the time of lateral flow per unit length of σ, having dimension of length/time, and
being positive for lateral inflow and negative for outflow.
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The one-dimensional momentum equation integrated over the area, A, for a gravity oriented
coordinate system with depth, Y , measured vertically is, (Yen, 1975) [11],

1

gA
+

∂Q

∂t
+

1

gA

∂

∂x
(
β

A
Q2) +

∂

∂x
(kY ) + (k − k′)

Y

A

∂A

∂x
(1.1)

= S0 − Sf +
1

γA

∂T

∂x
+

1

gA

∫

σ
q̂uxdσ

in which

• g is the gravitational acceleration

• S0 is the channel slope = tan(θ) for gravity oriented coordinates, where θ is the angle
between the channel bottom and a horizontal plane

• Sf is the friction slope, evaluated from the Manning equation for uniform steady flow

• γ is the specific weight of the fluid

• ux is the x-component velocity of the lateral flow joining the channel flow

• k and k′ are pressure distribution correction factors

• β is the momentum flux correction factor

• T represents the force acting normal on A due to internal stresses.

• t is the time

This equation can be simplified, based on the Saint-Venant equations (Fread, 1977) [12],
the continuity equation:

∂(A+ A0)

∂t
+
∂Q

∂x
= q

and a conservation of momentum equation

∂Q

∂t
+
∂(Q

2

A
)

∂x
+ gA(

∂h

∂x
+ Sf + Se) = 0 (1.2)

where

• h is the water surface elevation,

• A is the active cross-sectional area of flow

• A0 is the inactive (off-channel storage) cross-sectional area

• x is the longitudinal distance along the channel (valley)

• q is the lateral inflow or outflow per linear distance along the channel (inflow is positive
and outflow is negative in sign)

• Se is the expansion-contraction slope
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1.2.6 Conditions of Flow

When measuring discharge for a stage-discharge relationship it is important to know which of
two possible cases is being studied. The general case of developing a steady relationship between
stage and discharge is one and the other is studying the hysteresis effect sometimes found in
the discharge measurement data sets. This hysteresis is a phenomenon that is sometimes
observable when measurements are made at unsteady water levels. It can be shown that
discharge measurements done at rising water levels can be expected to give more discharge.
Sometimes, though more seldom, falling water levels during a discharge measurement result in
less discharge. When measuring Icelandic rivers, this behavior is important to understand, as
most of them have a very varying diurnal flow.

The hysteresis is hard to identify and quantify and is one of the main reasons why it is
necessary to establish prediction intervals for measurements. Without these intervals, it is very
hard to distinguish the hysteresis from regular or normal noise in the data set.

The practical conditions of a steady water level are not universally accepted even though they
have been derived mathematically. Usually water level peaks are considered to be steady and
of course spring fed rivers have a stable water level almost all of the time. The hysteresis effect
is, therefore, practically unknown in discharge measurement data sets made in these rivers. In
fact, for each flood a unique hysteresis will be formed.

The steady state rating curve is usually preferred for its wider utility. The flow reaches a
steady state when the differential factors in (1.1) and (1.2) are equal or close to zero. This is
also the time interval when the Manning equation is in effect and valid.

The reason for more discharge during an increase in water level than during the decrease is
described with complicated differential equations. During an increase in the water level one
of these differential factors is dominant, as the increase in water level happens faster than
the following decrease. During the decrease in water level, the magnitude of the dominant
differential factor is less than in the case of the increase. This can be compared to a large wave
that crashes violently onto a beach and then dissipates slowly back into the ocean.

1.3 The Rating Curve

1.3.1 General

The control of flow in an open channel is the establishment of a definitive stage-discharge
relationship. When control of flow is achieved at a certain section of the channel, this section
is a control section [13].

To develop a reliable stage-discharge rating curve with dependable predictability power, two
things are needed. A water level time series gauged at the control section and point discharge
measurements of the flow through that control section.

In Figure 1.2 an obvious pattern can be seen in the data set. A line through these points is
called a rating curve and establishes the connection between water level and discharge, thus
enabling the conversion of water level time series into discharge time series.

The usually accepted form of a rating curve is known as the equation Q = a(w − c)b. This
equation is derived from equations regarding free flow in open channels. The variables are

• Q is the calculated discharge, usually in m3/s.
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Figure 1.2: Discharge measurements from the Icelandic river Fnjóská as a function of water
level.

• W is the water level, usually in cm or m.

• a is a quantifying constant, describing friction and to some extent, the form of the control
section. It depends on the acceleration of gravity and the measuring units used. It has
no unit.

• b is a positive constant, contributing information about the shape of the control section
and the river channel. It has no unit.

• c is the relative height of the channel bottom, usually in cm or m.

1.3.2 The Rating Curve Parameters

• Wmin is the lowest observed water level at the survey station, usually in cm or m.

• Wmax is the highest observed water level at the survey station, usually in cm or m

• WQn
is the data set of all discharge measurements with their relative water levels at the

survey station, usually in cm or m versus m3/s

• WQmin
is the water level of the lowest discharge measurement at the survey station, usually

in cm or m.

• WQmax
is the water level of the highest discharge measurement at the survey station,

usually in cm or m.
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• Qmax is the highest measured discharge at the survey station, usually in m3/s

• QWmax
is the estimated discharge at the highest observed water level, according to the

official rating curve, usually in m3/s.

• a is a positive constant that has a negative correlation with parameter b, if b increases, a
must decrease to preserve scale.

• b is a positive constant, contributing information about the shape of the river channel
and control section. Natural channel sections are in general very irregular, usually vary-
ing from an approximate parabola to an approximate trapezoid. For streams subject
to frequent floods, the channel may consist of a main channel section carrying normal
discharges and one or more side channel sections for accommodating overflows [13]. Us-
ing the geometric elements of the control section and Newtonian physics, it can easily
be derived that a ∨ shaped control section in a free fall has a b value of 2.5 and a t
shaped control section in a free fall has a b value of 1.5. Channel cross sections are thus,
estimated to have some permutation of those two values, given of course, some leniency
to both values. This dictates that the expected value of b is larger than 0 and less than 5.
One reason for limiting b at 5 is that it has the potential of yielding unrealistically high
discharge when the rating curve has a low α value (see Section 1.4) and b is large, i.e.,
when extrapolating the curve way beyond WQmax

.

• c is an estimate of the channel´s bottom, relative to the water level, i.e., the bottom
of the ∨ and t shape, defined as the water level point of zero discharge. Sometimes
it can be measured with land surveying equipment or estimated during draughts and
these estimates usually assist in calculating the rating curve. As c is a physical constant,
relative to the arbitrary constant of 100 cm (see Section 1.1.3), the value of c is expected
to be greater than 100 cm and hopefully never less, as that indicates the measuring point
has not been placed deep enough to cover all levels of stage. The actual value of 100 cm
is a safety measure to avoid that c will take a negative value, in case, the depth sensor
needs to be extended deeper under the water surface.

1.4 Rating Curve Quality

1.4.1 Estimates of Data Coverage

Wmax and Wmin (see Section 1.3.2) of the time series are expected to change with time, fast
for perhaps the first ten years of gauging, providing statistical coverage of annual floods and
draughts. Later, the changes happen in jumps that coincide with so called statistical events
such as 10, 20 or 50 year events, i.e., floods or draughts that are expected to happen, on the
average, once every 10, 20 or 50 years. It is seldom possible to measure the discharge during the
peak event, therefore, some extrapolation of the rating curve is expected, from the lowest WQmin

down to Wmin and from WQmax
up to Wmax. This means that one expects better discharge data

generated through rating curves with higher values of α = WQmax
/Wmax and β = Wmin/WQmin

(α and β are not the same parameters discussed in Section 1.2.5). This, however, is not always
the case, if the following is considered. A well defined rating curve has α and β equal to 90%.
A singular event, e.g., a spring flash flood which lasts for one day, raises Wmax to a higher level,
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thus reducing α to say 80%. While the peak discharge of that single day needs to be calculated
using an extrapolated rating curve, that is only a fraction of the cumulative discharge of the
day. When compared to the cumulative water level curve for the whole time series the effect is
negligible.

It is, therefore, proposed that

γ =

∫ T
0 W (tlim)dt
∫ T
0 W (ttot)dt

where

W (tlim) ∈ [WQmin
,WQmax

]

and

W (ttot) ∈ [Wmin,Wmax]

is a better predictor of rating curve quality. It is important to note that for this to become
a standard procedure, the water level time series must be equally sampled, for the purpose of
comparison. In that case, it is easier to work with sums than integrals.

As an example of the procedure, the water level time series for three Icelandic gauging stations
are shown in red, in Figure 1.3. For each station, the whole water level time series is sorted in
decreasing order. In order to standardize the series, it is divided by its respective Wmax. The
respective WQmax

and WQmin
of each series are shown in blue. The aforementioned α, β and

γ values can be estimated roughly from the figures. The exact values are, however, shown in
Table 1.1. The α value can be read off the y-axis, e.g the upper blue line. The β value is the
ratio of the lower blue line to the bottom of the graph. The γ value is the area between the blue
lines, i.e., the water levels of the rating curve, supported by discharge measurements, divided
by the total area. All three values are needed to gain perspective of the rating curve quality.
Figure 1.3 and Table 1.1 enable some deductions to be made about the gauging stations.

Table 1.1: A compilation of the rating curve quality parameters for the Icelandic gauging
stations no. 268, no. 150 and no. 411.

Gauging station α β γ

268 0.3810 0.2678 0.6266
150 0.5241 1 0.9664
411 0.0282 0.4241 0.1741

Station no. 268 is in a spring fed river, located in a remote place deep in Iceland’s highland.
The river is monitored for the energy sector, hence, gathering reliable information about the
total discharge is the main objective. The lack of both high and low discharge measurements
is apparent and explained by difficult logistics. It can be deduced that an effort must be made
to increase the γ and lower the β value. This effort might be a winter expedition to measure
low discharge.

Station no. 150 is in a direct runoff river, crossed by Iceland’s main highway. This optimal
location, among other things, has enabled the HS to make a variety of discharge measurements,
especially low discharge, explaining the high β value. In addition, the time series is a relatively
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Figure 1.3: Left to right: Examples of rating curve quality diagrams for the Icelandic gauging
stations no. 268, no. 150 and no. 411.

long one so the river’s behavior is known to some certainty. As the river is crossed by Iceland’s
main highway, the Icelandic Public Roads Administration might be interested in the peak
discharge for designs of a new bridge. This means that in this case, the high γ and β values
are of no interest, and only the α value matters. Here, an effort to increase the α value must
be made. This can be achieved by monitoring weather, precipitation and temperature, for the
possibility of high discharge events. Sometimes, however, local conditions do not allow higher
discharge measurements to be made.

Station no. 411 is similar to station no. 268. It is a spring fed river, monitored for the energy
sector. The desired information is, therefore, total discharge. This river is located in a canyon
that can be reached most of the year with motorized transport. Here, difficult logistics do not
explain the abysmally low α, β and γ values, but rather, the natural surroundings. The river is
in a deep canyon, and impossible to measure with a boat. The range of discharge measurements
is, therefore, confined to waded measurements. To rectify this situation, the HS must construct
a cable way or experiment with other measurement methods to increase α and γ values. Steps
must also be taken to measure low discharge during the winter.

Thesis From these stations, it is apparent, that the proposed rating curve quality parameters
can be used to identify problematic rating curves, to prioritize scheduled discharge measurements
and aid in the decision making process, based on individual needs or desired information. The α
and β are a measure of how well the rating curve handles extreme values, floods and droughts.
This is important for the design and construction of various structures. The γ value is a
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measure how well the total discharge is defined by the rating curve. This is important to get a
better estimate of the water resource, e.g., for water supply or power production.

1.4.2 Estimates of Data Scatter

Another predictor of quality is the number and variance of discharge measurements at different
water levels, WQi

, i = 1, ..., n. The scatter of WQn
is often a problem in rating curve estimation.

The problem is to quantify the coverage of the data set over the measured span of W . In
context to the problem above, all the parameters, α, β and γ will be very high, with only one
very high measurement and one very low, in an extreme case. This is usually not the case,
although, there will often be holes in the W -Q pattern and/or clustering of data points. To
address this problem, two estimators of data integrity are introduced, each quantified with
high/low number of measurements: unified or clustered. Most cases will fall into one of these
four categories, (see Figure 1.4).
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Figure 1.4: A sample of various clustering behavior in discharge measurement data.

First, to identify clusters, sophisticated cluster analysis can be used or simple heuristic meth-
ods. One such might be to identify gaps which are larger than the average gap of the data set.
If δW = (WQmax

−WQmin
)/n is less than, for example, C(Wi+1 −Wi) for some i = 1, ..., n − 1

assuming, that the data set is sorted in increasing order and that n is at least greater than 2.
A suitable constant C, may then be chosen, for example, C = 1.5. Those gaps larger than δW
are then identified. It must be emphasized that only distances within the data set are used and
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not from the distance (gap) between WQmax
, (WQmin

) and Wmax, (Wmin), as that factor is already
incorporated into parameters α, β and γ. As the problem is to easily classify rating curves, it
may be of use to introduce as a parameter, the identified gaps as a fraction of measurement
span,

1

δW

∑

j∈A

(Wj+1 −Wj)

where

A = {j ∈ {1, 2, ..., n− 1}|C(Wj+1 −Wj) > δW} ⊆ {1, 2, ..., n− 1}.

Thesis To accurately plan discharge measurements, some measure of rating curve quality is
needed. It is not possible to improve rating curve quality if there is no basis for comparison. Two
methods are proposed and can either be used separately or in unison as they are not estimators
of the same variability. These methods provide an opportunity to define future goals concerning
rating curve quality and have the potential to become very useful for organizing and planning of
field work.
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Chapter 2

The Bayesian Approach

Estimating the parameters of the hydrological rating curve using the Bayesian approach is in
many ways feasible and easily justified. The Bayesian approach allows the incorporation of
prior information in a natural way, that is, any available scientific knowledge can be utilized,
whether it is based on theoretical knowledge, experience or auxiliary data, while the classical
or frequentist approach does not.

