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ABSTRACT

Two techniques connected with the use of the finite element
Galerkin method for solving the linear parabolic differential
equation describing unsteady groundwater flow in an anisotropic
nonhomogenous aquifer are introduced. The first is a mode
superposition technique for dealing with the timederivative
which involves computing the smallest eigenvalues and associated
eigenvectors of the matrices arising from the Galerkin method.

It is shown how such a technique allows us to interpret the

response of the groundwaterlevel to input in terms of parallel
linear reservoirs. It is further argued that if properly implemented,
the technique will have computational advantages over standard
finite difference methods f.ex. in the case when the input function
is constant over relatively large time subintervals. The second

is a technique based on socalled generalized flow formulae for
calculating flow values across external or internal boundaries,
posterior to obtaining the groundwaterlevel values. The implementa-
tation of the technique in the case of linear triangular elements

on an irregular grid is discussed. It is finally argued from
simplified cases that, apart from guaranteeing match with pre-
scribed input, the technique may often be expected to give more
accurate flow values than those obtained directly from the ground-

water gradients.
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INTRODUCTION

The linear parabolic differential equation describing
unsteady groundwater flow in an anisotropic nonhomogenecus
aquifer has been solved by various author using the finite
element Galerkin method for the space variables. This paper
deals with two techniques connected with the implementation
of this method. It is an extended and revised version of a
paper presented by the authors at thé Second International
Conference on Finite Elements in Water Resources in London
in 1978 (see Kjaran and Sigurdsson (1978)).

We discuss, firstly, a mode superposition technique for
dealing with the timederivative. The technique involves
computing the smallest eigenvalues and associated eigenvectors
of the matrices arising from the Galerkin method. This can be
done effectively with the subspace iteration algorithm which
has been developed for structural problems. An advantage of
this technique from a hydrological standpoint is that it
allows us to interpret the response of the approximate ground-
waterlevel to infiltration or pumping in terms of simple parallel
linear reservoirs. The eigenvalues can be associated with the
timeconstants of the reservoirs and the inflow to each reservoir
is determined by the eigenvectors. This interpretation carries
over from the exact theoretical groundwaterlevel but whereas the
response of this level can be shown to be equivalent to the
response of inifinitely many parallel linear reservoirs with
definite timeconstants, the technique presented in this paper only
includes approximafions to the constants of the most delayed
reservoirs and treats the remaining inflow without time-delay.
From a computational standpoint the technique éppears to offer
an attractive alternative to the. use of finite difference
methods in cases where the input function is piecewise constant
(or can be approximated by low-order polynomials) over relatively
large subintervals of the total timeinterval of interest or
where groundwaterlevel values are only required at relatively
few timepoints compared with the total time interval of interest.

It is sometimes of equal importance to be able to obtain -
good approximations to flow values across external or internal
boundaries as to actual groundwater levels. It is well known

that, if fhese flow values are obtained directly from the ground-



water gradients, matching with prescribed infiltration or inflow
will in general not be attained. It is, however, possible to
make use of difference approximétions to normal gradients, that
are inherent to the Galerkin method and sometimes referred to as
generalized flow formulae, to overcome this matching problem.

We consider, seéondly, in this paper a realization of this type
of approximation in the case of linear triangular elements in

an irregular region. Although it is difficult to prove in
general that the resulting flow values will be more accurate than
gradient flow values, it can be shown that they correspond to
improved order difference approximations for the flow in a special
regular case arising when we have uniform triangularization

of a rectangﬁlar region. Furthermore, there is experimental
evidence of the usefulness of analogous gradient formulae in

two-dimensional field problems with regular rectangular elements.

THE BASIC EQUATION AND ITS APPROXIMATION BY THE GALERKIN FINITE

ELEMENT METHOD

In this section we present the basic equation for ground-
water flow which we are concerned with in this paper and its.
approximation by the -Galerkin finite element method using linear
triangular elements. The Galerkin method has been used by many
authors, in one form or another, for solving groundwater problems,
see f.ex. Neuman and Witherspoon (1970), Pinder and Frind (1972),
and Pinder and Gray (1974). 1In this section we, therefore,
restrict ourselves to a brief development of the method in the
form that is relevant for the special techniques to be presented
in the following sections. A more general treatment of the method
can be found in a variety of texts f.ex. Zienkiewicz (1971),
Strang and Fix (1973), Mitchell and Wait (1977), or Pinder and
Gray (1977).

The differential equation governing the groundwaterlevel,

h, in an anisotropic, nonhomogeneous aquifer is given by
(cf. figure 1):

S%% = Lh + R(x,y,t) in ¢ (1)

h =g  on 891 (2)

- Nh = £ on of



h(x,y,to) = f (x,y) in @ (3)
where the operators L and N are defined as:k
- 9 3 3 9_ 9 9_
L T odx (Txxax ¥ TxyBy) ¥ oy (Tyyay ¥ Tyxax (4
= n- S C 3. d_
N =n (TXXaX + TXyay , Tyysy + Tyxax)' (5)

In the isotropic case (4) and (5) reduce to

L = V-(TV) . (6)
= T
N = Tor (7)

R is some source function (infiltration, pumping,
recharge) and g and f are given timeindependent
functions. S denotes the storage coefficient and T the

transmissivity.

