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PREFACE

The International Atomic Energy Agency in Vienna sponsored the introduction

of nuclear well logging in geothermal investigations in Iceland.

In that connection Professor Jan A. Czubek s experts mission to Iceland

in June 1978 was an invaluable contribution. Prof. Czubek demonstrated
his wide and deep knowledge in nuclear logging, and this mission led to the
practising of a new successful investigation method in geothermal logging
in this country. During a training program in June 1978, Professor Czubek
presented informal lectures where the basic concepts of the gamma-ray and

neutron log intepretation were reviewed.

When training in geothermal logging,as a part of the Geothermal Training
Programme at the United Nations University in Reykjavik started, Professor
Czubek ‘s lecture notes from 1978 again became a popular reference manual,

and the need for publishing the lectures became urgent.

Sincere thanks are due to Professor Czubek for his enthusiastic intro-
duction to nuclear logging as well as his continuous interest and help

during the progress of this discipline in Iceland.

Reykjavik in August 1981

Valgardur Stefansson
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1 HOW TO CHOOSE THE BEST PARAMETERS FOR THE LOG RECORD (RATEMETER CASE)

J.A.C. JUNE 6, 1978

When the nuclear log is recorded with the ratemeter, the parameters needed

to be chosen for its proper record, are:

V = logging speed

RC - ratemeter time constant

Input pulses
e o
o—] —K] o o—o0 )
Uy
VOLT-
R =C2 up e METER

u, ~ 20V R [MQ]

u2~ 2V C|PPF]
Ca pF]

Fig. 1

Ratemeter

When u, << u, one has in the equilibrium conditions

~ I
u2 ; Where

I is the constant pulse rate at the input. When the input pulse rate I
is variable, let us say I(t), one has to consider the constant logging

speed V, in this case
z =t « Vv, (1)

where t is the time, and z is the depth along the borehole. When the

"output" intensity at the ratemeter is denoted J(t), one has in this case:



t t’
1 —i—aftﬁ_r(t)d (2)
J(t) = =— » e e ' tr
RC o
ox
da J(t)
I(t) = J(t) + RC ot (3)

Both, egs. 2 and 3 are the ratemeter equations, which in the case of

logging, taking into account eq. (1), are:

2 Tz !
— T— z )
1 VRC VRC
- . r 4
J(z) = TRe © _mf I(z’') e dz (4)
ox
I(z) = J3(z) + v.rc $I(2) (5)

dz

We call I(z) the static anomaly, and J(z) the dynamic anomaly. which are

schematically presented in fig. 2.

I(z)
J(z)

Intensity

> Z

Fig. 2

As it is clear from eq. 5 the maximum of the dynamic anomaly J(z) is
always at the intersection with the static one, and one has the relation

about the area under the curves:



S= [ I(z) dz= [ J(z) dz (6)

S =H « I - (7)

where H is the thickness of the radioactive layer, and Ioo is the gamma

ray intensity when H = o,

As a matter of fact I(z) is never a smooth function, it obeys to the
statistical variation according to the Poisson law. In this case the

variance of the output reading J(z,V,RC) is:

o 13(29,80)] = A 302,05 (8)
which in the case

I(z) = const (9)
gives for t >> o

J(z,VRC) = I(z) = const (10)
and

o* @ = ZRé-J = z-ééol ’ (11)

the formula known to any nuclear physicist.

When one takes, for the simplicity of considerations, the rectangular form

of the static anomaly, i.e.

e} z <o
I(z) = I o<z <H (12)
o z > H



cne has from eqg. 4:

0 z <o
V4
~ VeRC
J(z) = I (1-e - ) o<z <H
H "z-H
T v T VeRC >
I (1-e RC Yoo VT z > H

Which is depicted in fig. 3~

(13)
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0
Fig. 3
The value of J(z) at its maximum is for z = H:
i
J(H) = I(l-e~ VRC) (14)

and the value

H
= L2 - Sre

(15)

is called the dynamic distortion which we want to be as small as possible.

Usually one takes A ¥ 5% or less.

As we can see from table 1 the probe should be at least during the time



equal to 3 time constants RC inside the layer to have the recorded maximum
of the dynamic curve different from the true value not less than 5%. Thus,

for the gualitative measurement one takes the value H/ (VRC)

TABLE 1

H [}
VRC Az
1.0 36.79
2.0 13.53
3.0 4.98
4.0 1.83
5.0 0.67

in the limits
H

< —- <

2= VRC ~— 3 (16)

whereas, for the quantitative measurement one takes

— > 4. (17)

Conditions (16) and (17) define the value of the lag V+RC in terms of the
thickness of layer to be investigated. The minimum thickness H is for the
gamma-ray log equal to the length L of the detector (in our case

L = 18" = 45,72 cm) and in the case of the neutron or density log is equal

to the source-detector spacing (in our case for the N.N. log):

L

3 + 13" = 33.02 em + 10 cm = ~43 cm

/2 + 15" = 38.10 cm + 10 cm = ~48 cm
L/2 + 17" = 43.18 cm + 10 cm = ~53 cm

and for density tool:

H, = 55 cm
min



Thus, if one takes as an average

one

and

if,

one

and

H. ~50om
min

has for the qualitative measurement

VeRC » 0.4 H , = 20 cm
min

for the quantitative measurement

V-RC = 0.25 H , = 12.5 cm.
min

for scme reasons (usually technical), one applies for example
V RC = 100 cm

can distinguish the thickness

Hmin = 2.5 VRC = 2.5 m

one can measure quantitatively the layers with

H., =4VRC = 4 n.
min

Once the lag V+RC is selected the question is how to divide it into

the

The

logging velocity V and the ratemeter time constant RC.

RC value is chosen according to the accuracy demanded for measurement.

From eq. (8) one has for the anomaly from fig. 3 that

o 0g z<o
2 1 Ifl-exp (- \—)'Ii-c?)]; 0<z<H
G 4
{J(z,v,RC)] 2RC x I[l-exp (- 2H ¥ (-2 Ei)- > H(18)
exp (- =5)] e VRC'T 22

Taking again z = H one has from eqg. 18



2 1 ~2H
- ——— . - L 19
g " (J ) = oRC I [l-exp ( ch)] (19)

or the relative standard deviation

“Ynax) . 1 /xR (20)
Jmax V2.RCeI 1 - A

Where A is given by eq. 15 in table 1. Assuming A << 1 one has from eq. (20)

for the relative standard deviation

oI )
S = —-3925— (21)
max
that
RC = —~—l~75 (22)
2¢I+8

In table 2 the values of RC are given according to eq. (22)

TABLE 2

The values of RC (in sec) for different error & and intensity I values

S(%)

(c;s) 1 2 5 10 20
1 5000 1250 200 50 12.5

5 1000 250 40 10 2.5
10 500 125 20 5 1.25
20 250 62.5 10 2.5 0.625
40 125 31.25 5 1.25 0.312
80 62.5 15.6 2.5 0.625 0.156
160 31.25 7.8 1.25 0.312 0.078

Once the RC value is selected, for the assumed dynamic distortion A, i.e.
from the lag value V«RC one obtains the logging velocity V. When one has
some limited choice of the RC values for a given model of the ratemeter,

one takes always the nearest higher value. For example if



I =5 cps
and we want to have at least
§ = 5%

the RC from table 2 is 40. The nearest higher value of RC is for example

The log is recorded in the scale 1:500, i.e.
1 cm in the log = 5 m in the borehole.