For the purpose of obtaining prior information about the parameters in the rating curves that
are established in this thesis, data from the Hydrological Service in Iceland are utilized. This
is the subject of Chapter 3. In this chapter an introduction to the Bayesian approach is given
along with computational techniques for numerical evaluations. Statistical models for discharge
measurements and water levels are given and it is described how the Bayesian approach can
be applied to the model that will be selected for data analysis in Chapter 4. By applying
the Bayesian approach to rating curves, the main objective of this thesis is accomplished, that
is, improving the rating curve error estimates. Due to this fact and other advantages of the
Bayesian approach, it will be proposed as the common methodology for analysis of rating curve
data.

2.1 Previous Publishings

The use of Bayesian methods for fitting rating curves, is described in a very recent paper
(2005) by Moyeed and Clarke [14]. In that paper, the importance of rating curves in virtually
all hydrological procedures concerned with flow in rivers is discussed, including rainfall runoff
models, stochastic modeling of discharge time series, flood flow estimation of flows with T -year
return periods and analysis of time series in regard to climate change.

By successfully constructing rating curves for 7 watersheds, the authors maintain that Bayesian
methods enable credible regions to be estimated for discharges and quantities derived from them.
They also claim that prior information about the nature of the rating curve can be included
into the method, and that the Bayesian approach can be extended to allow for uncertainty in
the stage measurements.

All of these findings are further established in this thesis. However, some of the key differences
between the paper by Moyeed and Clarke and this thesis are outlined in the following.

• In this thesis the prior parameter distributions are studied carefully and estimated through
in depth analysis of historical data while Moyeed and Clarke use uninformative prior
distributions (except for b).
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• Due to the lack of a thoroughly established estimated prior distribution in the paper, no
comparisons between the prior and the posterior distributions are made as is done in this
thesis.

• In this thesis, rating curve or data quality parameters are introduced and compared to
the estimated posterior distributions, providing an interesting relationship to be studied.

• To reduce correlation between the estimators for the parameters a and b, the original
model of Q = a(w − c)b, is reparameterized in this thesis. A possible new interpretation
of the parameter a results from this reparameterization.

• To account for heteroscedasticity in the data, the most current statistical model for dis-
charge measurements is used in this thesis, i.e., the heteroscedastic model introduced by
Øverleir [1].

• Residual analysis, which would likely shed light on the shortcomings of the original model,
is not performed in the paper. All of the models in this thesis are subject to rigorous
residual analysis, as well as comparative scrutiny.

• Moyeed and Clarke make no attempt to compare the Bayesian results to the results of
the current methodology. In this thesis, maximum and minimum discharge, as well as
annual mean discharge, and corresponding credible regions, are compared to the results
of a working group of rating curve experts working with the same data.

2.2 An Introduction to Bayesian Statistics

2.2.1 The Elements of Bayesian Statistics

Bayesian statistics lay on the foundations of probability theory. All unknown parameters are
treated as if they were random variables. The Bayesian approach requires a fully specified prior
distribution for these unknown parameters, and a fully specified statistical model describing the
observed data. The prior knowledge and the observed data are sources of information that the
Bayesian approach naturally combines in a probabilistic framework. Its advantage is that all
uncertainty can be taken into account, allowing for an accurate inference about the unknown
parameters. It can be considered a disadvantage that all probability distributions need to be
fully specified.

The prior distribution of the unknown parameters is formed based on historic data and on
scientific and expert knowledge. The prior distribution can be difficult to obtain and extensive
work may be necessary to achieve a satisfactory prior distribution.

The mathematical presentation of the Bayesian approach is a follows. Let X denote a random
vector that represent the data whose distribution depends on the unknown parameter vector θ.
The distribution of X given θ is denoted by f(x|θ) and is called the likelihood function. The
prior information about θ is quantified probabilistically in the prior distribution of θ which is
denoted by π(θ).

The joint distribution of X and θ is given by

π(x, θ) = f(x|θ)π(θ).
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Given that the observed data take the value x, the prior distribution of θ can be updated with
respect to the data using Bayes Theorem [15], resulting in the conditional distribution of θ
given X = x,

π(θ|x) =
f(x|θ)π(θ)

∫
f(x|θ)π(θ)dθ

∝ f(x|θ)π(θ),

which is called the posterior distribution of θ. All inference about θ is based on its posterior
distribution.

2.2.2 Markov Chain Monte Carlo based on the Gibbs Sampler and
the Metropolis–Hastings Algorithm

In most cases analytical results cannot be used to do inference on θ, one reason being that the
posterior distribution of θ is only known up to a constant, that is, the constant

∫
f(x|θ)π(θ)dθ

is not known. In the Bayesian approach, the likelihood function f(x|θ) and the prior π(θ) are
known and the fact that π(θ|x) ∝ f(x|θ)π(θ) can be utilized to obtain samples from π(θ|x).

One of the algorithm for posterior sampling is called the Gibbs sampler, also called alternating
conditional sampling, see [16] and [17] for a general discussion on the Gibbs sampler. Assume
that the vector θ has been divided into K subvectors, θ = (θT1 , . . . , θ

T
K)T . In each iteration t,

a sample of each subvector is obtained by sampling from the distribution of the subvector θj,
conditioned on the latest value of the other subvectors. Let

π(θj|θ
t−1
−j , x)

be the conditional distribution of θj given the data and the other subvectors at their current
value, denoted by θt−1

−j , where

θt−1
−j = (θt1, . . . , θ

t
j−1, θ

t−1
j+1, . . . , θ

t−1
K )T .

The Gibbs sampler is then formed by selecting initial values for θ, t = 0, and then by sampling
from the K conditional distribution for each t = 1, . . . , B, where B is the total number of
iterations. The Gibbs sampler is given by

θt1 ∼ π(θt1|θ
t−1
−1 , x)

θt2 ∼ π(θt2|θ
t−1
−2 , x)

...

θtK ∼ π(θtK |θ
t−1
−K , x).

Each of the distributions in the above Gibbs sampler can either be identified as a known
distribution which can be simulated directly from or their functional form is known up to a
constant as the posterior. In the latter case the Metropolis–Hastings algorithm can be applied
to obtain samples from the given conditional distribution.

The Metropolis–Hastings algorithm proceeds as follows for the j-th subvector of parameters,
θj, in the t-th iteration.

19



1. Sample a proposal θ∗j from a proposal distribution qt(θ∗j |θ
t−1
j ).

2. Calculate the ratio of the densities

r =
π(θ∗j |θ

t−1
−j , x)qt(θ

t−1
j |θ∗j )

π(θt−1
j |θt−1

−j , x)qt(θ
∗

j |θ
t−1)

.

3. Set θtj = θ∗j with probability min(r, 1), otherwise set θtj = θt−1
j .

In most cases it is easier to work with r on the logarithmic scale in terms of numerical compu-
tation and for analytical results. The logarithm of r is:

log(r) = log{π(θ∗j |θ
t−1
−j , x)} − log{π(θt−1

j |θt−1
−j , x)} + log{qt(θ

t−1
j |θ∗j )} − log{qt(θ

∗

j |θ
t−1)}.

The Metropolis–Hastings step is an adaptation of a random walk that uses an acceptance/rejection
rule to converge to the specified target distribution. According to [16], this acceptance ratio is
recommended to be around 40% to ensure proper convergence. This acceptance ratio is tuned
by changing the variance of the proposal distributions.

2.2.3 Parameter Estimates

The most commonly used Bayesian point estimates of a parameter vector θ are the mean
of π(θ|x) (posterior mean) and the median of the marginal distribution of each element of θ
(posterior median). However, before any estimates can be made, properties of the generated
Markov chains need to be inspected.

It is suggested by [17] and [16] to run a few (3 to 5) parallel chains. The mixing of the chains
is an indicator of how well the chains represent the posterior distribution. The mixing can be
measured with the Gelman and Rubin statistic [18], R̂. If the value of R̂ is near 1 (below 1.1)
for the chains, they are considered satisfactory, and it is said that the chains have converged and
represent a sample from π(θ|x). If the value of R̂ is greater than 1.1 for some parameters then
it is suggested to run the chains further. This evaluation should be based on visual inspection
as well.

If the Markov chains are considered satisfactory, the autocorrelation of the series is checked.
Slow convergence and strong autocorrelation implies that the parameters are still dependent
and/or that the simulation is not efficient enough.

If these criteria are fulfilled, inference about the posterior distribution can be made by col-
lecting and treating the latter part of the simulated chains as identically distributed samples
from the target distribution. The first part of the chains is not used since a burn-in period
is always needed, see [16] for evaluation of the burn-in period. And finally, point estimates of
the parameters can be computed from the simulated posterior samples, using either the sample
mean or median. In this paper the posterior mean has been chosen as the preferred point
estimate.

2.3 Statistical Rating Curve Models

The most commonly used statistical model describing the relationship between discharge mea-
surements and water level measurements is given by

Qi = a(wi − c)b + E(Qi)εi, εi ∼ N(0, σ2), i = 1, . . . , n, (2.1)

20



(e.g. [1], [14], [19] and [20]) whereQi and wi are the i-th discharge and water level measurements,
respectively, out of a total of n measurements, a, b and c are as in Section 1.3. The parameter σ2

is a scale parameter for the mutually independent errors, εi, i = 1, . . . , n. This model assumes
no measurement errors in the water level. The mean and variance of the discharge under the
model in (2.1) are

E(Qi) = a(wi − c)b, V ar(Qi) = σ2E2(Qi) = σ2a2(wi − c)2b, i = 1, . . . , n.

A functional relationship between Q and w different from Q = a(w − c)b has been applied
by Gawne and Simonovic, [21], but they proposed the Box-Cox transformation to discharge,
resulting in

Qφ − 1

φ
= β0 + β1w

when the parameter φ 6= 0 and ln(Q) = β0 + β1w otherwise.
The model in (2.1) was extended by Øverleir [1], by introducing a more flexible model for the

variance of Q, namely, a model of the form

Qi = a(wi − c)b + Eψ(Qi)εi, εi ∼ N(0, η2), i = 1, . . . , n. (2.2)

The mean and variance of the discharge under the model in (2.2) are

E(Qi) = a(wi − c)b, V ar(Qi) = η2E2ψ(Qi) = η2a2(wi − c)2bψ, i = 1, . . . , n.

The effect of the parameter ψ is such that if ψ = 1 then the model in (2.2) is the same as the
model in (2.1), while if ψ approaches zeros, the variance of Q approaches a constant. Values of
ψ larger than one, imply larger variance for Q for large w relative to smaller values of w.

Due to dependence between estimators for the parameters a and b induced by the likelihood
function (see Chapter 3), we propose a reparameterization of a of the form

a = exp(α0 + α1b+ ε),

introducing the parameter ε instead of a. The parameters α0 and α1 are constants. Their
values are found in Chapter 3. Further, by reparameterizing with the parameter τ 2 instead of
η2 where

τ 2 = η2a2ψ,

the model in (2.2) can be rewritten as

Qi = exp(α0 + α1b+ ε)(wi − c)b + (wi − c)bψεi, εi ∼ N(0, τ 2), i = 1, . . . , n. (2.3)

The mean and variance of the discharge under the model in (2.3) are given by

E(Qi) = exp(α0 + α1b+ ε)(wi − c)b, V ar(Qi) = τ 2(wi − c)2bψ, i = 1, . . . , n.

The statistical model in (2.3) will be used to analyze the data described in Chapter 4.
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2.3.1 Posterior Inference through Markov Chain Monte Carlo (MCMC)

Here the posterior distribution of (ε, b, c, ψ, τ 2) in (2.3) is derived and the corresponding Gibbs
sampler is given. Let qi denote the i-th observed discharge. Further, let q = (q1, . . . , qn)

T and
w = (w1, . . . , wn)

T . Then the model in (2.3) provides a likelihood function given by

f(q|ε, b, c, ψ, τ 2, w) =
n∏

i=1

1√
2πτ 2(wi − c)2bψ

exp

[
−
{qi − eα0+α1b+ε(wi − c)b}2

2τ 2(wi − c)2bψ

]
.

The prior distribution for the parameter vector (ε, b, c, ψ, τ 2) is formed by assuming that the
five parameters are independent. Let π(ε), π(b), π(c), π(ψ) and π(τ 2) denote the independent
prior distributions of ε, b, c, ψ and τ 2, respectively. The exact form of these prior distributions
is given in Chapter 3 and they are utilized in the data analysis in Chapter 4. The posterior
distribution of (ε, b, c, ψ, τ 2) is given by

π(ε, b, c, ψ, τ 2|q, w) ∝ f(q|ε, b, c, ψ, τ 2, w)π(ε)π(b)π(c)π(ψ)π(τ 2).

To generate a sample from the posterior distribution of (ε, b, c, ψ, τ 2), the following Gibbs sam-
pler is used to iterate from the following conditional distributions.

π(ε|b, c, ψ, τ 2, q, w) ∝ f(q|ε, b, c, ψ, τ 2, w)π(ε)

π(b|ε, c, ψ, τ 2, q, w) ∝ f(q|ε, b, c, ψ, τ 2, w)π(b)

π(c|ε, b, ψ, τ 2, q, w) ∝ f(q|ε, b, c, ψ, τ 2, w)π(c)

π(ψ|ε, b, c, τ 2, q, w) ∝ f(q|ε, b, c, ψ, τ 2, w)π(ψ)

π(τ 2|ε, b, c, ψ, q, w) ∝ f(q|ε, b, c, ψ, τ 2, w)π(τ 2)

In the above Gibbs sampler Metropolis–Hastings steps were needed for all parameter except for
τ 2. The components of the Gibbs sampler as well as the Metropolis–Hastings steps are derived
in A.3.