In order to obtain the Galerkin finite element
approximation to the solution of equation (1) to (5) the
region § is subdivided into triangular eleménts (cf. figure 2)
and the nodal points are numbered, starting with points in Q
and on 3, (assume the total number of these to be N), and

2
finishing with points on 9Q, (assume the total number of these

to be M-N). We associate w%th nodal point i the piecewise linear
pyramid function Yi(x,y), which takes the value 1 at the point i
and the value 0 outside the adjacent triangles (the shaded region
in figure 2). We then seek to obtain a continuous and piece-

wise dinear approximate solution in the form:

v=4

H(X,y,t) =
i

nm

h. () ¢.(x,y) + % gy (x,y). (8)
11 1 i=N+1 T .

The coefficienfshi(t) or g. are the values of h at point i,
the constant coefficients g4 are obtained from the prescribed
boundary condition on aﬂl,wﬁ@xﬁsthe“tmw dependent coefficients
hi(t) are to be determined. Thus we have ensured that h
approximately satisfies the condition (2) on 891. The flow

condition (3) on 93Q on the other hand, is only indirectly

2)
imposed on T as shown below.
Considering first the case of isotropic flow, the Galerkin

conditions for determining hi(t) can formally be described as:



9h

Jitsss - 7(TVh) - RIidxdy = 0, 1=1,2,...,N. (9)
Q

However, since h is only piecewise once differentiable in x and
y, these conditions have no proper meaning until they have
been transformed into the corresponding weak form by integrating -

by parts using Green’s theorem. Equation (9) can then be rewritten

as: dh
CE% = -Bh + b (10)
where b(t) = [hi(t)]N
C = [Cij]NxN = [&gsijidxdy]NxN (11)
B [bij]NxN = [E{(vaj'vwi)dxdy]NxN (12)

M
= = . - T ¢ .TY. VY. )dxd
E(t) [bi(t)]N [&{Rwldxdy &{( j=N+1g] w] ¥, )dxdy

-§ fy.dsl, (13)

892

The prescnce of the 1ine~integpal in (13) and the absence of
a corresponding integral in (12) indirectly impose on h the
flow condition (3) on 392. Eqﬁation.(lo) represents a system
of N linear ordinary differential equations that can be solved

for given initial conditions h(to) = | (cf. condition(3)).
- an -
For the cteady state problem with == = 0 and b(t) = b, corre-

sponding to the replacement of thedgourcefunction R(x,y,t) by

a long-term average source level ﬁ(x,y), it reduces to a

system of N linear equations. In- the evaluation of the integrals
in (11) to (13) we use the approximations that S and T are
constant within each triangular element and that R is continous
in  and linear within each triangular element, taking prescribed
values at the nodal points, referred to as Ri' We can also
include in the infiltration term, R, Dirac delta functions,
-Q8(x,y58n), corresponding to a pumping at the point (£,n).
Finally, we use the approximation that f is linear between nodal
points on 392, taking on prescribed flow values at the nodal

points, referred to as fi— or fi depending on whether we are

+



considering the flow value just before or just after the: .
nodal point as we pass along 892 anticlockwise (cf. figure 2).

The differential equation system (10) is most readily
obtained by assembling it fvom contributions of each trian-
gular element. These contributions can, in turn, be obtained
by applying the Galerkin method to such an element and imposing
arbitrary flow conditions round the whole boundary (cf. figure 3).
The resulting system corresponding to (10) is, if we assume-
that we have a pumping Q at point P as well as a continuous

infiltration:

sa {2 1 1] 4 [n] =
12 1 9 1 dt hj
1 1 2 hk
_ L2 g2 L2 .2 2, _
135% 2 112 o 14.42 .2 2 _ 2o 7., .
‘ iJ2 ]kz k12 221k1 2 2 l.jk 1ig ‘1112_ hj
(1" = 1i37= 14" 1ik"- 1xi®- 1i5 C 2 1..2 h
v 1] k
+A [2 1 11([R.] -0Q [a.
I‘z_ 1 1
1 2 1}|R. o (14)
Jl 1 ) )
| 2 Rk o
—% ’ lki(fk+ + 2fi_) + lij(Zfi+ fj_
1..(f. . + 1. .t
i3 fl+ 2fj_) 1jk(2fj+ fk—
‘1. .t + .
tljk(fj+ ka_) lkl(ka+ + fi—)

Here A denotes the area of the element and 1ij~the length of

the edge between points 1 and J.

o, = =4 | similarly for o. and a, .
i liq N k

When assembling the element contributions we let flow
terms across common boundaries of adjacent elements cancel out.
In the final assembled system we are thus only left with flow

terms on the outer boundaries Bﬂl and 892. On aﬂg the flow



termsvare prescribed, wheraas on 891 hi are known and we can
drop the corresponding equations from the system. The resulting
system will then be identical to that in (10). It should further
be noted that if we sum the individual equations in (14%) we get
that:

g Di*h.+hy RO+RLHR
SA- (21 %) - A L1 X _ g
dt 3 3
£f. +f. f. +f £, +f.
- R e A 3 K=y _ _kt 1=
Ly G- 1 S - L (s,

Thus mass is conserved within the element and the same
will hold true for any assembled subregion and in the end
for the total region Q.