One can expect that 4 mm in the log will be possible to distinguish, which

means, that the H , 1is
min

H., =4 mm in log = 2 m in the borehole
min

which for the qualitative measurement gives from eq. 16

0.5 H . > VRC > 0.33 H_,
min — - min

which is in this case
1m>VRC > 0.67 m.

Thus for RC = 80 s one has
1.25 <% >y > 0.8333 =&
s — - s
or
0.75 m/min > v > 0.5 m/min.

If for some technical reasons we have to use, for example

V = 1 m/min



it will mean that our thickness resolution (qualitatively) will be in

this particular case

2°VeRC < H , < 3+ysRC
— min —

which is in our case

267 cm < H , < 400 cm
— "min —

because

VRC = 1 m/min » 80 s = 133,33 cm.
When, at a given intensity (for example at a given depth in the borehole)
one records the statistical variations (after the waiting time of the

order of 4+RC to have the factor

1+ A
1 - A

in eq. (20) close to 1), the variations observed during about 10¢RC should
be within the limits of *2§, which means, that the recorded line for the

intensity I should be
(23)

which for the example given above is
4.64 cps < I < 5.35 cps.

When one operates in some geological region having more or less well
defined and constant range of variation of geological parameters, for a
given type of logging equipment, the average values of the intensities
I(z) for each type of log are constant, which in turn implies always the
same values of RC. When one takes the minimum lag VeRC as being equal to

100 cm, one has a very simple formula for the logging speed:

100 cm 6 m
Ve 2o 2 I
RC s - RC[s] min (24)
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or in general

© m
= ¢ * RC[s] min (24a)

where ¢ is a factor of the admissible lag 100 cm (i.e. for the lag
200 cm ¢ = 2 etc.). RC is here the ratemeter time constant (in sec)
selected once for all for a given type of log (for example RC = 80 s

for GR log).



GAMMA RAY LOG
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2 GAMMA RAY LOG

J.A.C. JUNE 14, 1978

Gamma ray log is performed to measure the natural radioactivity of rocks.
Sometimes artificial radioisotopes are introduced into the borehole as a
tracers of liquid or solid materials. This log is then also used to lo-
cate these radioisotopes in the borehole and to measure its die-away be-
haviours. We will consider here only the first application, i.e. the
measurement of the natural rock radiocactivity. Again one distinguishes

here two principal cases:

1. Application for determination of the grade of radioactive ores.

2. MApplication as a lithology log. We shall be interested in this
latter case. 1In the lithology log the natural radiocactivity of
rocks is due to the presence of potassium (with its radioactive
K-40 isotope) in the amount between O and 6% in igneous rocks
and due to the radiocactive decay of the series of uranium (mainly
U-238) and thorium (Th-232) being at the level between O and 30
ppm, with the usual Th/U ratio of about 3. The U and Th content
increases when one goes from the ultrabasic to the more acidic

igneous rocks.

Finally there exist the radioactive sources in the igneous rocks, which
altogether are emmiting some number of gamma photons of certain energy.
The number of photons per decay is given in fig. 1 [1]. Each primary
photon is scattered in the rock medium, undergoing usually several con-
secutive Compton scatterings, up to the moment when it is absorbed due

to the photoelectric absorption. The simultaneous combination of these
two phenomena during the photon transport through the rock media gives

as a result the continuous photon energy spectrum. An example of such
spectrum is given in fig. 2 [2], where for the two primary photon energies
EO = 1 and Eo = 2 MeV the photon flux in photons/cmz/sec has been calcu-
lated in function of the scattered photon energy in oxygen, silicon and
iron, when each elementary volume of these media has emitted 1 photon/sec
(of energy EO). As a matter of fact in the rocks one has a superposition
of such spectra due to the whole set of primary photon energies just pre-
sented in fig. 1. This combined photon spectrum is impinging with the

gamma ray detector in the gamma ray tool.



7/decay

238,
17
0.50
g ¢
sS4 9
040
-
030 R
> 3
3
S
aQ
¥ g
a2 || 3 s
-
;S -
™
J
o |14 Iy 2 s 32
o N 3
§ < s '~ ‘.Q: * >
Hls gl A P ] g I S
S RERSTSE AT R
q . &
0 il il | ol [ (T 1
7/ decay
2327,
040
&)
] 3
& ~
: g
030 =
= N
<
<
*
&
0.90 o
g
k3
& g8
© 2 P
< ES ~ o <
SN < s S I
040 w4 spl o b
: 3 Ro-. Q§
& & N B
B B SEIS s ¥
:i N S & & P
0 | I “ | ] | \
7/ vecay 40
K
0.30
i
020 |-
Q
X
0.0
(/]
] 400 800 1200 1600 2000 2400 2800 £ (kev)

Fig. 1

Prominent gamma rays emitted by the
decay products of U-238, that of
Th-232 and K-40 [1]

The efficiency of detecting
the photons of given energy
is different for different
detectors. As an example
some of the efficiency
curves of gamma detectors

are given in fig. 3 [1].

When the Geiger-Miiller
counter is used as a
detector, one obtains for
such combined spectrum only
one figure - the total (or
so called gross count)
intensity. When the
scintillation counter is
used, the registered photon
spectrum is the convolution
of the physical photon
spectrum with the detector
response function, which
gives as a result the
"gamma ray spectrum", which
for some probe is presented
in fig. 4 (for uranium
bearing rock only). 1In the
lower part of this figure
the spectrum of the radium
needle measured in the air

by the same probe, is shown.

As we can see from figs. 1,2
and 4, the majority of photons
arriving to the detector is in
the vicinity of 200 kev in
spite of its initial energies
(it is about 90% of photons
with energies below 400 keV).

This is just the region, where
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Spectra of scattered Y-rays
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medium, calculated with the
source strength as unity [2].
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2.1 Simple theoretical approach

In the gamma-ray log (of the lithology type) the information sought is
the determination of the type of lithology and its localization along the

borehole depth (its position and thickness).