To ensure robustness of the method, the model was extensively tested on generated data
with known parameters. Three data sets were generated and then the point estimates were
compared to the real parameters. Two of the data sets were chosen to test extreme values and
the third was chosen to represent ordinary data.

2.3.2 Prediction Intervals for the Discharge Measurements

Assuming that the data follows the normal model described in (2.3), an estimate of a 100(1−α)%
prediction interval for discharge measurements given that the water level is equal to w ′, is given
by

exp(α0 + α1b̂+ ε̂)(w′ − ĉ)b̂ ± zα/2τ̂(w
′ − ĉ)b̂ψ̂

where ε̂, b̂, ĉ, ψ̂ and τ̂ are the posterior means of ε, b, c, ψ and τ , respectively, and zα/2 is the
100(1 − α/2)% percentile of the standard normal distribution.
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2.3.3 Credible Regions for the Rating Curve

To eliminate autocorrelation from the posterior distribution and to decrease program run time,
the posterior distribution is sampled once every 100 values. As the generated posterior dis-
tribution consists of 5 series of 50.000 values, this results in a subset posterior distribution of
2500 values. An estimated credible region for the rating curve is then created by sampling
all the parameters over their whole respective subset posterior distribution. This is done over
the whole range of the measured water levels, i.e., from Wmin through Wmax in 1 cm intervals,
generating a distribution of 2500 discharge values for each water level. From those discharge
distributions the 2.5%, 25%, 50%, 75% and 97,5% percentiles and a 95% credible regions, are
easily estimated.

2.3.4 Credible Regions for the Mean Discharge

A similar approach as in Section 2.3.3 is used to estimate credible regions for the annual mean
discharge. A water level time series contains N values, in this case, daily average values for one
year, so N equals 365. For each water level value, a discharge value is generated by sampling
all the parameters over their respective subset posterior distribution. This, in turn, results in
a distribution of 2500 discharge values for each water level. The average for each water level is
then calculated and gathered into a distribution of mean discharge values corresponding to the
water levels in the time series. A sample mean and percentiles are then calculated from that
posterior sample, resulting in a point estimate (the posterior mean) and credible region for the
annual mean discharge.

2.3.5 Credible Regions for the Maximum and Minimum Discharge

In case of the annual maximum and minimum discharge a similar approach as in Sections 2.3.3
and 2.3.4 is applied. The maximum (minimum) water level is found within each annual time
series and posterior samples of the corresponding discharge are computed. A sample mean and
percentiles are then calculated from that posterior sample, resulting in a point estimate (the
posterior mean) and credible region for the annual maximum (minimum) discharge.
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Chapter 3

The Data and a priori Estimates

The proposed Bayesian model is based on prior information adapted from pure academic studies,
experience and standard practice. The model parameters, are the previously discussed, (see
Section 1.3.2), a, b and c (see Section 1.3, and the parameters ψ and τ 2 that are introduced in
Section 2.3.

For all rating curves, the values of a, b and c, are kept in flat files in the HS database. All data,
however, was converted into cm from m before any comparisons began. Only single segment
rating curves were considered to keep model complexity under control. The method should,
however, be relatively easy to modify in order to deal with more complex rating curves.

In order to use the best data available, only the most recent rating curve estimate for each
monitoring station was used. Finally some rating curves were dropped due to data abnormali-
ties. The collection of rating curve estimates given by the vector (â, b̂, ĉ) is shown in histograms
and scatter plots in Figure 3.1.

In Figure 3.2 normal probability plots of ln(â), b̂ and ĉ are shown. The estimates for ln(â)
appear to be normally distributed while b̂ and ĉ show some deviation from normality, especially
in the tails.

3.1 The Prior Distributions

While the data sets may seem rather noninformative, an obvious bell shaped curvature can be
seen in all cases. A strong negative correlation between ln(a) and b is also observed. This can
be expected, if b increases, a must decrease in order to keep the same scale. Furthermore, there
is little indication of a long tail, typically associated with gamma or log normal distributions.

3.1.1 The Prior Distribution of the Parameter a

The data for the parameter a needs to be transformed with the natural logarithm to obtain
a distinct bell shape and normality. The proposed prior distribution for ln(a) is a normal
distribution with mean µln(a) = −6.60 and standard deviation σln(a) = 4.10. These values are
based on the data on â described above, that is,

π(ln(a)) = N(µln(a), σ
2
ln(a)),

µln(a) = −6.60,

σln(a) = 4.10.
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Figure 3.1: The collection of parameter estimates from the HS database. On the diagonal are
the histograms of the parameter estimates, for each parameter ln(a), b and c. The off-diagonal
graphs show scatter plots of the parameter estimates, revealing their dependence. It can be
seen that the only parameters that are dependent are b and ln(a), which seem to have a strong
linear dependency.

3.1.2 The Prior Distribution of the Parameter b

The data for the parameter b has a sharp top at a value centered around 2 as would be expected
based on channel shape arguments, (see Section 1.3.2). The parameter b must be positive and
it is known that values above 3 and below 1 occur very rarely. Experience also shows that
higher values found in the data, in some cases up to 16, are almost without exception wrong
and always unusable for prediction. Large values of b have, therefore, been omitted from the
prior distribution by capping it at b value of 5. The values of 0.5 and 5 are chosen so as not to
disregard the possibility of b values as small as 0.5 or as large as 5, however unlikely they may
be.

Based on the above arguments and data on b̂, the prior distribution for b is proposed to be
a normal distribution with the sample mean µb = 2.15 and standard deviation σb = 0.75 and
with cut-off values are at 0.5 and 5, that is,

π(b) = N(µb, σ
2
b ), 0.5 < b < 5,

µb = 2.15,

σb = 0.75.
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Figure 3.2: Normal probability plots of the data, parameters ln(a), b and c.
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Figure 3.3: Top: A histogram of the estimates of a. Center: Normally distributed random
samples based on the proposed prior distribution of a. Bottom: A smooth representation of
the Gaussian kernel density of the estimates of a.
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Figure 3.4: Top: A histogram of the estimates of b. Center: Normally distributed random
samples based on the proposed prior distribution of b. Bottom: A smooth representation of
the Gaussian kernel density of the estimates of b.

The Relationship of ln(a) and b

If the rating curve equation is log transformed, the following is valid,

ln(Q) = ln(a) + b ln(w − c)

revealing that ln(a) and b would have a strong negative linear correlation. This is due to the fact
that in simple linear regression, the estimator for the intercept, (ln(â)), is negatively correlated
with the estimator for the slope, (b̂) when the center of the variable, (ln(w − c)), is positive.
The correlation between the parameter estimates, denoted by ρln(a),b, is estimated as -0.979
based on the collection of (ln(â),b̂) values, (see Figure 3.5).

It is, therefore, proposed that ln(a) and b have the following joint normal distribution.

π(ln(a), b) = N2(µ,Σ)

=
1√

(2π)2|Σ|
exp{−

1

2
(x− µ)′Σ−1(x− µ)}

x = [ln(a); b]

µ = [µln(a);µb]

Σ = [σ2
log(a), σlog(a)σbρln(a),b;σlog(a)σbρln(a),b, σ

2
b ]

This on the other hand causes some problems regarding proper distribution sampling, mainly
due to dependencies. The dual nature of a has not been addressed, yet it has to be taken into
consideration. One aspect of a is to properly scale the equation to fit the measured discharge
and the other is to properly balance the equation with regard to the parameter b. By using
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Figure 3.5: The estimated joint distribution of ln(a) and b.

the following parametrization, based on the linear correlation of the two parameters, this dual
nature is easily observed. This has many advantages, simplifying the correlation of a and
b while portraying the two meanings of a in understandable terms, scale and balance. The
reparameterization is given by

ln(a) = α0 + α1b+ ε

ε = N(µε, σ
2
ε )

a = exp(α0 + α1b) exp(ε)

where ε is the parameter to be estimated, instead of the parameter a. The parameter ε can be
considered as the scale term of ln(a) while α0 + α1b as the balance term. The parameters α0

and α1 are constants, and are estimated from the collection of (â, b̂) estimates as

α0 = 4.9468,

α1 = −5.3726.

This reparameterization of a is used in the extended reparametrized model (see Section 2.3).

As could be expected, the ε parameter appears to be normally distributed around a mean of
zero, although considerable deviation from normality near in tails is observed. The proposed
prior distribution of ε is

π(ε) = N(µε, σ
2
ε ),

µε = −0.2,

σ2
ε = 3.829 · 10−7.

and shown in Figure 3.7. Using this reparameterization, the model is composed of approxi-
mately independent components, making the Gibbs sampler more efficient (see Section 2.2.2)
[16].
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Figure 3.6: Results from the linear fit of ln(a) and b data. Upper left: The linear fit of ln(a)
and b Upper right: A normal probability plot of the residuals. Lower left: A histogram of
the residuals. Lower left: The standardized residuals and three standard deviation intervals.
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Figure 3.7: Top: A histogram of the estimates of ε. Center: Normally distributed random
samples based on the proposed prior distribution of ε. Bottom: A smooth representation of
the Gaussian kernel density of the estimates of ε.

3.1.3 The Prior Distribution of the Parameter c

The parameter c is a fully dependent on the choice of the coordinate system. Simply, it is
at a relative height to 100 cm in the case of the HS. The depth gauge and coordinate system
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should be calibrated so that c is never less than 100 cm, which means the depth sensor is
always immersed. This is always attempted, though, almost never achieved. As can be seen
from Figure 3.8, the c value is usually between 0 an 100 cm but other values do occur. The c
value can quite possibly be less than zero, in that case, the bottom is at a negative height in
the given coordinate system.

The estimation of the distribution of the c data was not straight forward. When the data
is examined a large spike of c values is discovered at exactly zero. If that was true, each of
those gauges were placed precisely at 1 meter above the river bottom. This explanation is of
course not feasible. When examined thoroughly, each of these rating curves was indifferent to
the actual value of c. This, in turn, is hypothesized to be a human element, to choose zero
before other values when the opportunity presents itself. The theory is that the optimization
algorithm used at the HS, in some cases, submits a very flat solution space. The user proposes
a c value and linear regression based on least squares is applied to ln(q) and ln(w − c), to find
optimal a and b values. In these cases, the optimal a and b values are, therefore, indifferent to
the actual proposed value of c. This enables the user to prefer the lowest value parameter that
satisfies the optimization conditions. In conclusion, all these zero values were estimated to be
values in the vicinity of zero rather than precisely zero.

Given the arguments above and the collection of estimates of c (see Figure 3.8), the proposed
prior distribution for c is a normal distribution with mean µc = 73.95 and standard deviation
σc = 49.77, that is,

π(c) = N(µc, σ
2
c ),

µc = 73.95,

σc = 49.77.

For a given data set (q,w) the prior of c is affected by wmin, since in theory, c can never be
greater than wmin. Thus, for each data set (q,w), the prior of c is the above normal prior of c
for values of c below wmin but equal to zero for values of c above wmin.

3.1.4 The Prior Distribution of the Parameter ψ

The parameter ψ is a measure of how the errors behave as a function of the expected discharge
which is proportional to (w − c)b. If ψ equals one, then the standard deviation of the errors
is exactly proportional to the discharge. If ψ is less than one, the errors decrease relative to
the expected discharge and if ψ is greater than one the errors increase relative to the expected
discharge. This parameter is generally less than one [1] but no data is available to form the
prior distribution of ψ. In order not to narrow the choices available, while keeping the value of
ψ reasonable, the proposed prior distribution is a normal distribution with a mean of µψ = 0.8
and standard deviation σψ = 0.25 with cut-off values at 0.1 and 1.2, that is,

π(ψ) = N(µψ, σ
2
ψ), 0.1 < ψ < 1.2,

µψ = 0.8,

σψ = 0.25.
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Figure 3.8: Top: A histogram of the estimates of c. Center: Normally distributed random
samples based on the proposed prior distribution of c. Bottom: A smooth representation of
the Gaussian kernel density of the estimates of c.

3.1.5 The Prior Distribution of the Parameter τ 2

The parameter τ 2, a function of a and ψ, is a measure of the variance of the errors, relative
to (w − c)2bψ. This parameter is fundamentally based on the data set itself and hard to
generalize with a prior distribution. It is not desired to predetermine the variance in the data
set by establishing an informative prior distribution. Therefore, an improper (non-informative)
inverse gamma distribution is proposed. Its conjugacy with the normal distribution makes
this the only parameter that can be sampled directly from a proper distribution, eliminating
the need for a Metropolis–Hastings step (see Section 2.2.2). The prior distribution of τ 2 is,
therefore, given by,

π(τ 2) = IGam(ατ2 , βτ2),

ατ2 = −1,

βτ2 = 1020.

An improper inverse gamma prior with the α parameter equal to -1 was used in [22], but
they set the β parameter equal to 100. In this thesis, a very large value of β was needed since
the scale of τ 2 can be very small.
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Chapter 4

Case studies

4.1 Nordic Cooperation

The Nordic countries have a formal agreement of cooperation under the acronym CHIN (Chiefs
of The Hydrological Institutes in the Nordic countries).

The Nordic hydrological institutes have worked together on various issues for a long time.
This cooperation has, for example, taken form in workshops that are scheduled to investigate
various issues concerning hydrological research. Leading experts from each institute are assigned
to these work groups. In the late 1990’s, a working group on rating curves was founded. The
group published a paper on the uncertainties in the rating curve estimation process in August
2002, [2].

4.2 The CHIN Rating Curve Work Group

The experiment described in the CHIN paper, [2], was an attempt to estimate the methodolog-
ical and personal uncertainties involved in establishing rating curves. Two gauging stations in
each of the five Nordic countries were chosen for the experiment and discharge measurement
data, water level and discharge, were sent to the other countries. Each country then estimated
a rating curve for each of the ten data sets using the particular methodology used in that
country. Average daily water level data from three years of record at each station (dry year,
normal year and wet year), along with the highest and lowest annual water level for the entire
recording period at each station, were also sent to each of the other countries so the rating
curves could be applied to the water level data for comparison. Regrettably, the Swedish data
were later found to be erroneous and were, therefore, not used in this research.