Considering, finally, the case of anisotropic flow, the
change in equations (10) to (13) is that in equation (12) we

now have that:

by = éJ[TXX N4 g + T By 3y

X~ 3x YY By° "oy
+ T oy awy + T By i
Xy 5%3 §%l VX B §§L]dxdy
(cf. equation (u4)) However, if we approximate Txx’ Tyy’

Txy’ and TyX with constants within each triangular element,
this can be brought within the framework of equation (14) if

we determine the eigenvalues, Al and A and corresponding unit

2,
eigenvectors (principal directions of the anisotropy)

(cyyq9

) and (c21, c22) for the matrix
(T T
XX Xy
Eald
yX Yy

Assuming that T, =T and T T >T2 ‘', so that

. y yx XX Yy Xy 7.
the eigenvalues are real and positive and the eigenvectors

orthonormal, we introduce the following change of coordinates:

I

[c11 %t egp9] 5 n= [e21% * 220Y]. (1)

Al

If the lengths lij’ 1 and lki in the first matrix on the

ik’



RHS of equation (14) are recalculated in this new coordinate
system and T is replaced by Alkz'the triangular element contri-
bution to the final system still remains valid. (The area, A,
is to be left unaltered in this term as..well as other terms,.

and the lengths to be left unaltered in the last term.)

THE MODESUPERPOSITION TECHNIQUE FOR TREATING THE TIMEDERIVATIVE

In this section we develop the modesuperposition technique
for treating the timederivative when solving timedependent

problems with the Galerkin method, i.&¢. when solving the problem:

(@]
]

- Bh + b(t) , h(te) = fi ]

(cf. eduation (10)). The basic idea of using such a technique
is not new. It has f.ex. been proposed for a more general class
of problems by Wait and Mitchell (1971) (cf. also Mitchell and
Wait (1977)). Independently Kjaran (1976) proposed its use for
solving groundwater flow problems in particular. The develop-
ment below is an extension of that work, where we pay special
attention to computationally efficient implementations of the
technique.

For theoretical, rather than computationai, reasons we
shall find it —convenient to divide h(t), the approximate

groundwaterlevel at the gridpoints,into two parts:
h(t) = b + h, (1)
where h,, the Stationary part, satisfies the linear equation
- Bh, =D ‘, (16)

and hl’ the transient part, satisfies the linear differential

equation:

[aN
[

h

C qi = -Bh, + (b(t) - B) , h(t)) =f - h (17

[N

It is then understood that the vector b includes the contributions
from the timeindependent nonhomogenous boundary conditions, i.e.
the last two terms in equation (13) and possibly also some

contribution from a long-term averagevalue for the source



function R.
Let Ai and ¢$., 1 = 1,..,N, denote the eigenvalues and corre-
sponding eigenvectors of the eigenvalue problem:

~

? = AC9

[w o B

o3
1]

where

i.e. we have normalized B with respect to some reference trans-
missivity, To’ and normalized C with respect to some reference

storage coefficient, So,and the area A. We furthermore assume

that the eigenvectors are normalized such that ¢§C¢i = 1 and
the eigenvalues are ordered such that AlS/AQ < ...L AN. By writing
N _ N ~
bl(t) =z hi(t)d~>i s P(t) - b =.§ bi(t) C@i ’
i=1 » i=1

and substituting these expressions into equation (17) we then
obtain that

- dh: | T To, A
i 1 1T iy = h.(t ) = ¢. ¢(h-h,) (18)
‘—‘—“dt = - K_ hl + 'A'—S— il(g(t)—g) 1 o] ~1 ~ o~
i o
‘ ASO
where | 'Ki =TT i=1,2,..,N (19
io
and hence that:
: N . _ E:Eb
h(t) =% (6.7 ch-h)) e X1 ¢
~1 . ~1 ~ 20 21
i=1
ST
N t-t _ .
1 : -
foem T ° . T(b(t-1)-Ble K a1) ¢, (20)
AS . L1 2 < i
o 1i=1 o
which is our basic solution form for the transient part. If

we wish to include the stationary part we can of course do so,
simply by setting h = § = o on the RHS of equation (20).

Before considering the computational aspects of the solution
form we observe that equation (18) is a differential equation
for a linear reservoir with a timeconstant Ki' The response
of the approximate groundwaterlevel at each gridpoint to the

infiltration or pumping within the region is therfore exactly



analogous to the outflow response of a system of N parallel
simple linear resevoirs as illustrated in figure 4, the inflow
to the reservoir associated with timeconstant Ki being
determined by the eigenvector ?i' This interpretation of the
groundwater response is often very useful from a hydrological
standpoint.