The lithology is characterized by its specific radioactivity, which

as a matter of fact is not a very well defined quantity. It is usually
expressed in uranium equivalent ppm (or radium equivalents), which simply
means that given type of rock when measured using any particular Y-ray
detector (or gamma ray logging tool) gives in the same measurement condition
the same signal (count rate) as the rock containing a given amount (in ppm
Oor per cent) uranium being in ‘the secular equilibrium with its decay
products. This more or less ambiguous definition is in some countries used
in the more precise way by defining the detector signal in the exposure
dose units (i.e. in micro-roentgens per hour - UR/h [3]). This unit, how-
ever, connected more or less with the radiation field in the air (and with
the spectral response of the detector tool) has some not very well defined
relation to the real specific activity of the rock, which should be ex-
pressed as some weighted average (over all radiocactive isotopes existed in

the rock) of the Ci/g (curie per gram of rock) [3].

The most adequate units of measurement for the lithology gamma ray log are
the so called API Y-ray units. They are defined by means of some standard
radioactive media containing about 24 ppm Th, 12 ppm U and 4% K (U and Th
being in radioactive equilibrium) which, roughly speaking, corresponds to
the twice of the specific radioactivity of the mid-continental shale in
USA. This facility is situated at the University of Houston (Texas), and
its simplified sketch is given in fig. 6. The difference in the counting
rate of a given logging tool between the radioactive concrete and the low
activity concrete in this facility has been defined as 200 API Y-ray
units (note that there is 5 1/2" water filled and cased borehole inside),
the radioactivity of the most common sedimentary rocks in the API units

is given in fig. 7 [4]. These data are in some way recalculated from the

work of Russel published in Geophysics in 1944.

Whatever unit of the specific radiocactivity of rock is used, it can be
characterized by its amount g. In this case, one assumes the infinite,

homogeneous medium with the specific radiocactivity equal q, the count rate
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The level of radiation normally associated with various rock types.
The length of the line denotes the intensity range in API Gamma Ray Units.
The vertical width of the line increases with the frequency of occurrence.
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registered by a given probe, say I is:
I =K -4 (1)
where K is the calibration factor depending upon the tool properties (rock

properties) and upon the kind of unit used for the q determination. In any

case g is here always given in the amount of radioactive material per unit

weight of the natural radioactive medium (it means together with water
existing in the porous space, for example), thus we call g the wet weight
content, or the in situ weight content. The majority of the rock
properties (for Zeq constant) is in the "fine structure" of the calibration

factor K, which in turn can be rewritten as:

1
K=K -

=|o

(2)

Where K1 is the new calibration factor, p is the bulk density of the rock
(together with its porous space water) and U is the effective linear

absorption coefficient for the registered radiation. In fact, the quantity

H
P

upon the rock density (nor K1 does). In this respect eq. (1) is density

having the meaning of the mass absorption coefficient does not depend

independent when q is the weight content.

Eg. (1) is valid in the infinite, homogeneous medium and also when this

rock medium is crossed by the dry borehole (cf. fig. 8).

{

Infinite radioactive medium with constant
specific radioactivity q_

DRY BOREHOLE

Fig. 8

Cases to which eg. (1) can be applied




When the borehole is filled with water or drilling fluid, the recorded

intensity, say I should be corrected by a factor CF, in order to

1!
obtain the true intensity Iw, i.e.

I =CF .« 1I (3)
0 1

The correction factor CF depends upon several variables:

R - radius of the borehole
RS - radius of the probe
P = density of the drilling fluid or
U - effective mass absorption coefficient for the drilling fluid,
p which in the case of the natural radiocactivity of rock is taken
as
% 0.03 -« p (4)
uP
€ - off-axial position of the tool in the borehole (£=0 for central

position, €=1 for the tool completely decentralized).

The values of the so called borehole absorption function Ap(upR) related

to the CF correction factor by

1
CF = —————v (5)

are given in fig. 9 [5] for the case when the tool is completely decentral-
ized. For the 1 11/16" GR tool of GOI the graphs of the CF correction

factors can be found on pp. 176 and 178 of the GOI formation evaluation

data handbook (Fort Worth, Oct. 1975).

When the radioactive formation is not infinite in the vertical direction
(say, along the z-axis) the I, intensities are no more z independent.
Some simple theoretical approach [6] permits to obtain in this case the
shapes of the radioactive anomalies observed in this case. The main
features of such anomalies for the regular radiocactive layers have been
calculated according to this theory [7]. The general behaviour is that
for the semi-infinite radioactive layer the gamma ray anomaly in the

vicinity of its boundary (i.e. at about 0.5 to 1.0 meter from it) has the

shape
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« CF (6)

given in fig. 10. The half value of this anomaly occurs exactly at the
point z where the boundary is crossing the borehole. When the borehole

radius R increases the slope of the anomaly F(z) decreases as shown

F (2) A
v Z4

Fig. 10

Behaviour of the anomaly from the semi-infinite radioactive layer.

F(Z)/

1.0

Barren rock

Borehole radius
R increases

Radioactive layer

v
N

Fig. 11

Influence of the borehole radius R on the shape of the semi-infinite
anomaly F(z)
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When one considers the influence of the detector length L on the shape

of the semi-infinite anomaly, when Fo(z) denotes this shape for L = O

(point-like detector), the relation is:

+

N

1 z 1 1

FL (z) = T J Fo(z ) dz (7)
z-L

2

which gives, of course the picture (fig. 12):

>

F(2) 4 _
Radioactive layer
1.0 ——

Barren rock Fo (2)

Borehole radius \
R is constant

i
! —3% Physical range of investigation j&——
I 1
|
f——Physical range of investigation +length L of the detector ————>i
|

—— e e e e
¥
N

Fig. 12

Influence of the detector length L on the shape of the semi-infinite
anomaly

Now, when one wants to know, what is the shape ¢O o (z) of the gamma ray
14

anomaly from the infinitely thin (thickness H - 0) radioactive layer

imbedded in the barren rock (cf. fig. 13).
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N b0

Infinitely thin radioactive layer

—

Barren rock Barren rock

Fig. 13

Shape ¢0,0 (z) of the GR anomaly from the layer with thickness H = O

the formula is valid

d F (z)

o]
by o () = g (8)

where Fo(z) is shown in fig. 12. Now, when the thickness H is finite, the

shape ¢ (z) of GR anomaly will be the superposition of the ¢ (z)

O,H 0,0

anomalies, i.e.

z + H/2 1 1
S d)O'O (z7) dz (9)
z - H/2 '

¢

-

0H (z) =

which can easily be converted using eq. (8) to the form:

. - H H
cbO’H (z) = F (z + —2-) - F_ (z - 5) (10)
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For the tool with .the finite length L of the detector the similar

equations hold:

d FL(z)
(bL}O (Z) = '—"az ~ (11)
1 z + H/s 1 1
¢ (&) =3 00 (27) dz” = (12a)
z-H
2
H H
= FL (z + 50 - FL (z - 50 = (12b)
Z+ L
1 — 1 1
=T ] f . 2 ¢O'H (z7) dz” = (12c)
2

(12d)

T

Radioactive
anomaly for
layer Hs

05 T

T max

0.5 Imax

H,
€&— Hy —>
Hs

Fig. 14

Influence of the layer thickness on the shape of radiocactive ancmaly

v
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The thickness H of the radioactive layer has an important influence on
the shape of the GR anomaly. This influence, for L = O, according to
eg. (10) can be illustrated by a simple sketch given in fig. 14. Here
the three layers with thickness H, > H, > H, give three radioactive

3 2 1
anomalies characterized by following features:

Layer with thickness H3 has a flat maximum equal to I  because H, value

3
is much greater than the range of investigation (which is of order of

about 1 meter) of the method. In this case the value of anomaly at its
half maximum (0.5 I ) indicates the position of the true boundary of the

radioactive layer.