Table 4.1 shows some of the characteristics of the different stations, where the last column
shows the ratio between the highest measured discharge Qmax and the discharge QWmax

, corre-
sponding to the highest water level, Wmax (see Section 1.3.2). A low value of this ratio means
that the rating curve is extrapolated and one would expect to have some differences in the
rating curves for high discharge. The rivers are of several types with very different watershed
areas and the discharge data includes quite a variation in the ratio Qmax/QWmax

. The stations
are also mapped in Figure 4.1.

Each country established rating curves for each of the ten stations using the discharge mea-
surements and converted all the water level data to discharge. The resulting discharge data
were then compared and analyzed. This comparison was carried out for average values and for
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Table 4.1: The rivers that were chosen for extensive study by the CHIN group. Each river
is defined by the size of its watershed area and the makeup of its runoff. Qmax is the highest
discharge measured in an actual current meter measurement and QWmax

is the highest discharge
as calculated from the highest recorded water level at the particular station [2].

Case Station Name Area Description Ratio
(km2) ( Qmax

QWmax

)

Case 1 DK_1 Skjern å 1055 Spring fed, natural, 1% lakes 0.41
Case 2 DK_2 Odense å 302 Mixed runoff, natural, 2% lakes 0.38
Case 3 FI_1 Lake Lannevesi 291 Outcome of lake, natural, 11% lakes 0.45
Case 4 FI_2 Lake Vahvajarvi 3510 Outcome of lake, natural, 22% lakes 0.63
Case 5 IS_1 Skjálfandafljót 1863 Mixed runoff, natural, 7% glacier 0.61
Case 6 IS_2 Fnjóská 1132 Direct runoff, natural 0.33
Case 7 NO_1 Gudbrandsdalslågen 11087 Large inland river,

somewhat regulated, partly mountains 0.65
Case 8 NO_2 Kjerring-åga 16 Direct runoff, natural,

mountain river, 17% lakes 0.14

Figure 4.1: A map of the studied gauging stations, 2 stations in each country: Denmark,
Finland, Iceland, Norway and Sweden [2].

high values of discharge [2]. Their results, that is the annual mean discharge values for seven
stations and the estimates of highest and lowest discharge, are shown in Appendices C.2 and
C.3.
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4.3 Reenacting the CHIN Experiment using the Bayesian
Approach

The data in the CHIN experiment as well as the results are essential for an effective comparison
and were readily available and applicable. The focus of the original experiment was to create a
varied sample of actual data, carefully selected by hydrological experts and the results are based
on each country’s standard method of rating curve construction. Therefore, the experiment was
duplicated using the same data with the Bayesian approach model and the results compared
and discussed. The importance and value of this comparison can not be emphasized strongly
enough.

In this thesis, rating curves were constructed for each of the eight survey stations using the
reparametrized model in (2.3) and the Bayesian approach, discharge measurement data and the
maximum and the minimum recorded water level, (see Appendix C). Then, the rating curve
is used to convert the three water level time series for each station to discharge time series.
Finally, some key values are extracted from the discharge time series including annual mean
values and maximum and minimum discharge.

One notable key difference between the Bayesian approach and classical statistics, is the
ability of the Bayesian approach to provide accurate credible regions for any function of the
parameters. A 95% credible region for each of the rating curves is constructed and exercised
on the water level time series, resulting in credible regions on the discharge time series and the
annual mean values. These credible regions are then compared to the results of the original
experiment. Also, 95% prediction intervals for the discharge measurements are implemented
and shown.

4.4 Detailed Case Studies

It is not possible to present all the results from each station in this chapter. However, some
characteristic results have been chosen for presentation from each station. Therefore, one case
is shown in its entirety and the results from all the others collected into Tables C.1 through
C.21 and Figures C.1 through C.70. To conclude the chapter, all of these results are discussed
thoroughly at the end of this section.

For the showcase scenario the Icelandic river Fnjóská, station IS_2, was chosen. The relative
discharge measurement data set is shown in Figure 4.2. The rest of the CHIN data is shown in
Figures B.1 through B.7 and other relative data is shown in Appendix B.

Table 4.2: The α, β values and the number of discharge measurements for Case 6
Station no. 2 in Iceland

α value 0.6104
β value 0.8458

Number of discharge measurements 34

As noted in Chapter 2, the Bayesian approach allows two sources of information to be combined,
namely, the data and prior knowledge. The result is the posterior distribution of the model
parameters which contains the updated information about the parameters. From that posterior
distribution, various quantities and the respective credible regions can be derived.
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Figure 4.2: Upper left: The rating curve data for Fnjóská, station IS_1. Upper right: The
dry year water level time series. Lower left: The normal year water level time series. Lower
right: The wet year water level time series.

The first step in the Bayesian approach is to establish the following key distributions and
functions

• The prior distributions (see Chapter 3 and Appendix A.1)

• The conditional distributions (see Appendix A.3)

• The likelihood function (see Appendix A.2)

Then, using nonlinear optimization on the discharge and water level data set, WQn
(see Section

1.3.2), optimal starting values for the parameters are obtained, usually referenced as θ0. Also
needed, are the absolute maximum and minimum water level measurements from the gauging
station. These values are used to know how far up and down the rating curve needs to be
extrapolated. Furthermore, the c parameter prior distribution depends on the minimum value,
as c cannot be greater than Wmin.

The next step is to find the value of the tuning parameter that gives an acceptance ratio
around 40% (see Section 2.2.2). This is done for all the parameters, one at time, while the
other parameters are kept at their respective θ0 value. Three Markov chains of length 10.000
each are generated over a large, decreasing interval of tuning parameters. This interval usually
spanned from 1 to 10−10 in multiples of 10−1. By graphing the acceptance ratio as a function of
these proposed tuning parameters it is relatively easy to estimate the tuning parameter value
that gives the desired acceptance ratio. When all the tuning parameters have been estimated,
it is possible to run the MCMC algorithm for all of the model parameters simultaneously.
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It was decided to generate 5 chains of length 200.000 values each, for the final estimate with
the MCMC algorithm, using random values around θ0 as initial values (see Figure 4.3).
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Figure 4.3: From left to right: b, c, ln(a), ψ, τ 2 and ε. The generated Markov chains for
each parameter converging to the mode of the posterior distribution from their respective initial
value.

For the Markov chains, a burn-in period was defined as 75%, due to the possible correlation
of the parameters and relatively slow convergence. This means that the first 75% or 150.000
values, of the chains are removed and the last 25% or 50.000 values of each Markov chain (see
Figure 4.4), are used and combined into a series of 250.000 values. These values are defined to
be random samples of the target posterior distribution, if all requirements are met.
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Figure 4.4: From left to right: b, c, ln(a), ψ, τ 2 and ε. The mixing of the Markov chains
after the burn-in period.

Histograms of these series reveal the marginal posterior distributions of the parameters (see
Figure 4.5).

Figures 4.6 and 4.7 show the comparison of the prior distribution to the marginal posterior
distribution for b, c, ε and ψ. It is interesting to note how small the dispersion of the posterior
distributions is. This points to the relative accuracy of these parameter estimates.
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A key requirement, is that the R̂ statistic (see 2.2.3) is less than 2 and as near to 1 as possible.
One way to reach lower values of R̂ is to generate longer chains. Due to long computing times,
each case requiring around 24 hours of run time using Matlab on a Unix server, 200.000 values
were deemed to be sufficient to reach proper convergence with acceptable R̂ values (see Table
4.3).

Table 4.3: A compilation of the parameter estimates based on the Fnjóská data.
Station no. 2 in Iceland ε b c a ψ τ 2

Nonlinear estimate 0.990 2.023 71.587 7.2e-003 - 1.2e-007
Parameter estimate, mean 0.965 2.197 64.555 2.8e-003 0.208 5.9e-002

Parameter estimate, median 0.963 2.201 64.368 2.8e-003 0.213 7.2e-002
Acceptance ratio 0.45 0.44 0.40 - 0.53 -

R̂ ratio 1.26 1.38 1.38 - 1.14 1.08
Tuning parameter 7e-006 5e-007 1e-001 - 5e-005 -
2.5% percentile 0.922 2.108 59.236 1.4e-003 0.153 9.1e-003
25.0% percentile 0.951 2.166 62.987 2.3e-003 0.186 3.5e-002
50.0% percentile 0.965 2.197 64.555 2.8e-003 0.208 5.9e-002
75.0% percentile 0.976 2.231 65.958 3.3e-003 0.234 9.5e-002
97.5% percentile 0.998 2.311 68.690 4.6e-003 0.302 2.1e-001

Skewness -0.263 0.311 -0.324 0.583 0.734 4.050
Kurtosis 3.53 3.06 3.14 3.93 3.65 3.65

Standard Deviation 1.9e-002 5.1e-002 2.4e+000 8.0e-004 3.7e-002 5.7e-002

In Table 4.3, the final acceptance ratios can be observed, as well as the shape parameters for
the posterior distributions. From those shape parameters, skewness and kurtosis, deductions
about the posterior distributions can be made. In most cases, the normal distribution form is
observable, estimated with a kurtosis value around 3. The skewness of each distribution should
be around 0 if it is approximately symmetrical around its mean (or median). In this case (
actually, in all of the cases), all of the posterior distributions except the τ 2 distribution are
approximately normal. As might have been expected (see Appendix A.3.5), the τ 2 distribution
has the form of an inverse gamma distribution.

From these posterior distributions, the mean and median of each distribution, are estimated.
The 2.5%, 25%, 75% and 97.5% percentiles are also estimated. All of these estimates are shown
in Table 4.3. It is obvious that the difference between using the mean or the median of the
distributions, is negligible, except for τ 2.

The resulting rating curve, using the parameter estimates, is shown in Figures 4.8 and 4.9.
Figures 4.8 and 4.9 also show the approximate 95% prediction intervals for new discharge

measurements and a 95% credible region for the rating curve. The discharge measurements are
comfortably within the prediction interval, furthermore, it is worth noting that the ψ value in
this case is very low, or around 0.2. This indicates that the variance is not directly relational
to the discharge, rather that it seems to be equally distributed over the range of measurements,
(see Figure 4.9).

This is confirmed by the residuals as, there are no apparent trends in the standardized
residuals shown in Figure 4.10 and almost all of them fall within 2 standard deviations.

However, their normal behavior is further established by the normal probability plot in Figure
4.10 and the histogram of the residuals. It must be noted that sometimes, residual trends are
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prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the whole range of water levels is shown, Wmin through
Wmax.

20 40 60 80 100 120 140 160 180

120

140

160

180

200

220

Discharge in m3/s

W
at

er
le

ve
l i

n 
cm

Bayesian rating curve, mean
Bayesian rating curve, median
95% prediction interval
95% credible region
Discharge measurements

Figure 4.9: The estimated rating curve using the parameters a, b and c in Table 4.3. Approx-
imate 95% prediction intervals for the discharge measurements are shown, as well as the 95%
credible regions for the rating curve. Here, the range of water levels shown is, Qmin through
Qmax.

only explained with, either, the lack of multiple segment rating curves or detailed shift analysis
with respect to time.

In the case of the river Fnjóská, the rating curve model in (2.3) appears to fit the data
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adequately well, judging by residual analysis and a subjective estimate of the rating curve
itself.
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The mean annual discharge is calculated by generating the estimated discharge with 2500
samples from the posterior distributions. 95% credible regions for the mean annual discharge
were estimated with 2.5% and 97.5% percentiles. This mean annual discharge value is compared
to the results of the Nordic countries in Table 4.4 and in Figure 4.11.

These results, gathered with the results from the other stations, indicate that if the data set
adequately covers the range of water level, the subjective differences of the countries’ methods
are reduced. This coverage can be judged by the proposed rating curve quality parameters
α and β. Using the proposed γ value in conjunction with these parameters would have been
optimal. Hence, as these values are relatively high in this case, the difference is small and the
CHIN results fall comfortably within the 95% Bayesian credible regions.

Table 4.4: The estimated annual mean discharge based on the Fnjóská data.
Station no. 2 in Iceland DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Dry year 30.3 30.6 30.8 30.3 30.0 29.86 30.28 30.39 30.50 30.89
Normal year 38.9 41.0 39.4 38.9 38.7 38.45 38.92 39.03 39.15 39.62

Wet year 51.4 57.7 51.4 51.3 51.4 50.96 51.56 51.72 51.89 52.51
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Figure 4.11: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the annual mean discharge for three years. Top Dry year. Middle Average
year. Bottom Wet year.
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Finally, the maximum and minimum values were estimated with 95% credible regions and
compared to the CHIN results. This is shown in Table 4.5 and Figure 4.12. Here, considerable
differences are observed. Due to the low α value, extensive extrapolation of the rating curve is
needed. Therefore, even apparently small differences between the various rating curves become
quite large at the extreme value ofWmax. The Finnish results are far outside the credible regions.
The Norwegian and Icelandic are of a similar value, yet outside the intervals. However, if similar
intervals were to be estimated for these results, it is likely that the respective intervals would
intersect.

In the case of the minimum values, however, all but the Finnish results fall within the Bayesian
95% credible regions.

Two conclusions may be made from these facts, the Finnish method differs substantially from
the other methods in this case and the Bayesian method does not seem to give different results
than the Nordic results.

Table 4.5: The estimated maximum and minimum discharge values based on the Fnjóská data.
Station no. 2

in Iceland DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Highest
calculated
discharge 758.9 1371.1 697.0 701.6 780.0 747.99 768.36 778.27 790.09 814.70
Lowest

calculated
discharge 5.5 8.8 6.2 6.2 5.6 5.22 5.60 5.78 5.98 6.38
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Figure 4.12: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the maximum and minimum discharge. Upper: The maximum discharge.
Lower: The minimum discharge.
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4.5 General Discussion and Comparison of the Results of
the Case Studies

The detailed analysis above is used, as a basis for a general analysis of all the case studies.
Both, successful implementation and failures of the methodology are evaluated and points of
interest are emphasized. For comparative purposes, the results are supported by respective
figure types, e.g., rating curves, residuals, distributions and so on.