By comparison we have that the transient part of the
- theoretical solution to equation (1) to (5))i.e. the function

hl(x,y,t) satisfying,

oh

1 _ .
S oyl Lh1 + (R-R) 1in @
h1 = 0 on 891
--Nh1 = 0 on 892

hy (%,y,t5) = Ax,y) -h (x,y) in @

where R(x,y) denotes long-term average for the source function

and ho(x,y) is the stationary part satisfying

Lh = -R in Q

e}

ho =g on 391
—NhO = f on 892 ,

may be expressed as:

| T " Sty
hl(x,y,t) = K§g"i§1[{{?i(g’n) S(E,n)(ﬁ(é,n)—ho(g,n))dgdn]e K ¢fxy9.
® oot \ | I
1z ‘ - v - ¥ .
* E i=1 lI o © J;{d)l(gan)(R(E)n:T) —R(E,n)) dEdn]e K—J‘T de)i(X,Y)_-’

Here‘Ki is defined as in equation (19) wheras Ai and ¢i(x,y),
i =1,2,. are.now the eigenvalues and eigenfunctions of
the eigenproblem

,%— Lo + A ——S¢ = 0 in @

(0] (@]



6 =0 on 32,

on 392

i}
o

_Nd;

and the eigenfunctions are normalized so that

A—é—; IQJ'S(‘E,n)¢i2(£,n).dEdn = 1

It has been observed by Kjaran,; (1976) that the response of
the transient part of the exact theoretical groundwater level at
any point within the region to infiltration or pumping is again
exactly analogous to the outflow response of a system of parallel
linear reservoirs, the only difference being that the reservoirs in
this case will be infinitely many. He further observed that
the response of the total outflow out of the region can be
viewed in exactly the same way. Although these observations
were restricted to the case of isotropic flow the results are
readily extended to the case of anisotropic flow.

Turning to the computational aspects of the solution form in
equation (20), this has to be contrasted with the computational
effort required in a finite difference method. A brief account
of these methods can be found f.ex. in Mitchell and Wait (1977)
and Pinder and Gray (1977). The relevant facts for the present
discussion are that when advancing each timestep,At, in the
finite difference method the main computational task is that

of solving a linear system of the type

[§C+ ﬁ%B]E =c
where C and B are the NxN matrices in equation (17) and the
vector ¢ can be calculated explicitly. & is a parameter
depending on the choice of method. a = 0 corresponds to an
explicit method. The advantage of such a method is that after
.we have obtained triangular factors for B at the start of the
computation we only have to perform a forward and a backward
substitution at each timestep regardless of whether we
change the timestep, At. Similarily, we only have to perform
forward and backward substitutions if we recalculate h for a
new input function. However, stability consideration; in

general restrict the maximum timestep to such a small value



-11-

that we opt for an implicit method with a > 0. For such a method,
on the other hand, we have to recalculate the triangular factors
of ac+%¥B each time that we change the timestep. Moreover, if
we wish to recalculate h for new input functions, we have to choose
betﬁeen carrying out th;se calculations simultaneously, retaining
the triangular factors from each stepchange, or recalculating
these factors. |

Returning to equation (20) we first note that the convolution
integral can in general be conveniently dealt with if we make

use of the fact that

tHAt-t_ - - 2L toto - At -
J f(t+at-t)e "1 at = e "* f f(t-1)e 1 dt + [t(t+At-T)e ~ldr
o o 5 .
Wwhen we advance from time t to time t+At. Secondly,\we note

that if we want to calculate E(t) for a new input function
(infiltration, pumping), the eiéenvectors and eigenvalues remain
the same so we just have to reevaluate the convolution integral
to get a new solution, irrespectively of whether we use
(variable timesteps) when advancing the integral value in equation
(20).

A similar situation arises if we have a leaky aquifer
with the leakage proportional to the drawdown. Then the eigen-
problem does not have to be solved again if we introduce a
constant leakage factor Y, since the eigenvectors will remain

unaltered and the new eigenvalues are simply given by

For large N, however, the number of convolution integrals
to be calculated would in general be too great to make the
solution form in equation (20) computationally attractive in
comparison with finite gdifference methods, but this picture
changes if acceptable approximations to h(t) can be obtained
"with the knowledge of only a few, M say,Nof the smallest eigen-
Values (largest timeconstants) and the associated eigenvectors.
Furthermore, in that case, the computational effort involved
in obtaining the eigenvalues and eigenvectors which would be
very significant for large N can be cut considerably. Powerful

algorithms have been developed for these type of problems e.g
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the socalled subspace iteration algorithm. The algorithm,
which can be viewed as an extension of the well known inverse
iteration algorithm, obtains the M smallest eigenvalues and
associated eigenvectors simultaneously and involves only at
each iterationstep a solution of a reduced eigenproblem of size K,
as well as K linear systems of the form Bx = y where K~eM+8
and B is the NxN matrix in equation (17). Thé convergence 1s
in general very rapid. It has been used sucessfully for solving
structural problems (see Bathe et al. (1974) and Strang and Fix
(1973)). ,

In order to see when this type of approach is possible it

is convenient to assume that
b(t) =“EO (constant) in the interval [%—At,%]; [ty>"]

The solution form in equation (20) can then be rewritten as

follows:
-(t-t _

A N T '_FTQQ 1 yootot T, A h£7
h(t) = ¥ (¢i Ch)e 1 ¢, * 55 I ( i ¢. b(t-1t)e 1 dr)é.
~ i=1 ~t 0~ ~ o i=1 At "~ -~ ~1

u - At

-1 1 T K-
+ —_— 1 .