When the thickness H2 is just equal to the range of investigation, the
radioactive anomaly has still the maximum equal to I_ which is now no
more flat but is a real peak. Its half maximum thickness H . —-indicates

1/2

the real boundaries of the radioactive layer.
Finally, when the thickness H

L is much smaller than the range of investi-

gation, the maximum value Imax of such anomaly is:

and consequently

>
H1/2 2 H

When one compares edq. (9) with eq. (12c) one easily finds that the effect
of the detector length L is manifested with the same way as the effect of
the layer thickness H. For this reason the maximum space resolution (in
the z-axis direction) for the gamma-ray method is equal at least to the

length L of the detector used for the gamma-ray log.

All these effects enumerated above give the behaviour of the main para-
meters Imax and H1/2 of the gamma ray anomaly, of a single radioactive

layer with thickness H crossed by the borehole with radius R, and when

the anomaly is measured with the detector of the length L, which is

schematically presented in figs. 15, 16, 17 and 18.
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Hl/2 :Half maximum thickness
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Fig.
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When one takes, however, the total area under the radiocactive anomaly, i.e.

S = S I(z) az (13)

one obtains that
SeCF=I «-H=K=+He.gq, (14)

where CF is given in eq. 3. This last relation (so called GT: Grade x
Thickness) is used in USA to obtain the calibration factor from the area
S of the known anomaly of the uranium bearing layer (but attention! they
define their calibration factor as being equal to E%E according to the
symbols used here!).

In the lithology log we are interested in the knowledge of I, not q, to
be able to compare different layers. The I, value can be given either
in cps (when one has only one logging equipment) or in the API gamma ray
units. The procedure, how to get I from measurement, being the inverse
way of application of eq. 14 or nomograms in figs. 15+18 is called the
interpretation and is usually performed using the computers and following

one of the particular theories of interpretation of the gamma ray logs.

2.2 Introduction to the theory of interpretation of gamma ray logs

Modern methods of interpretation of gamma ray logs are not taking into
account only one separate radioactive layer but their whole sequence in
the borehole. Here the assumption is that the layers are parallel and
the borehole is perpendicular to them. 1In this case the registered signal

Il(Z) at a given depth z is equal to:

400
1 1 1 1
L =K. [ ———qz") -4 (|z=2z"|) az" = (15a)
' - CF(zl) L,0
+00
§CF(2) —wf Io(20) = 0y o (lz-2']) az (15b)

The sense of eq. 15 is that the reglstered anomaly I (z) is a superposition

of many elementary anomalies ¢ (z ) having each 1ts center at the point 21
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When one extends these infinitely thin elementary layers to the finite
thickness Ah, we shall have the situation presented in fig. 19 [9] . The
whole theory of interpretation is explained in the papers [8, 9, 10, 11]

and here we shall give short description of this method of interpretation.

N A
J(z2) ?“An(x)
|
Pl | |
=A.h IAh Ah {Ah |Ah Ah: &Oh AR IAR AR Ah Ah Thickness of elementary layer
1
lao :‘M 5k-3|%-2] -1 [k ! (Bt B2 3 Hera %5 e Ore grade
| P N
e | N
1{J(2)
|
: /1 : : {\\Symhetic anomaly J (z)
il I (« \
i) I quh I \
1 : | | )/E|emenlory anomaly ¢An(z)
TN Y

T

JAWATR\'

/;/ | / { I\\ \\\\
,0‘} * AVAR N\
/’/ l’/l)l/ <

|

lk+ ! [k+2 k+3|k+4lk+||k+ Number of layer
k-Ah %—*l' X axis for k-th layer

= : > X
o X
Y4
0 Depth axis z -

+o0
J(Z)zJd(k dh+x)=2 q ¢ {Z—Ahv(k+|)]+3yn!het|c anomaly
i=-0 k+| = Ah "

Fig. 19 [9]

The principle of the synthetic anomaly J(z) composed from the elementary
anomalies pAh(X)’ for which all qh are equal and constant

First, one digitalizes the analog record of the dynamic curve taking

its digitalized values J(zk) in the middle of each elementary layer of
thickness Ah, just as it is shown in fig. 20. The static gamma ray curve

I(zk) is obtained using the algorithm:
I(zk) = I J(z,  .) « g.(p) (16)
: J J

where for

j#£o0
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Fig. 20 [8]

Mutual positions of gamma ray intensities I. and ore grades qi taken into
account in the interpretation procedure

. ' _ _VeRC , ] p! p! 17
gj(p) =-9_35) = - g (1) Je(p+i) ! (p-)! )
and for j = 0
g, () =1 (18)

The values -p f_j < +4p increase along the direction of the logging speed V.
Each static value I(zk) is corrected, if necessary, to the detector dead

time T loss:

I(zk)
1 - T « I(zk)

Il (Zk) = (19)
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Next each Il(zk) value is corrected to the different radiation absorption
in the drilling fluid due to the variation in borehole diameter 2R:

o

= . ’R 20

I (zk) Il(zk) CF (2, ) (20)
Finally the Im(zk) value is calculated from the formula:

j=+p o
I(z,) = __z_p I"(z) * b (@) (21)

which is nothing else but the solution of the integral equation (15b).

The bj(p) coefficients are:

b, =Db . =
](p) _3(9)

B, (p)
=06 .+ A, (p) + (22)
°oj 3 02 - An?
‘Here aoj is the Kronecker's delta:
1 for j =0
60j - 0O for j #0 (23)

and in ref. 8 there are the extensive tables of the coefficients Aj(p),

Bj(p) and 0.