• The discharge data Overall, the data is relatively consistent in nature and a power
function shape is observed. Also, variable data scatter and clustering behavior is notice-
able.

• The α and β values These values were higher than one might expect, however, it is
probable that the data was chosen in various ways and does not necessarily represent all
data from the countries. A definite outlier is the Norwegian data, with extremely low
α and β values, both less than 0.3. Both of the Danish data sets, on the other hand,
are especially well bounded, with both values higher than 0.9. It should be noted that
there is a positive linear correlation of high α and β values and the number of discharge
measurements in the data set.

• The water level time series The time series are very similar for all the cases and the
annual difference in daily discharge values can be compared to the runoff type of each
river and the discussion in Section 1.2.3.

• The prior distributions For the parameters ε, b, ψ and τ 2, the prior distributions are
the same for all the cases. The prior distribution for c depends on the respective Wmin

for each data set, for visualization of the prior of c, see Figure 4.6.

• The Markov chains All of these chains reach an obvious convergence. In some cases,
however, the convergence is more apparent due to the difference of the posterior para-
meter estimate and the original nonlinear parameter estimate. These are sometimes very
different and this difference can be observed in, e.g., Figures C.3 and C.11.

• The Markov chain mix It is hard to see any difference in these figures as the R̂ value
has reached a value close to 1 in almost all of the cases.

• The posterior distributions For all the cases, the posterior distributions are very
well defined and the dispersion is very small. In Case 2 (see Figure C.13), the posterior
distributions have two peaks, indicating that the model is not modeling the data properly.
One hypothesis might be that a shift in the rating curve manifests in this way and possibly
that the data set might be split into two separate rating curves. This hypothesis, however,
is not researched any further. It is also possible that longer chains are required in this
case, as the R̂ values are still rather high.

When the posteriors are coupled with their respective prior distributions, the difference is
quite visible. The posteriors are well defined and do not seem to be overly influenced by
the priors. I.e., the posteriors do not follow any predictable patterns such as converging
consistently around the mean of the prior distribution, rather, are clearly defined subsets
within the prior distribution boundaries.
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Another abnormal behavior regarding the posterior distributions is seen in some of the
τ 2 distributions. It seems that, instead of forming a bell shaped distribution, the density
gathers around the zero boundary. This behavior is recognizable in Figures C.37 and
C.53. This can, however, be explained with inadequate scaling in the figures.

• The rating curves The comparison of different rating curves is possibly the most subjec-
tive aspect of this discussion. Quite often, this subjective approach results from a hunch,
based on the "feel" or the "look" of the rating curve. Does the rating curve "seem" to fit
the data and so on.

This thesis offers many ways of reducing this subjectivity, in the form of simple graphs
and clearly defined credible regions and prediction intervals to aid in the decision making
process. A closer look at the rating curves, supported by residual analysis, follows.

– Rating Curve 1, Figures C.1 and C.2
The rating curve seems to fit the data well, almost every single measurement falls
within the prediction intervals. There are, however, outliers at both ends of the
rating curve. Because the residuals are symmetrical around zero, this might be
considered acceptable. However, these outliers, when standardized, exceed not only
three standard deviations but four, (see Figure C.6). This reduces the validity of
the model and it is further undermined by the normal probability plot. Strange
trends are also observed in the standardized residual plot. All these clues point to
the conclusion that this rating curve does not sufficiently model the data.

– Rating Curve 2, Figures C.9 and C.10
When this rating curve is observed, its obvious lack of fit is apparent. As before, the
mass of discharge measurements falls within the prediction intervals. However, the
higher the discharge, the further the measurements fall from the rating curve. In this
case, the standardized residuals are not even symmetrical around zero. Coupled with
the information derived from the normal probability plot and the aforementioned
dual peak nature of the posterior distributions, this rating curve does not model the
data in an acceptable way. It seems likely that another segment rating curve with
an apparent break point around 8 m3/s is needed.

– Rating Curve 3, Figures C.17 and C.18
Here, the rating curve fits the data acceptably, one measurement might be considered
an outlier as its standardized residual exceeds two standard deviations. The residuals
are symmetrical around zero mean and seem to be normally distributed. It must be
noted, that, the standardized residual plot is a better estimator of normality than
the normal probability plot when n (the number of measurements) is as low as in
this case, n=10.

– Rating Curve 4, Figures C.25 and C.26
This rating curve fits all criteria, normally distributed residuals, all within the pre-
diction intervals and clearly defined posterior distributions. If the largest observation
is left out, a potential trend is observed.

– Rating Curve 5, Figures C.33 and C.34
Here, the rating curve fits the data acceptably, three measurements might be consid-
ered outliers as their standardized residuals barely exceed two standard deviations.
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Even so, one in twenty measurements can be expected to be, on the average, outside
the 95%interval. The residuals are symmetrical around zero mean and seem to be
normally distributed.

– Rating Curve 6, Figures C.41 and C.42
This rating curve fits the data very well, two measurements might be considered
outliers as their standardized residuals barely exceed two standard deviations. The
residuals are symmetrical around zero mean and seem to be normally distributed.

– Rating Curve 7, Figures C.49 and C.50
This rating curve models the data successfully, only one measurement might be con-
sidered an outlier and due to the inherent properties of the 95% prediction interval,
on average, 5 of every 100 measurements will not fit within the interval. Some
trend in the standardized residuals is noticeable. On the other hand, the residuals
seem to be normally distributed around zero mean and the model, therefore, deemed
acceptable.

• The annual mean discharge estimates The CHIN results for annual mean discharge
usually fall relatively close to and symmetrically around the 95% Bayesian credible regions
or often within them. Even though, both of the Bayesian rating curves for the Danish
data do not model the data efficiently, the annual mean estimates seem to fall, if not
within the credible regions, symmetrically around them. It must be noted, that these
intervals are very narrow and the fact that nearly all of these estimates fall within them
is very important.
It can be hypothesized that almost any given rating curve that passes through the data
set will fall within these intervals, as the difference between the various rating curves,
would be very small for each daily value. The magnitude of the means, therefore, are
always relatively similar.
The fact of the matter, however, is that the subjectivity of the various methods used by
the different countries is negated with these Bayesian intervals. It is, therefore, possible to
estimate the annual mean discharge objectively. This is the main result of this comparison
and must be emphasized.

• The maximum and minimum discharge estimates In this case, the extreme values
for each station are compared to Bayesian credible regions. It must be emphasized, that
any notable difference in the parameter b value will result in vastly different discharge
estimates if the rating curve needs to be extrapolated far. Furthermore, it is not optimal,
to compare the single segment Bayesian rating curve used here, to the multiple segment
rating curves that are used in some cases for the CHIN results, as the multiple segment
rating curves can have very different b values for each segment. Though, for the arguments’
sake, this comparison is carried out.
It must be emphasized, that the Bayesian rating curves differ from some (subjective)
rating curves in a fundamental way. The highest discharge measurement does not control
the shape or b value, as is often observed. Sometimes, by deliberately forcing the rating
curve through the highest measurement (a human tendency) instead of appropriately close
to it, the innate variance of the data set is negated. This fact, should also, explain some
of the observable differences.
It is harder to make generalizations about the comparison of extreme values than about
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the annual mean values. Suffice to say, the minimum values, as could be expected (the
extrapolation needed is usually far less for the minimum values than the maximum values),
were overall very close to and symmetrically around the Bayesian credible regions or
simply within them. In one case (see Figure C.68), a systematic error is observed, as
all the minimum values are higher than the Bayesian estimates. The maximum values,
however, are much more varied.

– Case 1, Figure C.64
The maximum value estimates fall symmetrically around the posterior mean and
credible regions and no value is within them.

– Case 2, Figure C.65
One value is within the interval and the other values are all less than the Bayesian
estimate.

– Case 3, Figure C.66
Those three values that are not within the intervals, are above the Bayesian estimate.

– Case 4, Figure C.67
Two of these maximum values are within the credible regions and the other three
are symmetrical around them. It seems very likely that the this maximum discharge
estimate is acceptable.

– Case 5, Figure C.68
Here, no values are within the intervals, however, they are symmetrically scattered
around them. It is very possible that this is a good estimate of maximum discharge.

– Case 6, Figure C.69
In this case, all values but the Finnish, fall within or very near the intervals and
symmetrically. This is quite likely an acceptable estimate of maximum discharge.

– Case 7, Figure C.70
A possible systematic error is encountered in this case, as all the maximum values are
far from the Bayesian credible regions. The combination of an extreme extrapolation
and the different handling of the maximum discharge measurement during the rating
curve estimation, seems a likely explanation for this divergence.

In conclusion, 5 of the 7 rating curves are deemed acceptable in accordance with the rating
curve and residual analysis. It must be noted, that without this objective scrutiny, it is possible
that these rating curves might pass through a more subjective analysis. Even though this
methodology is far less subjective than those that are used by the Nordic countries, it is obvious
that this method is not fully automated in its estimation process and thus allows and needs a
human element. To remove that element completely is neither the goal of this thesis nor the
wish of the scientific community.

The annual mean values estimated with the Bayesian approach are comparable to the original
CHIN results and, in fact for the most part, encompass them within the posterior mean and
credible regions. As might be expected, the variance in estimated minimum values is low
and the variance in the maximum values is relatively high. The Bayesian method based on a
single segment, however, is successful in many cases, yet, is hampered by the lack of flexibility
that multiple segment rating curves offer. The Bayesian method can be extended for multiple
segment rating curves. That extension is an urgent and a valuable research topic.
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Chapter 5

Conclusions

The Bayesian approach for estimating rating curves, implemented in this thesis, is very promis-
ing. Seven rating curves, of eight, with prediction intervals and credible regions, were success-
fully estimated, even though two of these were later discarded. A new statistical model, [1], is
used with interesting results. Prior distributions for the rating curve parameters are researched
extensively, using real parameter data from the Icelandic Hydrological Service. The results of
the Bayesian approach, both the rating curve estimates and the derived data therefrom, are
rigorously compared to the the respective CHIN results.

The results from the case studies are very promising when compared to the CHIN results. For
almost all of the cases, the estimated annual means fall close to and symmetrically around the
Bayesian 95% credible regions or within them. These annual mean values are as was mentioned
before, calculated with different methods and either single or multiple segment rating curves.
This indicates that the difference between the Nordic methods is not as drastic as was the
initial concern. These findings, therefore, give appropriate reason to propose that the Bayesian
method is a valid method with the potential to become a common methodology for the Nordic
countries, even without a more advanced model, that is, one including shifts or multiple segment
rating curves.

One of the proposed methods of estimating rating curve quality was experimented with and
the results are promising. The future agenda calls for α, β and γ values to be implemented
on the HS rating curves. These values can be monitored and used for organizing discharge
measurement schedules, providing actual obtainable goals, e.g., "All HS γ values will be higher
than 75% by the year 2010". Instead of wasting resources on discharge measurements that will
not influence the quality values, other actions may be taken, such as, limiting trips to acquire
exact discharge measurements for each rating curve/station. As the water level time series
data used in the CHIN report did not portray a whole runoff series, e.g., only three years, no
attempt was made to estimate the γ rating curve quality parameter. The proposal, however,
stands and remains to be tested with sufficient data.

The advanced credible regions also open up possibilities in the joint calibration of other
hydraulic such as a HEC model for example. By forming an iteration cycle with such a model,
prior distributions can be redefined according to other inputs of information.

The method is also successful in estimating whether the actual measurements fall within
the estimated 95% prediction intervals, as only a few of the measurements fall outside of the
intervals. This can be expected. It is highly important to be able to know immediately whether
a measurement is within this interval for the monitoring of each station and its rating curve.
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Judging by an estimate of residual scatter and the varied values of the variance parameter ψ,
the model introduced by Øverleir [1], deals efficiently with variance heteroscedasticity, estab-
lishing the functionality of that model even further. In no case, does the proposed parameter
of ψ equal 1, as it does in the traditional model. This is a critical issue and needs to be further
addressed in future research.

In no cases do the prior distributions influence the posterior distribution. Rather, the pos-
terior distribution is a well defined subset distribution, well within the boundaries of the prior
distribution. It is, therefore, proposed that the prior distributions efficiently simulate actual
parameter values, and in no case inhibit the estimates in reaching the likeliest values.

When determining long term changes, as is the main focus of many current international
projects, a measure of variability in long term means is invaluable. Practical benefits are also
many. The Bayesian approach provides a simple way to measure the effect a single measurement
has on rating curve quality. The prediction interval for discharge measurements will make it
far easier to monitor changes or shifts in the control section. The actual calculation of the
rating curve is simplified and free of tedious trial and error methods or depending on nonlinear
regression algorithms.

The method proposed was unsuccessful in one case, the Norwegian station no. 2, in the river
Kjerring åga. The discharge data is of a good quality, yet, a likely b is in the region of 9-11.
This value, of course, lies far from the proposed prior distribution for b which was capped at
value 5. It was stated that higher values of b were not suitable for extrapolation and that
statement still holds true. Therefore, this method can not submit a solution as that would
require extrapolation of the rating curve with b higher than 5. Therefore, no results are shown
in the appendices. The solution to this dilemma is a multiple segment Bayesian rating curve.
This extension of the Bayesian approach remains to be implemented and is certainly the next
research agenda.
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Appendix A

Appendices

A.1 The Prior Distributions

A.1.1 The Prior Distribution for the Parameter ln(a)

π(ln(a)) =
1√

2πσ2
ln(a)

exp



−

1

2σ2
ln(a)

(ln(a) − µln(a))
2



 .

The log transformation of π(ln(a)) is given by

ln(π(ln(a))) = −
1

2
ln(2πσ2

ln(a)) −
1

2σ2
ln(a)

{
ln(a)2 − 2 ln(a)µln(a) + µ2

ln(a)

}
.