B ?o A3 ifl(?l ?o)Kie ?1 (21)

and chosen to combine again h and h, (t).

~0 ~
It then follows that provided At is sufficiently large such
that At '

Kpyq
KM+1e < g (22)

‘where e denotes some error tolerance that will depend mainly
on the size of P(t) we can expect to obtain a satisfactory
approximation for h(%) even if we replace N by M on the RHS of
equation (21). Note, however, that this is not the same as re-

placing N by M in equation (20), since all the eigenvectors are



implicitly included in the term B_l?o although we do not require
explicit knowledge of the vectors ?i’ i > M+1,..,N. Rather,1this
approximation amounts to replacing all the timeconstants Ki, |
i > M+1,..,N, by zero or in terms of the parallel reservoirs ana- -
loéy we have treated the reservois M+1 to N with no timedelay.
In order to illustrate this further we present in figure 5
the results of a small example, where we take the flow area to
be a 8quédre with an area, A, of 108m2, and the source term to
be given in form of constant pumping, Q, of 1m3/S at the centre
of the square. We let the aquifer be isotrogic and homogenous

. .. .. ?
with a transmissivty coefficient, T, of 0.2m /s and a storage

coefficient, S, of 0.06 and prescribe constant head on the boundary.

We have then calculated the drawdown at an observation well
halfway between the centre and the boundary as a function cof time.
(On the axes in the figure we show a dimensionless drawdown,

s1 = %f , and a dimensionless time, tl = %% , as well as an
actual drawdown and time; the results may thus be interpreted

for different values of A, Q, T, and S). This example has been
considered by Kjaran (1976) who shows that using a uniform
triangular grid with 48 internal grid points in the Galerkin
finite élement method we get a solution, referred to as a 48
eigenfunctions solution in the figure, which is in close agree-
ment with the theoretical solution. Using the same number of
internal points, but includirgonly the first term in the sums

in equation (20), we get the solution referred to as a 1 eigen-
function solution, whereas if we include only the first term in
the sums in equation (21), as well‘;s the term B_lbo,we»get

the solution referred to as a corrected 1 eigenfun;tion solution.
As can be seen the latter approximation is an extremely good

one except for very small timevalues, whereas the first one is
relatively poor (in fact almost as poor as a 9 eigenfunction
solution based on 9 internal points).

In practice when b(t) is in fact often a piecewise-constant
vectorfunction we finthhat we are justified in using equation
(21) with N (or rather M) as low as 1-10 for many t-values
of interest. It is of interest to observe, however, that when
equation (22) is only satisfied for large values of M, for

some given time, %,that rather than computing additional eigen-

values and -eigenvectors we have either of the following two options:



I) We can increase At beyond the range where the approximation
b(t) ~ b is valid, provided we add to the RHS of equation (21)
a correction term which is the solution of the differential
-equation dh

C3f =-Bh + b(t) - Db_ h(t-at) = 0

at the time £. This solution can in turn bé obtained by a
finite difference method, and this may be more economical
than using such a method over the whole interval, if the
difference between the t—vélues where we require a solution

is considerably largerthan At.

II) We can choose fhe interval [%-At,t] in such a way that ?(t)
can be replaced by a low order polynomial on the interval
rather than a constant. If we assume f.ex. that
b(t) = b+ (t-P)p, + (t-1) b2 in the interval [f£-At,%] then
the RHS of equatlon (21) remains valid provided the last two

terms are !'replaced by the fiollowing:

N
1 -1 -1 1
(PO—B (gl—B 292))--——— E [( 9 g

AS_ 5.4 At
K

-(giTg,)(Ki +oAt) + (¢in2)(2Ki2 +OOATK, + At2)]Kie i ¢, (23)

Although these terms are somewhat more complex, the increase
in computational effort will in many cases be more than offset
by the possible decrease in the number of eigenfunctions, M.
We further note that provided the triangular factors for the matrix
B are available we only need to perform three forward and backward
substitutions in order to evaluate the first term in (23)
compared with one forward and one backward substitution in order
to evaluate B_lgo in equation (21).

Finally,we observe that the triangular factors for B
(Cholesky factors since B is symmetric and positive-definite)
‘required for the evaluation of B—lbo in equation (21) or the
corresponding term in equation (23; at each t-value of interest
can be obtained once and for all at the start of the computation,
as 1s the case for an explicit finite difference method, and

they are also precisely the triangular factors required in the



subspace iteration used to calculate the eigenvalues
and eigenvectors (cf. the description of that algorithm above).
Summarizing what we consider the most important aspects

of the mode superposition technique, we have that: _

1) It allows us to interpret the response of the approximate
groundwaterlevel to infiltration or pumping in terms of
simple parallel linear reservoirs, an interpretation that
carries over fvom the exact theoretical groundwaterlevel.