How this kind of interpretation "works" can be seen in figs. 21 and 22.
For the GR anomaly N° 1 in fig. 21 its digitalized values have been taken
(curve N° 1 in fig. 22). Next the values of Io(zk) (A) and Im(zk) are

shown in fig. 22.
Example

As an example we can take the question, how to restore the static anomaly
I(z) from the registered J(z) dynamic one. Let us take the worst conditions,
when the static anomaly has the rectangular shape. Let its thickness

be H=5m, the V- RCis vV « RC = 1 m/min « 80 sec = 133.333 am. In this
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case the I(z) values are given for I(z):

B z <0
I(z) = B+I 0<z<H (24)
B z >H,

GAMMA - RAY LOG

o] 15 30 45 60 75 90 105 uR/n
: L AR S BN J l Ll v LA i ' LA 2 A " L L l s ©T°°7 ] TV ¥ 7 ' LANE Aln M ) l vy vy ‘:
0 SO 100 150 cp.s.
OEPTH LA L AL H R HE SRS B B B AN R B Bt g
m. 4
[ ]
S46f- ' ~
X BOREMOLE RADUS 660 cm 1
L DETECTOR LENGTH 36 cm J
567’ MUD FILLED UNCASED BOREHOLE 4
sea)- -
C ]
b .
549t . Y=3iBemfy
[ RC=10S5s 3
L V-RC=3M9S cm
ssof- 4
: | _ ]
ss1f- V=09 cm/s
[ RC= 58 ]
5 RC= 545cm -
ss2}- -
ssaf ]
o -
[ ]
. $56 |- -
1 2 1 e l 4 4 4 q l e 4 1 y ] Vi 1 1 1 j

Fig. 21 [8]

Influence of the logging speed V and the ratemeter time constant RC on
the shape of the dynamic anomaly J(z)

where B in eq. (24) can be considered as a constant background. The

dynamic anomaly is given, according to eq. (1.6) or (1.13) as:
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Fig. 22 [8]

Example of the gamma ray log interpretation on uranium deposit. Uncased

132 mm. Linear absorption coeff. taken for interpre-
tation: WY = 0.09 cm‘i, p =4

borehole, diameter

B
—_Z
- 133.333
_J(z) = B+I(1-e 3 )
500
B+T (e l1333_ 4.0

Z

(0] fvz

133.333

We take the values of the above J(z) function at the

:k' =
z, Ah = k

k=0,1, 2, 3

« 45.72 cm

e s e

Y
N

<H (25)

points

(26)

which corresponds to the digitalization of the analog record J(z) of the

log.
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Now, to restore again the I(zk) we use eq. (16) for p = 3 (which gives
p » Ah = 137.16 om which is bigger than the range of investigation). The

gj(3) values calculated from eq. (17) are in this case:

gOB)- 1.0000

g9, (3) ==g_1(3) = 2.1872
92(3) =‘q_2(3) =-0.4374
9,5(3) =-g_5(3) = 0.0486

and the formula (16) becomesi

I(Zk) = J(zk) + 2.1872 x [J(zk+1) - J¢( )] -

Zx-1

) = J(z, _,)] +0.0486 x [J z

- 0.4374 x [J(zk+ )]

9 ) - J(zk_

k+3 3
The application of this formula gives the result which is presented in
fig. 23. As we can see the restored I(zk) values do not follow perfectly
the input I(z) static anomaly, especially near the boundaries. This
effect is due to the rectangular shape of the static anomaly. If it is

more smooth (which is the case in the nature) these deviations at the

boundaries become negligible.

As an exercise the reader can repeat this example but taking VeRC = 400 cm
(i.e. 3 times higher than in the example). In practice this VRC value
should be achieved not by increasing the RC value (which can be not
available for a given ratemeter module) but by increasing by the factor

3 the logging velocity. This conserves the same accuracy of measure-
ment (cf. eq. 1.11) but increases the dynamic distortion (cf. eq. 1.15).
The main task of the procedure prescribed by eq. 16 is just to restore

the right values of I(z) from such very distorted recorded log values.
This simply means that application of eq. 16 permits to save time doing

the log run quicker.

Some more details on the application of digital method of interpretation,

given above, can be found in ref. 12.
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3 NEUTRON-NEUTRON LOG

J.A.C. JUNE 19, 1978

Basic physical features of the neutron log are presented in my lectures
from Melbourne [Ref. 13, 14, 15, 16] which I have left in Orkustofnun.
Here, therefore, the discussion will be limited only to the particular,

Icelandic, problems.

Let us only remind that the epithermal neutron flux @n(r) in the infinite
homogeneous medium from a point source of fast neutrons can be given in

the n-th group diffusion approximation as:

= /o n-2
__9-p e Lg xr
¢ (r) = ) (L ) .
4am EZS Ls 2 (n - 1)! s
(1)
] n£2 X ke (n-2+k)!
keo  Lg (z/g)k k! (n-2-k)!?
where

Q 1is the neutron output from the source (n/sec)

p 1is the probability for the neutron to be not absorbed during the
slowing down process [17]

Ezsis the slowing down cross section for the last neutron group
r 1is the source-detector distance and

LS is the slowing-down length defined for the point source in the
infinite medium as:

S ®(r) - r2dv

(2)

Q=

S d(r) av

where ®(r) is the flux of neutrons with energy equal to the final energy
for which the Ls value is calculated. Eq. (2) serves also for the experi-

mental determination of the LS value.

Eg. (1) has been derived under the simplifying assumption (which fits
quite good with the experiments) that the diffusion lengths Lk in each

of the k neutron groups are equal to each other.
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When n - © eq. (1) approaches the so called Fermi age solution:

N Q-P ..
0 L (1) = e 2 (3)
S

The parameters p, EZS and Ls are those which define the rock neutron
properties for epithermal neutrons. All of them are very sensitive on
the HyO content (due to the anomalcus neutron properties of hydrogen)
and the slowing-down length Ls is always the most important among them.
Let us also remark that when the source-detector distance r is expressed

in the LS units, say

r
X = i,— (4)
S

one has in this case, that the neutron flux @n(x) is equal to:

— "'p_ ——— e
3 Fn(X) (5)

gz:S LS

® (x) = const »
n

where Fn(x) is a function of x and is different for each number n of the
neutron diffusion groups. The behaviour of Fn(x) functions is given in

fig. 1 [13] for some number of the diffusion groups.

In the well logging practice the range of x values (because of the constant

r value for a given probe and a variable Ls value) is
1 <x<5

and it happens that for the rock media n = 2 usually gives a good agreement
with the experiment, and even, when the borehole is water filled, n = 1

fits pretty well with the experimental data for the x values not too small.

The question of the presence of the water filled borehole is much more
complicated for the theoretical considerations [14] and we are not going

to the detailed consideration of this question.