A.1.2 The Prior Distribution for the Parameter ε

π(ε) =
1√

2πσ2
ε

exp

{
−

1

2σ2
ε

(ε− µε)
2

}
.

The log transformation of π(ε) is given by

ln(π(ε)) = −
1

2
ln(2πσ2

ε ) −
1

2σ2
ε

(ε2 − 2εµε + µ2
ε).

A.1.3 The Prior Distribution for the Parameter b

π(b) ∝
1√

2πσ2
b

exp

{
−

1

2σ2
b

(b− µb)
2

}
I(0.5 < b < 5).

The log transformation of π(b) is given by

ln(π(b)) ∝ −
1

2
ln(2πσ2

b ) −
1

2σ2
b

(b2 − 2bµb + µ2
b)I(0.5 < b < 5).
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A.1.4 The Prior Distribution for the Parameter c

π(c) =
1√

2πσ2
c

exp

{
−

1

2σ2
c

(c− µc)
2

}
.

The log transformation of π(c) is given by

ln(π(c)) = −
1

2
ln(2πσ2

c ) −
1

2σ2
c

(c2 − 2cµc + µ2
c).

A.1.5 The Prior Distribution for the Parameter ψ

π(ψ) =
1√

2πσ2
ψ

exp

{
−

1

2σ2
ψ

(ψ − µψ)2

}
I(0.1 < ψ < 1.2).

The log transformation of π(ψ) is given by

ln(π(ψ)) = −
1

2
ln(2πσ2

ψ) −
1

2σ2
ψ

(ψ2 − 2ψµψ + µ2
ψ)I(0.1 < ψ < 1.2).

A.1.6 The Prior Distribution for the Parameter τ 2

π(τ 2) ∝ (τ 2)−(α
τ2+1) exp

(
−1

βτ2τ 2

)
.

The log transformation of π(τ 2) is given by

lnπ(τ 2) ∝ −(ατ2 + 1) ln(τ 2) −
1

βτ2τ 2
.

A.2 The Likelihood Function for the Rating Curve Model

We have

f(qi|ε, b, c, ψ, τ
2, wi) =

1√
2πτ 2(wi − c)2bψ

exp

[
−
{qi − exp(α0 + α1b+ ε)(wi − c)b}2

2τ 2(wi − c)2bψ

]

f(q|ε, b, c, ψ, τ 2, w) =
n∏

i=1

1√
2πτ 2(wi − c)2bψ

exp

[
−
{qi − exp(α0 + α1b+ ε)(wi − c)b}2

2τ 2(wi − c)2bψ

]

= N(exp(α0 + α1b+ ε)(wi − c)b, τ 2(wi − c)2bψ)
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The log transformation is given by

ln(f(qi|ε, b, c, ψ, τ
2, wi)) = f1 + f2

f1 =
n∑

i=1

ln


 1√

2πτ 2(wi − c)2bψ




= −
n

2
ln(2π) −

n

2
ln(τ 2) − bψ

n∑

i=1

ln(wi − c)

f2 = −
1

2τ 2

n∑

i=1

(wi − c)−2bψ
{
qi − exp(α0 + α1b+ ε)(wi − c)b

}2

A.3 The Conditional Distributions

A.3.1 The Conditional Distribution of the Parameter ε

We have

π(ε|b, c, ψ, τ 2, w, q) ∝ f(q|ε, b, c, ψ, τ 2, w)π(ε).

The log transformation of π(ε|b, c, ψ, τ 2, w, q) is proportional to

= −
1

τ 2

n∑

i=1

{
qi − exp(α0 + α1b+ ε)(wi − c)b

}2

(wi − c)2bψ
−

1

2σ2
ε

(ε2 − 2εµε + µ2
ε).

A.3.2 The Conditional Distribution of the Parameter b

We have We have

π(b|ε, c, ψ, τ 2, w, q) ∝ f(q|ε, b, c, ψ, τ 2, w)π(b)I(0 < b0 < 5).

The log transformation of π(b|ε, c, ψ, τ 2, w, q) is proportional to

= −bψ
n∑

i=1

ln(wi − c) −
1

τ 2

n∑

i=1

{
qi − exp(α0 + α1b+ ε)(wi − c)b

}2

(wi − c)2bψ

−
1

2σ2
b

(b2 − 2bµb + µ2
b).

V



A.3.3 The Conditional Distribution of the Parameter c

We have We have

π(c|ε, b, ψ, τ 2, w, q) ∝ f(q|ε, b, c, ψ, τ 2, w)π(c).

The log transformation of π(c|ε, b, ψ, τ 2, w, q) is proportional to

= −bψ
n∑

i=1

ln(wi − c) −
1

τ 2

n∑

i=1

{
qi − exp(α0 + α1b+ ε)(wi − c)b

}2

(wi − c)2bψ

− −
1

2σ2
c

(c2 − 2cµc + µ2
c).

A.3.4 The Conditional Distribution of the Parameter ψ

We have We have

π(ψ|ε, b, c, τ 2, ψ, w, q) ∝ f(q|ε, b, c, ψ, τ 2, w)π(ψ).

The log transformation of π(ψ|ε, b, c, τ 2, ψ, w, q) is proportional to

= −bψ
n∑

i=1

ln(wi − c) −
1

τ 2

n∑

i=1

{
qi − exp(α0 + α1b+ ε)(wi − c)b

}2

(wi − c)2bψ

− −
1

2σ2
ψ

(ψ2 − 2ψµψ + µ2
ψ)

A.3.5 The Conditional Distribution of the Parameter τ 2

We have

π(τ 2|ε, c, b, ψ, w, q) ∝ f(q|ε, b, c, ψ, τ 2, w)π(τ 2).

The log transformation of π(τ 2|ε, c, b, ψ, w, q) is proportional to

−
n

2
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{
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Appendix B

The CHIN Data
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Figure B.1: Upper left: The rating curve data for Skjern å, Station DK_1. Upper right:
The dry year water level time series. Lower left: The normal year water level time series.
Lower right: The wet year water level time series.

Table B.1: The α, β values and the number of discharge measurements for Case 1
Station no. 1 in Denmark

α value 0.8525
β value 0.9044

Number of discharge measurements 284
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Figure B.2: Upper left: The rating curve data for Odense å, Station DK_2. Upper right:
The dry year water level time series. Lower left: The normal year water level time series.
Lower right: The wet year water level time series.

Table B.2: The α, β values and the number of discharge measurements for Case 2
Station no. 2 in Denmark

α value 0.9416
β value 1

Number of discharge measurements 360
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Figure B.3: Upper left: The rating curve data for Lake Lannevesi, Station FI_1. Upper
right: The dry year water level time series. Lower left: The normal year water level time
series. Lower right: The wet year water level time series.

Table B.3: The α, β values and the number of discharge measurements for Case 3
Station no. 1 in Finland

α value 0.6966
β value 0.7576

Number of discharge measurements 10
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Figure B.4: Upper left: The rating curve data for Lake Vahvajarvi, Station FI_2. Upper
right: The dry year water level time series. Lower left: The normal year water level time
series. Lower right: The wet year water level time series.

Table B.4: The α, β values and the number of discharge measurements for Case 4
Station no. 2 in Finland

α value 0.9701
β value 0.9565

Number of discharge measurements 14
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Figure B.5: Upper left: The rating curve data for Skjálfandafljót, Station IS_1. Upper
right: The dry year water level time series. Lower left: The normal year water level time
series. Lower right: The wet year water level time series.

Table B.5: The α, β values and the number of discharge measurements for Case 5
Station no. 1 in Iceland

α value 0.7953
β value 0.3056

Number of discharge measurements 46
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Figure B.6: Upper left: The rating curve data for Fnjóská, Station IS_2. Upper right: The
dry year water level time series. Lower left: The normal year water level time series. Lower
right: The wet year water level time series.

Table B.6: The α, β values and the number of discharge measurements for Case 6
Station no. 2 in Iceland

α value 0.6104
β value 0.8458

Number of discharge measurements 34
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Figure B.7: Upper left: The rating curve data for Gudbrandsdalslågen, Station NO_1. Up-
per right: The dry year water level time series. Lower left: The normal year water level
time series. Lower right: The wet year water level time series.

Table B.7: The α, β values and the number of discharge measurements for Case 7
Station no. 1 in Norway

α value 0.2726
β value 0.0435

Number of discharge measurements 122
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B.1 The Numerical Data

B.1.1 The Estimated Annual Mean Values
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Table B.8: A compilation of the annual mean discharge from the CHIN report [2].
Station: DK_1 DK FI IS NO SE max relative difference(%)

Dry year 9.6 9.2 9.9 10.6 9.7 14.7
Normal year 15.7 15.9 16.4 15.2 16.1 7.6

Wet year 19.7 19.7 20.6 19.0 20.0 8.3
Station: DK_2 DK FI IS NO SE max relative difference(%)

Dry year 1.5 1.5 1.5 1.2 1.5 18.1
Normal year 3.1 3.3 3.2 3.2 3.2 8.3

Wet year 4.9 4.7 5.0 4.4 4.9 12.2
Station: FI_1 DK FI IS NO SE max relative difference(%)

Dry year 2.2 2.3 2.3 2.2 2.2 4.8
Normal year 3.3 3.4 3.4 3.3 3.3 3.2

Wet year 4.0 4.1 4.0 4.0 3.9 3.2
Station: FI_2 DK FI IS NO SE max relative difference (%)

Dry year 22.9 22.9 22.9 22.9 23.0 0.5
Normal year 27.5 27.5 27.6 27.6 27.6 0.5

Wet year 29.0 29.1 29.1 29.1 29.2 0.7
Station: IS_1 DK FI IS NO SE max relative difference (%)

Dry year 43.3 43.2 43.0 43.1 43.0 0.6
Normal year 49.2 48.8 48.8 48.8 48.8 0.8

Wet year 54.7 54.3 54.3 54.3 54.3 0.7
Station: IS_2 DK FI IS NO SE max relative difference(%)

Dry year 30.3 30.6 30.8 30.3 30.0 2.8
Normal year 38.9 41.0 39.4 38.9 38.7 5.9

Wet year 51.4 57.7 51.4 51.3 51.4 12.2
Station: NO_1 DK FI IS NO SE max relative difference (%)

Dry year 151.4 157.5 154.5 152.4 151.2 4.1
Normal year 229.8 250.5 222.9 228.1 229.1 11.9

Wet year 296.9 309.6 299.8 306.3 296.0 4.5
Station: NO_2 DK FI IS NO SE max relative difference (%)

Dry year 1.2 1.2 1.1 1.3 1.2 12.8
Normal year 2.1 2.1 2.0 2.1 2.1 7.6

Wet year 3.2 3.5 3.1 3.6 3.5 15.4
Station: SE_1 DK FI IS NO SE max relative difference (%)

Dry year 6.1 5.7 5.6 5.7 6.4 12.4
Normal year 10.5 10.1 9.9 10.0 10.9 9.5

Wet year 15.3 15.2 14.6 14.9 16.6 13.0
Station: SE_2 DK FI IS NO SE max relative difference (%)

Dry year 1.6 1.2 1.6 1.6 1.6 30.8
Normal year 3.9 4.0 4.0 3.9 3.9 3.4

Wet year 7.0 7.6 7.2 7.0 7.1 8.1
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Bayesian Results

C.1 Parameter Estimates with Relevant Data
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C.1.1 Case 1, Station DK_1, Skjern å

Table C.1: Parameter estimates based on the Skjern å data and other relevant data.
Station no. 1 in Denmark ε b c a ψ τ 2

Nonlinear estimate -1.245 1.451 -12.286 1.7e-002 - 3.9e-007
Parameter estimate, mean -1.208 1.304 -1.823 3.8e-002 0.431 1.4e-003

Parameter estimate, median -1.208 1.304 -1.820 3.8e-002 0.431 1.4e-003
Acceptance ratio 0.24 0.32 0.35 - 0.51 -

R̂ ratio 1.35 1.43 1.45 - 1.25 1.22
Tuning parameter 1e-007 1e-007 1e-002 - 1e-006 -
2.5% percentile -1.210 1.298 -2.303 3.7e-002 0.405 9.9e-004
25.0% percentile -1.208 1.302 -1.994 3.8e-002 0.422 1.3e-003
50.0% percentile -1.208 1.304 -1.823 3.8e-002 0.431 1.4e-003
75.0% percentile -1.207 1.306 -1.642 3.9e-002 0.440 1.6e-003
97.5% percentile -1.206 1.311 -1.338 4.0e-002 0.457 2.1e-003

Skewness -0.045 0.016 -0.008 0.028 -0.033 0.554
Kurtosis 2.70 2.53 2.50 2.53 2.70 2.70

Standard Deviation 1.1e-003 3.4e-003 2.6e-001 7.3e-004 1.3e-002 2.8e-004
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Figure C.1: The estimated rating curve using the parameters a, b and c in Table C.1. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the whole range of water levels is shown, Wmin through
Wmax.

XVIII



10 15 20 25 30 35 40 45

40

60

80

100

120

140

160

180

200

220

Discharge in m3/s

W
at

er
le

ve
l i

n 
cm

Bayesian rating curve, mean
Bayesian rating curve, median
95% prediction interval
95% credible region
Discharge measurements

Figure C.2: The estimated rating curve using the parameters a, b and c in Table C.1. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the range of water levels shown is, Qmin through Qmax.
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Figure C.3: From left to right: b, c, ln(a), ψ, τ 2 and ε. The generated Markov chains for
each parameter converging to the mode of the posterior distribution from their respective initial
value.
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Figure C.4: From left to right: b, c, ln(a), ψ, τ 2 and ε. The mixing of the Markov chains
after the burn-in period.
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Figure C.5: From left to right: b, c, ln(a), ψ, τ 2 and ε. The resulting posterior distributions
for each parameter. On each figure the parameter estimates, the mean and the median, are
shown.
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Figure C.6: Upper left: A histogram of the standardized residuals. Upper right: Stan-
dardized residuals from the estimated rating curve as a function of water level. Lower left:
A smooth representation of the residual density. Lower right: A normal probability plot of
standardized residuals.
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Figure C.7: Upper left: The prior distribution for parameter ε. Upper right: The posterior
distribution of parameter ε. Lower left: The prior distribution for parameter ψ. Lower right:
The posterior distribution of parameter ψ.