2) It may offer a computationally attractive alternative to the
use of finite difference methods when one of the following
conditions are satisfied:

a) The input function, b(t), can be approximated by a constant

(or a low-order polyn;mial) over relatively large subintervals
of the total time interval of interest.

b) Groundwaterlevel values are only required at relatively few
t-values compared with the total time interval of interest.

c) The groundwaterlevel, h(t), has to be calculated for various
input values (or possigly various leakage factors), but the

same values for transmissivity and storage coefficients.

. CALCULATION OF FLOW ACROSS BOUNDARIES

In order to simplify the presentation we restrict our attention
in this section to the steady state problem, where the LHS of
equation (1) is replaced by zero, unless otherwise specified.

We assume that we have determined the level values, hi’ at all
nodal points and that we are now interested in determining the
flow distribution across internal as well as external boundaries
e.g boundaries Al1-A9, B1-B7, and C1-C3 in figure 6.

The most straightforward approach would be to obtain the
flow values from the normal gradients of the approximate
solution, h, within the triangulaf elements next to the bounda-
ries. In the isotropic case this amounts to using the following

formula for obtaining the total flow across the edge ij in

figure 7:

1 = T 2
2l.o{f., + f. ) = — + . - A .
21 (f f] TA [21ij hk (l]k lkl ll] )h]

(1% 212 C 1. 2)hi] (24)



where A denotes the area of the element .ijk, lij the length of
the edge between points i and j and T the constant transmissivity
within the element. The same formula remains valid in the
anisotropic case if we transform the (x,y)-coordinates according
to equation (15) and recalculate the lengths of the edges in
the new coordinate system as well as replacing T by Xl-Kz (cf.
comments before and after equation (15)).
The above formula, however, has the following disadvantages:
i) When flow values are calculated across a closed boundary
they will in general not match the infiltration within
the boundary, indeed discrepancies of up to 50% are not

uncommon in practical problems.

ii) Flow values based on it will not agree with specified

flow values on the boundary BQQ.

1ii) At an internal boundary we obtain different flow values
depending on, on which side the triangular element is

that we base our calculations on.

In order to overcome these disadvantages we propose that
use is made of the following relationship, if we are interested

in the flow across boundary mij in figure 7:

%[1é. (F .+ 2F. ) + 1..(2f.. + £. )]

mi m+ 1- 17 1+ j-
T 2 2 L2 2
= - I =% L hy o+ (1.7 - 1., ¢ - 1 . )h.
> B (21, "y (1,5 Ly 1 :)hy (25)
2 2 2 A
+(1, .7 - 1..- = .+ R. -a,
(1, 1y ljk)hk] t 1y [2R; + Ry + R 1-0,0Q.

The summation sign on the RHS denotes that we are to add
to the contribution from the triangular element ijk, presented
on the RHS, analagous contributions from the triangular elements
ikl and ilm. The relationship has been obtained by combining
those equations in the element contributions given in equation
"(14) that are associated with node i and by letting flow terms
across common boundaries cancel out just‘as is done in the
assembly process described earlier. We shall refer to the
relationship as the Galerkin flow formula although it might
also be referred to as a generalized flow formula (cf. the

terminology of Larock and Herrman (1976)). We have assumed
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that we have a pumping Q at the point p and define a, as in
equation (14). Since we are restricting ourselves to the
steady state problem the LHS in equation (14) has been set to
zerc, but the only change that has to be made in the Galerkin
flow formula if we drop this restriction is to replace R, by
Ri_SE?i . Anisotropy is dealt with in exactly the same way
as described before and after equation (15). Finally it may
be noted that the first term on the RHS of the flow formula
(25), after we have summed over the appropriate triangles, is
exactly half the gradient inflow through the boundary jklm (cf.
equation (24)).

The Galerkin flow formula may be implemented in two
different ways:
A. We may interpret the LHS as giving the total flow across the

boundary from the halfway point between nodes m and i to

the halfway point between nodes i and j.

B. We may combine flow formulae for all the nodes along the
total boundary of interest into a tridiagonal linear system
and calculate from it separate f values.

The second implementation is most readily described by
considering the simple example in figure 8. Here the boundary

between points 1 and 5 may be thought of as either an external or

an internal boundary (cf. figure 6). We assume that the values
fo+’ and f6_are known from prescribed boundary conditions. We
then go on to set 1) f2_ = f2+, 2) f3+ = fu_, and 3) fu_ = fu+.