The thermal neutron flux @th(r) distribution can be treated as an additional
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Distance from the source

Comparison of the neutron fluxes in multigroup diffusion approximation
for the point isotropic source in an infinite medium



- 40 -

(thermal) diffusion group to the n groups still existing which yields
to the quite complicated formula . (cf. egs. 87 and 87a in [13], which,

however, gives relatively simple form when n = 1

X x
d  (r) = Q- p 1 [e Ls - e Ld] (6)
th AT L v 2 2
a (.= - 7))
s d
and for n = 2
-z L -X - x
o (r) = —2=P {4 Lg_20-0) (£ Lo Ly (7)
th 3 o r
8T 2 L. a
a f
here

Za is the absorption cross section for thermal neutrons in the rock

Ld is the diffusion length of thermal neutrons in the rock

2 2
Lf = Ls/2 (8)

2,2
o=1- Ld/LS (9)

Here again, when one takes the so called migration length M for thermal

neutrons:
M =L + L2 (10)
N d

and the source-detector distance r is expressed in the M units, say now

r
x =5 (11)
The thermal neutron flux @th(x) can be given as:
= | . p - y
@th(x) = const 3 Fn+th(x,d) , (12)

L
a s
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where again the space (x) behaviour of the function Fn h(x,OL) is very

+t
similar to this one of the function Fn(x) given in fig. 1.

The other approach to the thermal neutron flux @th(r) value is to treat
it as a result of the space convolution of the epithermal neutron sources

(i.e. the epithermal neutron flux)
EES Qn (ry)

With the solution of the thermal neutron flux ¢(;é) from the point thermal

neutron source, like it is shown in fig. 2.

Thermal neutron flux from d V af T,
—~

¢ (7,)

Fast neutron source
Fig. 2
that is:
q)th( ) = ZS ‘f, <I>n(r1) - ¢plr - rl) dr1 (13)

Which for the usual case when Ls > Ld can be imaginated as in fig. 3
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Dif fusion of thermal neutrons within
the ,Sphere of tmportance "of the
radius ~ L4

Fig. 3

Diffusion of thermal neutrons within the "sphere of importance" of the

radius ~ Ld

Using this approach one can expect that the main space behaviour of the
thermal neutron flux @th(r) will be given by the space behaviour of the

epithermal neutron flux ®n(r).

This simple physical explanation of the basic features of the neutron
fluxex will permit to solve the most important problem in the neutron
logging, i.e. how to know the calibration curve for a given neutron tool.
In this case under the calibration curve the relationship between the

neutron tool readings and the rock porosity ¢ is understood.

3.1 Neutron parameters of rocks

As it can be seen from egs. (1) =+ (7) or from fig. 1 the neutron flux @n

or ch at a given distance r from the source is defined by the neutron

parameters of the rock:

for epitermal neutrons:
L EZS, p

for thermal neutrons:
Ls' L

3’ P Ea [

where also the relation

D
Ld =5 (14)
a
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is sometimes used, D being here the diffusion coefficient for thermal
neutrons. All these parameters listed above are the functions of the
rock density and its elemental composition. The quantities L - D,

Ld - P, /p, Ex /O, D + p and p are density independent (p is here the
bulk den51ty of the material) and are the pure functions of the rock
elemental composition. Among all neutron barameters enumerated above the
slowing-down length L has the biggest influence on the neutron flux @

or @ when the hydrogen content of the rock is variable.

There exist many different methods of calculation of the L values. They

are all based on different approximate solutions of the Boltzmann equation

for neutron transport, and all of them try to fit the experimental data.
Unfortunately, as far as rocks concerns there are very few experimental
data-only for dry sandstone and limestone (measured by J. Tittman in the
beginning of 1950’s) and this one for pure water. The method of A. Kreft
from Inst. Nucl. Phys. & Techn. in Krakéw, based on the 25 diffusion group
approximation and taking account of inelastic scattering [18] seems to be

the best one.

17 averaged chemical analysis of magmatic rocks published by Daly [19]
have been taken into account in order to find some general behaviour of

igneous rocks as far as concerns their L values. These analyses are

listed in table 1. For some technical reasons the P2O5 content was
neglected, the total was normalized to 100% and the results were re-
calculated to obtain the elemental content (not in the form of oxides)
in the weight per cent. These data are bresented in table 2. 1In this
table the solid rock densities pM (i.e. assuming porosity equal zero)
taken for further calculations are also presented. Dr. Kreft has kindly
calculated the Ls and p values on my demand, for the data in table 2.
Analysing his results for the LS values it was possible to find some
approximate formula, which starting from the knowledge of the p and P,
data for the rock matrix permits to get the right L values for the

igneous rocks. Pw is here the weight content of the chemically bounded

water in the dry rock. This value was obtained as:

Pw = 571119 (15)
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TABLE 1
Our nomenclature N° of analysis and the NO of samples
rock nomenclature after
baly [19]
1. Dunite = 17. Dunite 10
2. Periodotite = 76. Wehrlite 5
3. Pyroxenite = 85. Diallagite 14
4. Gabbro = 57. All gabbro 41
5. Basalt = 58, All basalt 198
6. Diabase = 90. Diabase 90
7. Diorite =125. Diorite, incl. 55 quarz diorites 125
8. Andesite = 49, All andesite 87
9. Granodiorite = 45, All granodiorite 40
10. Dacite = 46. Dacite 90
11. Granite = 4. Granite of all periods 546
12. Liparite = 5. Rhyolite, incl. 24 liparites 126
13. Syenite = 18. All syenite, incl. 5 "alkaline" 50
14. Trachyt = 19. Tirachyts, as named by authors 48
15. Nephel. syenite = 40. Nephelite syenite 43
16. Phonolite = 41. Phonolite 25
17. Urtite = 35, Urtite 3
where H is the weight per cent of hydrogen reported in table 2. This,
called by us "correlation" formula, is:
L = l-x [m 1g H O + b]J (16)
s P 10 "2
H20 HZO
p’=-(1—<D)pM+<I>=(1—-ib—6) po+165 (17)
m o= -Q . b - 81
0y = 0.37324213 (18)
B, = 5.041956467
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D =Py 01 X My * Py o1 ¥ PyJ
m, = ~5.974367982 (19)
b1 = 41.99660678
= 0. + 0.01 ' 20
p0.0l 0.99 x s (20)
o - pM'Pw
o = S — (21)
1 - pM w
100
PP
= % 2
H,0 (¢ + 100 ) x 100 [%] (22)
here the notation is:
¢ - Water saturated rock porosity in the ratio of 1.0 (i.e.
0<9%< 1.0
o} - Rock bulk density (g/cm3)
P - Apparent rock density when the chemically bounded hydrogen
°© is "taken out" assuming it is in the form of water
P L]

w " Py = Volume content (in per cent when Pw is also in per cent) of
the chemically bounded water

Hzo - Total water content (i.e. chemically bounded plus porous
water) per volume (in per cent)
ul, 81, m, and b, - Coefficients found from the correlation between

the exact method of calculation after Kreft and the
formula (16).

The comparisons between the exact (after Kreft) values of LS and those
obtained using eqgs. 16 + 22 are given in figs. 4, 5 and 6 for three
different porosities: & = 0%, ® = 20% and ¢ = 40%. To simplify the
presentation of data the LS values for igneous rocks have been calculated

after eq. 16 taking po as the parameter and one can see that usually the

accuracy of eqg. 16 is better than 0.1 cm.
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calling the value H20 =% + Pw . QM as the rock porosity (which should be

rather called the porosity index). The results are presented in figs. 7 and
3 3 .