XXI



−5 0 5
0

500

1000

1500

2000

−5 0 5
0

500

1000

1500

2000

0 0.5 1 1.5
0

500

1000

1500

0 0.5 1 1.5
0

500

1000

1500

Figure C.8: Upper left: The prior distribution for parameter b. Upper right: The posterior
distribution of parameter b. Lower left: The prior distribution for parameter c. Lower right:
The posterior distribution of parameter c.
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C.1.2 Case 2, Station DK_2, Odense å

Table C.2: Parameter estimates based on the Odense å data and other relevant data.
Station no. 2 in Denmark ε b c a ψ τ 2

Nonlinear estimate -0.378 2.195 66.223 7.3e-004 - 6.6e-009
Parameter estimate, mean -0.608 1.989 68.329 1.7e-003 0.718 2.0e-006

Parameter estimate, median -0.608 1.990 68.321 1.8e-003 0.719 2.1e-006
Acceptance ratio 0.32 0.45 0.43 - 0.54 -

R̂ ratio 1.65 1.70 1.67 - 1.52 1.56
Tuning parameter 5e-006 5e-008 1e-002 - 5e-006 -
2.5% percentile -0.642 1.953 67.725 1.5e-003 0.685 8.8e-007
25.0% percentile -0.622 1.973 68.096 1.6e-003 0.704 1.4e-006
50.0% percentile -0.608 1.989 68.329 1.7e-003 0.718 2.0e-006
75.0% percentile -0.594 2.005 68.561 1.9e-003 0.732 2.6e-006
97.5% percentile -0.571 2.031 68.856 2.1e-003 0.756 3.9e-006

Skewness 0.110 0.127 -0.128 0.080 0.099 0.853
Kurtosis 2.61 2.52 2.55 2.51 2.66 2.66

Standard Deviation 1.9e-002 2.1e-002 3.1e-001 1.6e-004 1.9e-002 8.2e-007
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Figure C.9: The estimated rating curve using the parameters a, b and c in Table C.2. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the whole range of water levels is shown, Wmin through
Wmax.
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Figure C.10: The estimated rating curve using the parameters a, b and c in Table C.2. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the range of water levels shown is, Qmin through Qmax.
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Figure C.11: From left to right: b, c, ln(a), ψ, τ 2 and ε. The generated Markov chains
for each parameter converging to the mode of the posterior distribution from their respective
initial value.
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Figure C.12: From left to right: b, c, ln(a), ψ, τ 2 and ε. The mixing of the Markov chains
after the burn-in period.
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Figure C.13: From left to right: b, c, ln(a), ψ, τ 2 and ε. The resulting posterior distributions
for each parameter. On each figure the parameter estimates, the mean and the median, are
shown.
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Figure C.14: Upper left: A histogram of the standardized residuals. Upper right: Stan-
dardized residuals from the estimated rating curve as a function of water level. Lower left:
A smooth representation of the residual density. Lower right: A normal probability plot of
standardized residuals.
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Figure C.15: Upper left: The prior distribution for parameter ε. Upper right: The posterior
distribution of parameter ε. Lower left: The prior distribution for parameter ψ. Lower right:
The posterior distribution of parameter ψ.
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Figure C.16: Upper left: The prior distribution for parameter b. Upper right: The posterior
distribution of parameter b. Lower left: The prior distribution for parameter c. Lower right:
The posterior distribution of parameter c.
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C.1.3 Case 3, Station FI_1, Lake Lannevesi

Table C.3: Parameter estimates based on the Lake Lannevesi data and other relevant data.
Station no. 1 in Finland ε b c a ψ τ 2

Nonlinear estimate -1.532 1.878 4.717 1.3e-03 - 9.1e-09
Parameter estimate, mean -1.555 1.800 6.960 1.9e-03 0.185 6.7e-04

Parameter estimate, median -1.556 1.804 6.813 1.9e-03 0.185 8.4e-04
Acceptance ratio 0.37 0.45 0.36 - 0.50 -

R̂ ratio 1.02 2.05 1.94 - 1.08 1.01
Tuning parameter 4e-06 5e-08 2e-01 - 1e-05 -
2.5% percentile -1.571 1.738 3.723 1.2e-03 0.167 2.6e-04
25.0% percentile -1.560 1.775 5.628 1.6e-03 0.178 4.7e-04
50.0% percentile -1.555 1.800 6.960 1.9e-03 0.185 6.7e-04
75.0% percentile -1.551 1.834 7.999 2.1e-03 0.192 1.0e-03
97.5% percentile -1.541 1.879 9.573 2.6e-03 0.205 2.4e-03

Skewness -0.164 0.194 -0.180 0.202 0.189 5.843
Kurtosis 5.07 2.30 2.40 2.44 2.97 2.97

Standard Deviation 7.4e-03 3.9e-02 1.6e+00 3.8e-04 9.7e-03 6.5e-04
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Figure C.17: The estimated rating curve using the parameters a, b and c in Table C.3. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the whole range of water levels is shown, Wmin through
Wmax.
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Figure C.18: The estimated rating curve using the parameters a, b and c in Table C.3. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the range of water levels shown is, Qmin through Qmax.
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Figure C.19: From left to right: b, c, ln(a), ψ, τ 2 and ε. The generated Markov chains
for each parameter converging to the mode of the posterior distribution from their respective
initial value.

XXIX



0 2 4 6

x 10
4

1.7

1.8

1.9

2

0 2 4 6

x 10
4

0

5

10

15

0 2 4 6

x 10
4

1

2

3

4
x 10

−3

0 2 4 6

x 10
4

0.15

0.2

0.25

0 2 4 6

x 10
4

0

0.01

0.02

0.03

0.04

0 2 4 6

x 10
4

−1.65

−1.6

−1.55

−1.5

−1.45

Figure C.20: From left to right: b, c, ln(a), ψ, τ 2 and ε. The mixing of the Markov chains
after the burn-in period.
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Figure C.21: From left to right: b, c, ln(a), ψ, τ 2 and ε. The resulting posterior distributions
for each parameter. On each figure the parameter estimates, the mean and the median, are
shown.
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Figure C.22: Upper left: A histogram of the standardized residuals. Upper right: Stan-
dardized residuals from the estimated rating curve as a function of water level. Lower left:
A smooth representation of the residual density. Lower right: A normal probability plot of
standardized residuals.
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Figure C.23: Upper left: The prior distribution for parameter ε. Upper right: The posterior
distribution of parameter ε. Lower left: The prior distribution for parameter ψ. Lower right:
The posterior distribution of parameter ψ.
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Figure C.24: Upper left: The prior distribution for parameter b. Upper right: The posterior
distribution of parameter b. Lower left: The prior distribution for parameter c. Lower right:
The posterior distribution of parameter c.
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C.1.4 Case 4, Station FI_2, Lake Vahvajarvi

Table C.4: Parameter estimates based on the Lake Vahvajarvi data and other relevant data.
Station no. 2 in Finland ε b c a ψ τ 2

Nonlinear estimate -1.076 2.082 -52.720 6.6e-04 - 6.8e-10
Parameter estimate, mean -0.901 1.835 -33.121 3.0e-03 0.191 2.3e-02

Parameter estimate, median -0.902 1.836 -33.179 3.0e-03 0.193 2.6e-02
Acceptance ratio 0.18 0.47 0.19 - 0.51 -

R̂ ratio 1.49 1.49 1.50 - 1.20 1.08
Tuning parameter 4e-06 5e-08 2e-01 - 1e-05 -
2.5% percentile -0.935 1.785 -37.395 2.1e-03 0.167 8.7e-03
25.0% percentile -0.912 1.818 -34.547 2.7e-03 0.181 1.6e-02
50.0% percentile -0.901 1.835 -33.121 3.0e-03 0.191 2.3e-02
75.0% percentile -0.891 1.854 -31.794 3.3e-03 0.202 3.2e-02
97.5% percentile -0.872 1.893 -29.340 4.0e-03 0.226 6.6e-02

Skewness -0.199 0.152 -0.147 0.255 0.539 2.646
Kurtosis 2.86 2.83 2.82 2.78 3.52 3.52

Standard Deviation 1.6e-02 2.6e-02 2.0e+00 4.7e-04 1.5e-02 1.5e-02
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Figure C.25: The estimated rating curve using the parameters a, b and c in Table C.4. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the whole range of water levels is shown, Wmin through
Wmax.
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Figure C.26: The estimated rating curve using the parameters a, b and c in Table C.4. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the range of water levels shown is, Qmin through Qmax.
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Figure C.27: From left to right: b, c, ln(a), ψ, τ 2 and ε. The generated Markov chains
for each parameter converging to the mode of the posterior distribution from their respective
initial value.
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Figure C.28: From left to right: b, c, ln(a), ψ, τ 2 and ε. The mixing of the Markov chains
after the burn-in period.
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Figure C.29: From left to right: b, c, ln(a), ψ, τ 2 and ε. The resulting posterior distributions
for each parameter. On each figure the parameter estimates, the mean and the median, are
shown.
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Figure C.30: Upper left: A histogram of the standardized residuals. Upper right: Stan-
dardized residuals from the estimated rating curve as a function of water level. Lower left:
A smooth representation of the residual density. Lower right: A normal probability plot of
standardized residuals.
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Figure C.31: Upper left: The prior distribution for parameter ε. Upper right: The posterior
distribution of parameter ε. Lower left: The prior distribution for parameter ψ. Lower right:
The posterior distribution of parameter ψ.
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Figure C.32: Upper left: The prior distribution for parameter b. Upper right: The posterior
distribution of parameter b. Lower left: The prior distribution for parameter c. Lower right:
The posterior distribution of parameter c.
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C.1.5 Case 5, Station IS_1, Skjálfandafljót

Table C.5: Parameter estimates based on the Skjálfandafljót data and other relevant data.
Station no. 1 in Iceland ε b c a ψ τ 2

Nonlinear estimate -0.964 3.327 -17.455 9.3e-07 - 1.1e-15
Parameter estimate, mean -0.342 2.759 25.337 3.7e-05 0.281 3.7e-03

Parameter estimate, median -0.342 2.759 25.324 3.7e-05 0.283 7.6e-03
Acceptance ratio 0.31 0.49 0.32 - 0.53 -

R̂ ratio 2.52 2.55 2.50 - 2.03 2.00
Tuning parameter 4e-06 5e-08 2e-01 - 1e-05 -
2.5% percentile -0.419 2.691 19.546 2.4e-05 0.205 1.3e-04
25.0% percentile -0.370 2.735 23.195 3.1e-05 0.253 1.6e-03
50.0% percentile -0.342 2.759 25.337 3.7e-05 0.281 3.7e-03
75.0% percentile -0.315 2.783 27.419 4.3e-05 0.307 8.6e-03
97.5% percentile -0.264 2.826 31.189 5.7e-05 0.385 4.0e-02

Skewness 0.022 -0.029 0.044 0.585 0.466 3.320
Kurtosis 2.59 2.59 2.60 3.13 3.16 3.16

Standard Deviation 4.0e-02 3.5e-02 3.0e+00 8.6e-06 4.5e-02 1.1e-02
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Figure C.33: The estimated rating curve using the parameters a, b and c in Table C.5. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the whole range of water levels is shown, Wmin through
Wmax.
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Figure C.34: The estimated rating curve using the parameters a, b and c in Table C.5. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the range of water levels shown is, Qmin through Qmax.
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Figure C.35: From left to right: b, c, ln(a), ψ, τ 2 and ε. The generated Markov chains
for each parameter converging to the mode of the posterior distribution from their respective
initial value.
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Figure C.36: From left to right: b, c, ln(a), ψ, τ 2 and ε. The mixing of the Markov chains
after the burn-in period.
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Figure C.37: From left to right: b, c, ln(a), ψ, τ 2 and ε. The resulting posterior distributions
for each parameter. On each figure the parameter estimates, the mean and the median, are
shown.
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Figure C.38: Upper left: A histogram of the standardized residuals. Upper right: Stan-
dardized residuals from the estimated rating curve as a function of water level. Lower left:
A smooth representation of the residual density. Lower right: A normal probability plot of
standardized residuals.
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Figure C.39: Upper left: The prior distribution for parameter ε. Upper right: The posterior
distribution of parameter ε. Lower left: The prior distribution for parameter ψ. Lower right:
The posterior distribution of parameter ψ.
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Figure C.40: Upper left: The prior distribution for parameter b. Upper right: The posterior
distribution of parameter b. Lower left: The prior distribution for parameter c. Lower right:
The posterior distribution of parameter c.
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C.1.6 Case 6, Station IS_2, Fnjóská

Table C.6: Parameter estimates based on the Fnjóská data and other relevant data.
Station no. 2 in Iceland ε b c a ψ τ 2

Nonlinear estimate 0.990 2.023 71.587 7.2e-003 - 1.2e-007
Parameter estimate, mean 0.965 2.197 64.555 2.8e-003 0.208 5.9e-002

Parameter estimate, median 0.963 2.201 64.368 2.8e-003 0.213 7.2e-002
Acceptance ratio 0.45 0.44 0.40 - 0.53 -

R̂ ratio 1.26 1.38 1.38 - 1.14 1.08
Tuning parameter 7e-006 5e-007 1e-001 - 5e-005 -
2.5% percentile 0.922 2.108 59.236 1.4e-003 0.153 9.1e-003
25.0% percentile 0.951 2.166 62.987 2.3e-003 0.186 3.5e-002
50.0% percentile 0.965 2.197 64.555 2.8e-003 0.208 5.9e-002
75.0% percentile 0.976 2.231 65.958 3.3e-003 0.234 9.5e-002
97.5% percentile 0.998 2.311 68.690 4.6e-003 0.302 2.1e-001