1) is of course exact since the boundary is straight around
node 2. 2) is an approximation that remains reasonable as

long as the edge between nodes 3 and 4 is relatively short;

we shall refer to it as a short edge approximation. 3) is an
approximation that remains Peasonable as long as the angle made
by the boundary at node 4 is relatively flat; we shall refer to
it as a flat angle approximation. The::Galerkin flow formulae
for nodes 1 to 5 can now be combined into the following linear

-system:
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where bi denotes the contribution from the RHS in equation (25)
at node i. This tridiagonal system can then be solved to

140 Ton = oy BTals fap = 5, = fuyps

We observe that if the boundary between nodes 1 and 5 had been

obtain values for f and f5.
straight, no approximation would be needed (we could then set
f = f rather than setting f3+ = fq_). We also observe that

3+ 3-
if fl— and fo f.ex were not known this could be counteracted

by using a Sh;rt edge approximation between nodes 1 and 2
(i.e. by setting f1+ = f2_).

Irrespectively of whether we make. use of implementation
A or B it is a direct consequence of the fact that the Galerkin
flow formula is consistent with the assembly process in the
Galerkin finite element method that we will get ‘exact match
between calculated flow on one hand and prescribed inflow and
infiltration on the other (cf. the disadvantages (i) and (ii)
described above for formula (24)). Indeed, if we have obtained
the final assembled system. in equation (10) we can read the
Galerkin flow formula from those equations that are associated
with external boundary nodes, where. flow has been prescribed.
Secondly, when calculating flow acfoss an internal boundary it
will not matter on which side the triangles are, on which the
Galerkin flow formula is based (cf. the disadvantage (iii)
described above).

In order to illustrate the Galerkin flow formule and its two
implementations we present in figure ‘9 the results of calculated
flow values across the internal boundary A1-A9 in the region in
figure 56. For this region zero flow is specified across the
shaded part of the boundary and a prescribed :groundwaterlevel on

the.remaining - part of it. The caleulated level values within
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the region vary from 280 to 560 m, transmissivty values from 1.26-
10_LF to 1.26-10—1 m2/s and infiltration from 500 to 1050 mm/year.
The arrows indicate approximate flow lines.

- Downstream and upstream gradient flow values in figure 9
stand for flow values based on equation (24) and using elements above
and below the boundary respectively. Galerkin flow values stand
for flow values based on equation (25). The horizontal line
segments correspond to inplementation A. Here, as well as for
the down-and upstream gradient flow values, we have divided the
total flow across the appropiate edge with the length of the edge
in order to obtain the given values. The almost continous line
corresponds to implementation B. We have made a flat angle
approximation at points A2, A3, A4, A5, and A7 and a short edge
approximation along edges A5-A6 and A8-A9. For both implementations
we make use of the fact that we have prescribed zero flow across
the edges A0-Al and A9-A10 or AO0OZA1l and A9-A10° depending on
whether we calculate the flow values from elements above or
below the boundary respectively (the results, as already mentioned,
will be identical). The total flow across Al1-A9 according to the
Galerkin formulae is 3.9Y4 m%b, and this matches exactly the in-
filtration above the boundary. It is interesting to note that
downstream gradient flow values which lead to almost correct
total flow match the Galerkin flow values much worse than the
upstream gradient flow values.

The difference betwaen the total outflow through the boundary
B1-BS and the total inflow through the boundary C1-C3 in the same
example is 8.93 m3/s according to the Galerkin flow formula,
matching the infiltration within the whole region. An interesting
- feature here is that, although the corresponding difference is
only 6% higher if we calculate upstream gradient flow across
B1-B8 and downstream gradient flow across C1-C3, the Galerkin flow
formule gives in fact ca. 30% greater outflow through B1-B8 and
almost three times as great inflow through C1-C3.

It is of interest to note the form that the RHS of
"equation 25 takes in the regular case shown on the left in figure

10, where 1ij =1 1, say, and we further assume that we

i]l = llm =
have the same transmissivity, T, within all the triangles and omit

the pumping term. The RHS becomes:



1

——T[?hi - T

N

(hj + hm)_hl]+ [6Ri+Rj+Rk+2(RmﬁRl)] (26)

By applying Taylor expansions round the point i it can be shown
that this is in fact a second order difference approximation

to -1T Bh

% |1 for a function,h,that satisfies the differential

equation

-A(TAh) = R

and indeed a third order difference approximation to

3h| , ,3h| , 3h
X |m . X

o

[
1T 3

h.-h
1

1
to the calculated groundwatergradient is of course only a first

if %% = 0. The difference approximation -1( l), corresponding
order approximation. However, it should be mentioned that in the
regular case shown on the right in figure 10 the RHS of formula
(25) becomes identical to (26) except the term R]< is missing
which in turn means that the improved order of the difference
approximation is lost unless R = 0.

The fact that the Galerkin finite element method may lead
to high order difference approximation on the boundary id
observed by e.g Strang and Fix (1973 ,p.33) in the case
of ordinary differential equations. More generally, the fact
that we can obtain through the Galerkin method accurate
approximations for the flow values atpﬁpticular points of
the domain in onedimensional field problems, using an approach
closely related to the one presented here for twodimensional
problems, was observed by J.A. Wheeler (1973) and subsequently
analysed by M.F. Wheeler (1974) and more recently by Dupont
(1976). Their analysis does not seém to be readily extendable
to twodimensional problems. In particular it should be
noted that the implementation of the Galerkin flow formula
in the onedimensional case does not pose any added problems
since only one f value will enter into the analoge of formula
(25).