8 for the po range from po = 2.60 g/cm” to po = 3.60 g/cm”. In fig. 7 the LS

values are in log10 scale to obtain better graphic resolution of the plot.

In fig. 8 the LS values for limestone (after Kreft ref. 18) are also plotted.

3
When one compares the Ls values of igneous rocks for po = 2.65 g/cm
with those given by Kreft [18] for the sandstone of the same mineralogical
density po one finds that at least within the range from 2 to 45% of

porosity the igneous rocks and the sandstone have the same Ls values.

Looking next on eq. 5 one has tried to fit the density independent

parameter

for the igneous rock (in function of the weight water content Pw) to the

same parameter but for pure SiO_, and H_O. The corresponding EES values

2 2
for particular elements needed for this calculation are given in the last
row of table 2. The results are given in fig. 9. Here again all igneous

rocks fit quite well one straight line defined as

p
=m o P + b

=, 3 2 w

gzs Ls pM i

m = 5.312918 x 10" ° cm” g"2 (%W)_l (23)

b = 1.44251 x 10 2 cm? g—2

with the correlation coefficient

r = 0.979696

and the pure quartz can be considered as belonging to this correlation.
Thus, as far as concerns the epithermal neutron flux the conclusion is
that the igneous rocks can be considered as having the elemental

composition equivalent to this one of sandstone with, however, different
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apparent mineralogical densities po. The chemically bound water in
igneous rocks should be in this approach considered as a part of the

porosity water of this apparent sandstone of mineralogical density oo.

The thermal neutron paramters Ld, Za and D have been calculated for the

magmatic rocks in table 2 by Dr. J. Wozniak from the Inst. Nucl. Phys.
& Techn. of Mining Academy in Krakdw after the method given in ref. 20.

Here it was possible to fit the Za/p values to the linear relation:

Za/p = m2 . H20 + b2 (24)

O are defined in egs. 17 and 22, but the problem was that the

2
value m, being relatively constant (7.6 x 10—5 ggg-f_mz < 8.9 x 10_5 SE;)

L)

where p and H2

gave more or less the same increase of Xa/¢ value per 1 per cent of H2O,

- 2
whereas the b, value was very unstable (1.96 x 10 3 cm /g < b, < 4.00 x

2 2
X 10—3 cm2/g). Such behaviour is quite obvious for the thermal neutron

absorption cross section because m, being mainly connected to the water

2

absorption cross section, the b, value depends upon the absorption cross

2
section of the dry rock matrix (chemically bounded water excluded). With
the Oa values (microscopic absorption cross section for thermal neutrons)
so variable for different constituents of the magnatic rocks (cf. the very

upper row of table 2) it gives just the b2 values so unstable.

It was also possible to fit the D « p values to the relation:

P +D=m, - log1O H)O + b, (25)

with the relatively constant m3 and b3 values for all magnatic rock from
2
table 2 (m3 = =-2,0, b3 % 4.0 g/cm”), thus in general, for a particular

magmatic rock it is possible to calculate its Ld value from the formula

m .
Lo 3 log1O H20 + b3 (26)
a - . !

m2 . HZO + b2

but because of the very variable b2 value eq. 26 cannot be used as the

general formula with the parameters m2, m_, b

and b3 constant for all

3 2

types of magmatic rocks.
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For the reasons presented above we shall use in our further considerations
the LS values only and the approach explained in fig. 3 to find the proper

calibration curve for the neutron probe in magmatic rocks.

3.2 Neutron calibration curves

In any neutron log the probe readings are always in counts per second.
This intensity is converted into the so called API neutron units. 1000
API neutron units is defined as the response of the particular neutron
logging tool in the 19% porosity Indiana Limestone inside the water
filled 7 7/8" borehole situated at the University at Houston. Special
field calibrators delivered together with each neutron tool permit to
convert the tool response in cps into the API units according to the

procedure described in the Operators Manual.

For each particular probe the calibration curve i.e. tool response in
API units vs. porosity is always given for the limestone lithology and
for the particular borehole conditions. For the GOI 1 11/16" neutron
probe these calibration curves are given in figs. 11, 12 and 13 [21].
They are given for the borehole diameter 7 7/8" only. The influence

of the variable borehole diameter on the neutron probe response can be
calculated using very sophisticated mathematical approach [14].. However,
the general behaviour is, that if the borehole diameter is increased,

the neutron probe response is decreased in a logarithmic way, i.e.

1 =
g Inn m4

« 2R + b, (27)
where 2R is the borehole diameter,Inn is the nommalized (in API units)
neutron probe response and m4 and b4 are particular constants for a
given probe construction. Eg. 27 holds to some range of thé borehole
diameter 2R around the nominal value, which in our case should be taken

as 2R = 7 7/8". Thus, the problem is to know the value:

A
1g Inn

R .
"= T2y Y9 Lin = (28)
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<-6' DIA.—> 3/8" STEEL DECK PLATE

,,,,,,,,,,,,,,,,,,,,

FRESH WATER
CONCRETE

CORRUGATED PIPE

CARTHAGE MARBLE
(1.9% POROSITY INDEX)

sY}{— INDIANA LIMESTONE
: (19% POROSITY INDEX)

i3~ AUSTIN LIMESTONE
gl F (26% POROSITY INDEX)

CONCRETE

% CASING IN RATHOLE HAS ID
1/8" LARGER THAN DIA. OF
HOLES IN LIMESTONE

Carthage marble, Austin limestone, and Indiana limestone
sections are each composed of 6 regular octagonal blocks, 5
ft. across, 1 ft. thick, with 7-7/8" (+1/16"") center bore hole.

Fig. 10

A.P.I. calibration pit for neutron tools
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POROSITY — %

% — ALISOHOd

NEUTRON-NEUTRON LOG RESPONSE VERSUS HOLE SIZE AND POROSITY
(Uncased, fresh water filled borehole, limestone formation 1-11/16" diameter
decentralized tool, 13" spacing, americium-beryllium source)
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API NEUTRON UNITS

Fig. 11

APT neutron units

Let m, be known as

4
o A 1g I ) lg I (R)) - 1g I (Rl) (29)
4~ i N 2R, - 2R1
—

i.e. as the decrease of the logarithm of the neutron probe response
when the borehole diameter is increased by one inch. In this case when
as 2R1 one takes the nominal diameter (7 7/8" = 7.875") for which the

probe response Inn(Rl) is known, one has from eq. 29:
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is sought.