Skewness -0.263 0.311 -0.324 0.583 0.734 4.050
Kurtosis 3.53 3.06 3.14 3.93 3.65 3.65

Standard Deviation 1.9e-002 5.1e-002 2.4e+000 8.0e-004 3.7e-002 5.7e-002
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Figure C.41: The estimated rating curve using the parameters a, b and c in Table C.6. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the whole range of water levels is shown, Wmin through
Wmax.
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Figure C.42: The estimated rating curve using the parameters a, b and c in Table C.6. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the range of water levels shown is, Qmin through Qmax.
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Figure C.43: From left to right: b, c, ln(a), ψ, τ 2 and ε. The generated Markov chains
for each parameter converging to the mode of the posterior distribution from their respective
initial value.
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Figure C.44: From left to right: b, c, ln(a), ψ, τ 2 and ε. The mixing of the Markov chains
after the burn-in period.
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Figure C.45: From left to right: b, c, ln(a), ψ, τ 2 and ε. The resulting posterior distributions
for each parameter. On each figure the parameter estimates, the mean and the median, are
shown.
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Figure C.46: Upper left: A histogram of the standardized residuals. Upper right: Stan-
dardized residuals from the estimated rating curve as a function of water level. Lower left:
A smooth representation of the residual density. Lower right: A normal probability plot of
standardized residuals.
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Figure C.47: Upper left: The prior distribution for parameter ε. Upper right: The posterior
distribution of parameter ε. Lower left: The prior distribution for parameter ψ. Lower right:
The posterior distribution of parameter ψ.
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Figure C.48: Upper left: The prior distribution for parameter b. Upper right: The posterior
distribution of parameter b. Lower left: The prior distribution for parameter c. Lower right:
The posterior distribution of parameter c.
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C.1.7 Case 7, Station NO_1, Gudbrandsdalslågen

Table C.7: Parameter estimates based on the Gudbrandsdalslågen data and other relevant data.
Station no. 1 in Norway ε b c a ψ τ 2

Nonlinear estimate 0.324 2.530 -56.648 2.4e-04 - 1.7e-10
Parameter estimate, mean 0.582 2.284 -37.068 1.2e-03 0.664 1.7e-05

Parameter estimate, median 0.582 2.284 -37.012 1.2e-03 0.663 4.1e-05
Acceptance ratio 0.26 0.47 0.30 - 0.55 -

R̂ ratio 1.40 1.41 1.39 - 1.30 1.05
Tuning parameter 1e-06 1e-07 1e-01 - 1e-05 -
2.5% percentile 0.532 2.240 -41.001 8.8e-04 0.576 1.6e-06
25.0% percentile 0.564 2.267 -38.472 1.1e-03 0.634 7.3e-06
50.0% percentile 0.582 2.284 -37.068 1.2e-03 0.664 1.7e-05
75.0% percentile 0.601 2.300 -35.526 1.3e-03 0.692 4.3e-05
97.5% percentile 0.631 2.330 -33.035 1.6e-03 0.740 2.2e-04

Skewness 0.028 -0.003 0.066 0.354 -0.165 6.623
Kurtosis 2.50 2.50 2.50 2.69 2.72 2.72

Standard Deviation 2.6e-02 2.4e-02 2.1e+00 1.8e-04 4.3e-02 7.3e-05
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Figure C.49: The estimated rating curve using the parameters a, b and c in Table C.7. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the whole range of water levels is shown, Wmin through
Wmax.
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Figure C.50: The estimated rating curve using the parameters a, b and c in Table C.7. 95%
prediction intervals for the discharge measurements are shown, as well as the 95% credible
regions for the rating curve. Here, the range of water levels shown is, Qmin through Qmax.

0 0.5 1 1.5 2 2.5

x 10
5

2.2

2.4

2.6

2.8

3

0 0.5 1 1.5 2 2.5

x 10
5

−80

−60

−40

−20

0 0.5 1 1.5 2 2.5

x 10
5

0

0.5

1

1.5

2
x 10

−3

0 0.5 1 1.5 2 2.5

x 10
5

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

x 10
5

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5

x 10
5

0.2

0.4

0.6

0.8

1

Figure C.51: From left to right: b, c, ln(a), ψ, τ 2 and ε. The generated Markov chains
for each parameter converging to the mode of the posterior distribution from their respective
initial value.
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Figure C.52: From left to right: b, c, ln(a), ψ, τ 2 and ε. The mixing of the Markov chains
after the burn-in period.
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Figure C.53: From left to right: b, c, ln(a), ψ, τ 2 and ε. The resulting posterior distributions
for each parameter. On each figure the parameter estimates, the mean and the median, are
shown.
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Figure C.54: Upper left: A histogram of the standardized residuals. Upper right: Stan-
dardized residuals from the estimated rating curve as a function of water level. Lower left:
A smooth representation of the residual density. Lower right: A normal probability plot of
standardized residuals.
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Figure C.55: Upper left: The prior distribution for parameter ε. Upper right: The posterior
distribution of parameter ε. Lower left: The prior distribution for parameter ψ. Lower right:
The posterior distribution of parameter ψ.
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Figure C.56: Upper left: The prior distribution for parameter b. Upper right: The posterior
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C.2 Annual Mean Discharge Estimates

In Figures C.57 through C.63, the estimated credible regions are sometimes very narrow. Hence,
they will simply appear as lines instead of intervals.

C.2.1 Case 1, Station DK_1, Skjern å

Table C.8: The estimated annual mean discharge based on the Skjern å data.
Station no. 1
in Denmark DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Dry year 9.6 9.2 9.9 10.6 9.7 9.18 9.188 9.191 9.194 9.202
Normal year 15.7 15.9 16.4 15.2 16.1 15.79 15.8 15.8 15.8 15.81

Wet year 19.7 19.7 20.6 19 19.93 19.9 19.91 19.92 19.92 19.93
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Figure C.57: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the annual mean discharge for three years. Top: Dry year. Middle:
Average year. Bottom: Wet year.
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C.2.2 Case 2, Station DK_2, Odense å

Table C.9: The estimated annual mean discharge based on the Odense å data.
Station no. 2
in Denmark DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Dry year 1.5 1.5 1.5 1.2 1.5 1.50 1.51 1.51 1.51 1.52
Normal year 3.1 3.3 3.2 3.2 3.2 3.11 3.13 3.13 3.13 3.15

Wet year 4.9 4.7 5.0 4.4 4.9 4.91 4.94 4.96 4.97 5.00
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Figure C.58: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the annual mean discharge for three years. Top: Dry year. Middle:
Average year. Bottom: Wet year.
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C.2.3 Case 3, Station FI_1, Lake Lannevesi

Table C.10: The estimated annual mean discharge based on the Lake Lannevesi data.
Station no. 1
in Finland DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Dry year 2.2 2.3 2.3 2.2 2.2 2.17 2.20 2.21 2.22 2.25
Normal year 3.3 3.4 3.4 3.3 3.3 3.29 3.34 3.34 3.34 3.39

Wet year 4.0 4.1 4.0 4.0 3.9 3.88 3.93 3.94 3.95 3.99
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Figure C.59: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the annual mean discharge for three years. Top: Dry year. Middle:
Average year. Bottom: Wet year.
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C.2.4 Case 4, Station FI_2, Lake Vahvajarvi

Table C.11: The estimated annual mean discharge based on the Lake Vahvajarvi data.
Station no. 2
in Finland DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Dry year 22.9 22.9 22.9 22.9 23.0 22.84 22.91 22.92 22.92 22.99
Normal year 27.5 27.5 27.6 27.6 27.6 27.57 27.66 27.67 27.67 27.75

Wet year 29.0 29.1 29.1 29.1 29.2 29.10 29.18 29.19 29.20 29.28
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Figure C.60: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the annual mean discharge for three years. Top: Dry year. Middle:
Average year. Bottom: Wet year.
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C.2.5 Case 5, Station IS_1, Skjálfandafljót

Table C.12: The estimated annual mean discharge based on the Skjálfandafljót data.
Station no. 1

in Iceland DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Dry year 43.3 43.2 43.0 43.1 43.0 42.54 42.89 42.99 43.09 43.46
Normal year 49.2 48.8 48.8 48.8 48.8 48.16 48.56 48.65 48.74 49.16

Wet year 54.7 54.3 54.3 54.3 54.3 53.70 54.14 54.22 54.31 54.75
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Figure C.61: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the annual mean discharge for three years. Top: Dry year. Middle:
Average year. Bottom: Wet year.
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C.2.6 Case 6, Station IS_2, Fnjóská

Table C.13: The estimated annual mean discharge based on the Fnjóská data.
Station no. 2

in Iceland DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Dry year 30.3 30.6 30.8 30.3 30.0 29.86 30.28 30.39 30.50 30.89
Normal year 38.9 41.0 39.4 38.9 38.7 38.45 38.92 39.03 39.15 39.62

Wet year 51.4 57.7 51.4 51.3 51.4 50.96 51.56 51.72 51.89 52.51
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Figure C.62: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the annual mean discharge for three years. Top: Dry year. Middle:
Average year. Bottom: Wet year. for three years. Top: Dry year. Middle: Average year.
Bottom: Wet year.
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C.2.7 Case 7, Station NO_1, Gudbrandsdalslågen

Table C.14: The estimated annual mean values based on the Gudbrandsdalslågen data.
Station no. 1
in Norway DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Dry year 151.4 157.5 154.5 152.4 151.2 153.02 153.26 153.36 153.44 153.69
Normal year 229.8 250.5 222.9 228.1 229.1 233.04 233.77 234.16 234.56 235.17

Wet year 296.9 309.6 299.8 306.3 296.0 304.08 304.53 304.76 304.99 305.43
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Figure C.63: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the annual mean discharge for three years. Top: Dry year. Middle:
Average year. Bottom: Wet year.
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C.3 Maximum and Minimum Discharge Estimates

C.3.1 Case 1, Station DK_1, Skjern å

Table C.15: The estimated maximum and minimum discharge values based on the Skjern å
data.

Station no. 1
in Denmark DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Highest
calculated
discharge 57.6 48.2 58.5 48.0 52.4 54.93 55.01 55.06 55.10 55.19
Lowest

calculated
discharge 0.0 3.6 0.0 5.5 0.0 4.33 4.34 4.35 4.36 4.37
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Figure C.64: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the maximum and minimum discharge. Upper: The maximum discharge.
Lower: The minimum discharge.
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C.3.2 Case 2, Station DK_1, Odense å

Table C.16: The estimated maximum and minimum discharge values based on the Odense å
data.

Station no. 2
in Denmark DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Highest
calculated
discharge 37.5 20.8 30.2 30.1 33.6 37.54 38.16 38.60 39.05 39.81
Lowest

calculated
discharge 0.2 0.0 0.2 0.0 0.1 0.19 0.19 0.19 0.20 0.20
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Figure C.65: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the maximum and minimum discharge. Upper: The maximum discharge.
Lower: The minimum discharge.
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C.3.3 Case 3, Station FI_1, Lake Lannevesi

Table C.17: The estimated maximum and minimum discharge values based on the Lake Lann-
evesi data.

Station no. 1
in Finland DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Highest
calculated
discharge 20.9 21.0 19.6 20.4 19.9 19.30 19.50 19.62 19.76 19.96
Lowest

calculated
discharge 0.4 0.6 0.5 0.4 0.4 0.33 0.36 0.38 0.39 0.42
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Figure C.66: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the maximum and minimum discharge. Upper: The maximum discharge.
Lower: The minimum discharge.
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C.3.4 Case 4, Station FI_2, Lake Vahvajarvi

Table C.18: The estimated maximum and minimum discharge values based on the Lake Vah-
vajarvi data.

Station no. 2
in Finland DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Highest
calculated
discharge 49.1 51.0 50.1 50.1 51.0 49.74 49.87 49.91 49.96 50.08
Lowest

calculated
discharge 9.0 9.8 9.3 9.3 9.5 8.79 8.85 8.88 8.91 8.97
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Figure C.67: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the maximum and minimum discharge. Upper: The maximum discharge.
Lower: The minimum discharge.
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C.3.5 Case 5, Station IS_1, Skjálfandafljót

Table C.19: The estimated maximum and minimum discharge values based on the Skjál-
fandafljót data.
Station no. 1

in Iceland DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Highest
calculated
discharge 772.5 1009.1 798.2 1078.6 814.0 939.9 947.9 952.3 956.6 964.6
Lowest

calculated
discharge 1.2 0.6 1.3 0.9 1.3 0.07 0.11 0.14 0.17 0.22
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Figure C.68: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the maximum and minimum discharge. Upper: The maximum discharge.
Lower: The minimum discharge.
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C.3.6 Case 6, Station IS_2, Fnjóská

Table C.20: The estimated maximum and minimum discharge values based on the Fnjóská
data.

Station no. 2
in Iceland DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Highest
calculated
discharge 758.9 1371.1 697.0 701.6 780.0 748.0 768.4 778.3 790.1 814.7
Lowest

calculated
discharge 5.5 8.8 6.2 6.2 5.6 5.22 5.60 5.78 5.98 6.38
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Figure C.69: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the maximum and minimum discharge. Upper: The maximum discharge.
Lower: The minimum discharge.
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C.3.7 Case 7, Station NO_1, Gudbrandsdalslågen

Table C.21: The estimated maximum and minimum discharge values based on the Gudbrands-
dalslågen data.
Station no. 1
in Norway DK FI IS NO SE 2.5% 25% 50% 75% 97.5%

Highest
calculated
discharge 2651.5 2509.7 2708.6 2642.0 2642.0 3330.1 3339.4 3341.1 3345.4 3374.4
Lowest

calculated
discharge 6.0 0.0 10.2 0.0 6.1 3.70 4.11 4.33 4.5 4.95
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Figure C.70: The CHIN results from each country, compared to the posterior mean and 95%
credible regions for the maximum and minimum discharge. Upper: The maximum discharge.
Lower: The minimum discharge.
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