Larock and Herrmann (1876) have proposed a scheme for
obtaining accurate flow values at the cornerpoints of 4 node

isoparametric quadrilateral elements when solving general

field problems. They make use of generalized flow relations
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implicit in equation (14)(or rather its rectangular element

counterpart) along with some additional information. They

restrict, however, their attention to information obtained from a

single element rather than combining element contributions as

is done in formula (25).

Rodi (1976) has developed a method for calculating accurate
gradients in electromagnetic field problems and demonstrated
its usefulness. Although his motivation and derivation differs
from ours and 4 point rectangular elements are used in the
solution, ithé basic .-formula of his method can be shown to be
analogus to the Galerkin flow formula (25) combined with implementa-
tion B, on a straight boundary.

Finally, the second author has used Galerkin method with
rectangular elements for solving linear heat conduction- convection
problems in a rectangular region and calculated heat flow with
the same type of Galerkin flow formula. In this case the accur-
acy of the flow values can be studied by reducing the size of
the elements and employing extrapolation methods. It has been
observed that the order of accuracy of the flow values becomes
approximately 2 rather that approximately 1 as is the case with
values based on simple gradient approximations analogus to those
in formula (24). However, the benefit of using the Galerkin flow
formula seems to diminish as the convective term becomes more
dominant, a result that may relate to the fact that the Galerkin
method itself is known to present problems whéen dealing with this
type of problems, cf. Mitchell and Wait (1977, p. 184).

Summarizing what we consider the most important
aspects of the Galerkin flow formule we have that:

1) It guarantees complete match with prescribed . infiltration and
inflow.

2) It corresponds to improved order difference approximations
for the flow in a special regular case arising when we have
a uniform triangularization of a rectangular region.

3) Its counterpart in onedimensional field problems has been
anpalysed and proved to result in an improved accuracy, and
‘there is experimental evidence of the usefulhess of its counter-
part in twodimensional field problems with regular rectangular

elements and straight boundaries.
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AGRIP (ABSTRACT IN ICELANDIC)

Fjallad er um tv® vandamdl, sem upp koma, begar buta-
adferd Galerkins er beitt til bess ad dkvarda nalgunarlausn a
linulegri parabdlskri diffurlikingu fyrir timahddar grunnvatns-

breytingar i tvividum, misleitnum og Ssamkynja vatnsleidara.

Fyrra vandamdli® snertir me&dferd 4 timahdda batti grunn-
vatnshzdarinnar. Bent er &, ad i stad bess ad dkvarda tima-
breytingar med adferd endanlegra mismuna, eins og algengt er,
komi til dlita ad nota eiginlausnir. Er ba um ad rada ndalgunar-
eiginlausnir, sem dkvardadar eru Ut frd Galerkinndlgun diffur-
likingarinnar. Synt er i fyrsta lagi, ad dt frd eiginlausnunum
md lita 4 grunnvatnsgeyminn sem samsida linulegar midlanir.
S1ikt er kostur vid vatnafradilega tulkun. I 8rdu lagi er gerd
gerin fyrir bvi, ad nagilegt er ad bekkja adeins eiginlausnir,
sem svara til nokkurra minnstu eigingildanna, til bess ad
dkvarda grunnvatnshaedir med vidhlitandi ndkvemni, 1 pvi tilviki
til demis, pegar irennsli er fasti 4 hlutfallslega stérum tima-
hlutbilum. Sé skynsamlega a® reikningum stadid, getur eigin-
lausnandlgun pbd jafnframt ordid reiknislega hagkvemari héldur en
mismunandlgun.

Sidara vandamdlid snertir dkvdrdun & grunnvatnsrennsli
gegnum ytri og innri jadra Ut fra reiknudum grunnvatnshadum.
Vitad er ad rennslisgildi, sem akvdrdud er beint Ut frd reiknudum
grunnvatnshalla, geta ordid mjdg Sndkvem, enda pott grunnvatns-
hedirnar sjdlfar hafi verid dkvardadar med vidhlitandi ndkvemni.
Synt er, ad med bvi ad nota svokdllud alhzfd rennslissambdnd,
sem fSlgin eru 1 Galerkinndlgun diffurlikingarinnar, md a.m.k.
tryggja samsvdrun milli reiknads Utrennslis og gefins innrennslis.
Fjallad er um, hvernig nota md pessi sambdnd 4 reglulegu svadi,
sem skipt hefur verid 1 brihyrningsbdta. Loks er gerd grein
fyrir pvi & grundvelli einfaldadra dema, hvers vegna atla md,
ad rennslisgildi, sem eru akvérdud Ut frad alhafdum rennslis-
_sambd&ndum, séu ad jafnadi ndkvemari en gildi dkvdrdud ut frd

grunnvatnshalla.
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Figure 9. Comparison of flow values across an internal boundary.
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