The coefficient m, is a function of the rock porosity and of source-

detector spacing and the probe construction (kind of detector, kind of

shielding, etc.), thus it should be known just for a given, particular

NEUTRON-NEUTRON LOG RESPONSE VERSUS HOLE SIZE AND POROSITY
(Uncased, fresh water filled borehole, limestone formation, 1-11/16" diameter
decentralized tool, 15" spacing, americium-beryilium source)
40
30
AN
20
;P
7
6
\ :
4
I 3
HOLE DIAMETER 77/g8”
\ 2
1
0 500 1,000 1,500 2,000 2,500 3,000 3,500
APl NEUTRON UNITS
Fig. 12
API neutron units
m (2R. - 2R,)
I (R)=I (R)x10% 2 L (30)
nn 2 nn 1
Where 2R2 is the new borehole diameter for which the probe response Inn (R2)

% — ALISOHOd
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NEUTRON-NEUTRON LOG RESPONSE VERSUS HOLE SIZE AND PQROSITY
(Uncased, fresh water filled borehole, limestone formation, 1-11/16"' diameter
decentralized tool, 17’ spacing, americium-beryllium source)
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APl NEUTRON UNITS

Fig. 13

API neutron units

probe, which was not our case, of course. The only available information
was on the GOI neutron probe of 3 1/2" diameter and 15" spacing and on
the Schlumberger GNT 1 11/16" probe, 16" spacing [21, 22]. The corre-

sponding calibration curves are reproduced in figs. 14 and 15.

The m, values have been calculated from figs. 14 and 15 after eq. 28.
They are reported in fig. 16. The big difference between these two kinds
of neutron probes is easily visible. The 3 1/2" GOI probe is much more

sensitive to the borehole diameter variations than the Schlumberger one.

% — ALISOHOd
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NEUTRON-NEUTRON LOG RESPONSE VERSUS HOLE SiZE AND PQROSITY
(Uncased, fresh water filled borehole, limestone
formation, 3%’ diameter decentralized tool, 15’ spacing)
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Fig. 14

API neutron units

It can be due to the differences in the probe diameter (which should,
however, be to the opposite direction, in the source-detector spacing
and the most probable is that it is mainly due to the difference in
the internal probe construction. Having, however, this kind of infor-
mation available only, one can try to establish the calibration curves
for the GOI 1 11/16" NN probe using the m, values from fig. 16. 1In
this way one obtains two families of calibration curves. As an example
this has been carried out for the 15" spacing probe (fig. 12) using
eq. 30 and the plots of the my values in fig. 16, the results are
presented in figures 17 and 18. When one uses these charts for inter-
pretation, the resulting porosities will be quite different. For

example for 6" borehole and 2000 API units one obtains either 9.5%

% — ALISOHOd
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Pu-Be or Am-Be Source, 16" Spacing
FRESH MUD, UNCASED HOLES, LIMESTONE

APl UNITS —>»

4004'00 500 €00 700 800 900 1000 1500 2000 2500 3000 3500 4000 5000 500200
A
T ;y 1 H y ’.... 300
300 ;g_ r-’ ' 7 // 4 4 / ) ' # o
T qu:l; Y 7 / /, / V 200
2001w g hi y 7 ' ¥ YA 7 '
18 m”"' [ 4 / / f | 100
dliini /
100 b , i il 70
— 45
=7 i I
I © 1972 Schiumberger
40—} | 40
35 35
1
304 30
(&)
>
2541 S ! 25
>
a
20“‘ < X 20
N AN 1
>
t N
1518 i 15
% -
a NAAN
NAW
10— % \ 10
= \ N\
n NAUAY
L \' \
= \ N
3
5 N 5
: N
\ N\
\ N
N
0.._4 A \ \
! .
8%' 7%'6%" 4%" <= Hole Diameter
Fig. 15

Neutron departure curves GNT J, K - 1 11/16" sonde

of porosity (fig. 17) or 5.5% of porosity (fig. 18). These differences
in interpretation are much more pronounced in higher porosities. The
accunmulation of enough field results will permit to answer which inter-
pretation chart reflects better the real porosity of the investigated

layers. Similar calibration curves should be calculated for the spacings
13" and 17",
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3.3 Lithology effect

Calibration curves in figs. 11 = 13 and 17, 18 correspond to the porosities
measured in limestones. When the other lithologies are concerned GOI

gives the correction chart [21] reproduced in fig. 19.

APPARENT NEUTRON POROSITY — %

CORRECTED POROSITY — %

45 0 5 10 15 20 25 30 35 40 4545
A
y
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/’
/'
4
35 pd 7 35
pd Y
yd
30 30
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25 A e 25
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0 5 10 15 20 25 30 35 40 45
APPARENT NEUTRON POROSITY — %
(FROM CHARTS OBTAINED USING LIMESTONE TEST BLOCK DATA)

Fig. 19

Neutron porosity corrected for formation chemistry effects.

This chart has to be corrected now for the igneous rocks. Here the
assumption of the chemical similarity of magmatic rocks to the sandstone
formation is assumed (cf. 8 3.1) and the influence of the rock apparent

mineralogical density po will be taken into account. The following

procedure, explained in fig. 20, is used:

% — ALISOHOd A3133HYOD
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The correction line for the igneous rock with po is sought. Let from
the calibration curves the apparent limestone porosity is Po. In fig. 19

through the point A one has the sandstone porosity P Next, using the

1°

plots in figs. 7 or 8 for the porosity P, and for the apparent rock

1
density po = 2.65 the point B is found which corresponds to the point C

(the same Ls value!) when the apparent rock density is po = 3.00 - thus
the porosity P2 is found. In fig. 21 the apparent limestone porosity PO

and the corresponding porosity P, determine point D which is on the curve

2
po = 3.0 just sought. Now, repeating this procedure for different values

of PO and po, the correction chart in fig. 21 is obtained.

As a result of interpretation in fig. 21 the so called true igneous rock

porosity index (PI) is obtained by:

PI - V PI - P« D,
o = ——«———\7—"—’ [3] = S "’. 5 [%] (31)
v 1 - ¥ M
100 100

where
w w M (32)

is the volume (in per cent of 1 cm3) occupied by the chemically bounded

water in the igneous rock of porosity ¢ = 0%.

The entry in the plot of fig. 21 is the apparent limestone porosity

and po. Apparent limestone porosity being known from the calibration
curves, the po is obtained from eqg. 21. To facilitate the calculations
eq. 21 has been plotted in figs. 22 and 23 where the entries are the dry
rock mineralogical density pM and the weight (Pw) or volume (Vw) water
content in the dry rock. The values pM and Pw should be known from the
laboratory analysis of the rock samples. For this reason it is necessary
to collect the statistics of samples for a given type of igneous rock to

obtain the average values pM and Pw which can be used in this interpretation.

J.A. Czubek
Reykjavik, June 26, 1978
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Neutron"porosi’ry equivalence curves for igneous rocks
GOl 1" neutron probe
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